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1 Distances between probability measures

Stein’s method often gives bounds on how close distributions are to each other.

A typical distance between probability measures is of the type

d(µ, ν) = sup
{∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ : f ∈ D
}
,

where D is some class of functions.

1.1 Total variation distance

Let B denote the class of Borel sets. The total variation distance between two probability
measures µ and ν on R is defined as

TV(µ, ν) := sup
A∈B
|µ(A)− ν(A)| .

Here
D = {1A : A ∈ B} .

Note that this ranges in [0, 1]. Clearly, the total variation distance is not restricted to the
probability measures on the real line, and can be defined on arbitrary spaces.

1.2 Wasserstein distance

This is also known as the Kantorovich-Monge-Rubinstein metric.

Defined only when probability measures are on a metric space.

Wass(µ, ν) := sup
{∣∣∣∣∫ f dµ−

∫
f dν

∣∣∣∣ : f is 1-Lipschitz
}
,

i.e. sup over all f s.t. |f(x)− f(y)| ≤ d(x, y), d being the underlying metric on the space.
The Wasserstein distance can range in [0,∞].

2-1



1.3 Kolmogorov-Smirnov distance

Only for probability measures on R.

Kolm(µ, ν) := sup
x∈R
|µ ((−∞, x])− ν ((−∞, x])|

≤ TV(µ, ν).

1.4 Facts

• All three distances defined above are stronger than weak convergence (i.e. convergence
in distribution, which is weak* convergence on the space of probaility measures, seen
as a dual space). That is, if any of these metrics go to zero as n→∞, then we have
weak convergence. But converse is not true. However, weak convergence is metrizable
(e.g. by the Prokhorov metric).

• Important coupling interpretation of total variation distance:

TV (µ, ν) = inf {P (X 6= Y ) : (X,Y ) is a r.v. s.t. X ∼ µ, Y ∼ ν}

(i.e. infimum over all joint distributions with given marginals.)

• Similarly, for µ, ν on the real line,

Wass(µ, ν) = inf {E |X − Y | : (X,Y ) is a r.v. s.t. X ∼ µ, Y ∼ ν}

(So it’s often called the Wass1, because of L1 norm.)

• TV is a very strong notion, often too strong to be useful. Suppose X1, X2, . . . iid ±1.
Sn =

∑n
1 Xi. Then

Sn√
n

=⇒ N(0, 1)

But TV ( Sn√
n
, Z) = 1 for all n. Both Wasserstein and Kolmogorov distances go to 0 at

rate 1/
√
n.

Lemma 1 Suppose W,Z are two r.v.’s and Z has a density w.r.t. Lebesgue measure bounded
by a constant C. Then Kolm(W,Z) ≤ 2

√
CWass(W,Z).

Proof: Consider a point t, and fix an ε. Define two functions g1 and g2 as follows. Let
g1(x) = 1 on (−∞, t), 0 on [t+ ε,∞) and linear interpolation in between. Let g2(x) = 1 on
(−∞, t − ε], 0 on [t,∞), and linear interpolation in between. Then g1 and g2 form upper
and lower ‘envelopes’ for 1(−∞,t]. So

P (W ≤ t)− P (Z ≤ t) ≤ E g1(W )−E g1(Z) + E g1(Z)− P (Z ≤ T ).
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Now E g1(W ) − E g1(Z) ≤ 1
εWass(W,Z) since g1 is (1/ε)-Lipschitz, and E g1(Z) − P (Z ≤

t) ≤ Cε since Z has density bdd by C.

Now using g2, same bound holds for the other side: P (Z ≤ t)− P (W ≤ t). Optimize over
ε to get the required bound. 2

1.5 A stronger notion of distance

Exercise 1: Sn a simple random walk (SRW). Sn =
∑n

1 Xi, with Xi iid ±1. Then

Sn√
n

=⇒ Z ∼ N(0, 1).

The Berry-Esseen bound: Suppose X1, X2, . . . iid E(X1) = 0,E(X2
1 ) = 1,E |X|3 < ∞.

Then

Kolm
(
Sn√
n
,Z

)
≤ 3 E |X1|3√

n

Can also show that for SRW,

Wass
(
Sn√
n
,Z

)
≤ Const√

n

This means that it is possible to construct Sn√
n

and Z on the same space such that

E
∣∣∣∣ Sn√n − Z

∣∣∣∣ ≤ C√
n

Can we do it in the strong sense? That is:

P

(∣∣∣∣ Sn√n − Z
∣∣∣∣ > t√

n

)
≤ Ce−ct.

This is known as Tusnády’s Lemma. Will come back to this later.

2 Integration by parts for the gaussian measure

The following result is sometimes called ‘Stein’s Lemma’.

Lemma 2 If Z ∼ N(0, 1), and f : R → R is an absolutely continuous function such that
E |f ′(Z)| <∞, then EZf(Z) = E f ′(Z).
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Proof: First assume f has compact support contained in (a, b). Then the result follows
from integration by parts:∫ b

a
xf(x)e−x

2/2dx =
[
f(x)e−x

2/2
]b
a

+
∫ b

a
f ′(x)e−x

2/2 dx.

Now take any f s.t. E |Zf(Z)| <∞,E |f ′(Z)| <∞,E |f(Z)| <∞.

Take a piecewise linear function g that takes value 1 in [−1, 1], 0 outside [−2, 2], and between
0 and 1 elsewhere. Let

fn(x) := f(x)g(x/n).

Then clearly,

|fn(x)| ≤ |f(x)| for all x and fn(x)→ f(x) pointwise.

Similarly, f ′n → f ′ pointwise. Rest follows by DCT. The last step is to show that the
finiteness of E |f ′(Z)| implies the finiteness of the other two expectations.

Suppose E |f ′(Z)| <∞. Then∫ ∞
0
|xf(x)| e−x2/2 dx ≤

∫ ∞
0

x

∫ x

0

∣∣f ′(y)
∣∣ dy e−x2/2 dx

=
∫ ∞

0

∣∣f ′(y)
∣∣ ∫ ∞

y
xe−x

2/2dx︸ ︷︷ ︸
e−y2/2

dy.

Finiteness of E |f(Z)| follows from the inequality |f(x)| ≤ sup|t|≤1 |f(t)|+ |xf(x)|. 2

Exercise 2: Find f s.t. E |Zf(Z)| <∞ but E |f ′(Z)| =∞.

Next time, Stein’s method. Sketch:

Suppose you have a r.v. W and Z ∼ N(0, 1) and you want to bound

sup
g∈D
|E g(W )−E g(Z)| ≤ sup

f∈D′

∣∣E (f ′(W )−Wf(W )
)∣∣

Main difference between stein’s method and characteristic functions is that Stein’s method
is a local technique. We transfer a global problem to a local problem. It’s a theme that is
present in many branches of mathematics.
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