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Part |

The Bias-Variance Tradeoff
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Part I: The Bias-Variance Tradeoff

Estimating 3

@ As usual, we assume the model:

y="f(2)+e e [10,0%)

@ In regression analysis, our major goal is to come up with some
good regression function f(z) =z'/3

. L al
@ So far, we've been dealing with [35, or the least squares
solution:

Al
° ,65 has well known properties (e.g., Gauss-Markov, ML)

@ But can we do better?
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Part I: The Bias-Variance Tradeoff

Choosing a good regression function

@ Suppose we have an estimator 7(z) =z '3

o Tosee if 7(z) =z' B is a good candidate, we can ask
ourselves two questions:
1) Is B close to the true 37
2.) Will f(z) fit future observations well?
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Part I: The Bias-Variance Tradeoff

1) Is B close to the true B7?

@ To answer this question, we might consider the mean
squared error of our estimate (3:
o i.e., consider squared distance of 3 to the true 3:

MSE(B) = E[lIB =8I = E[(B-8)"(3-B)]

e Example: In least squares (LS), we now that:

E[(3° - 8) (8" - B8)] = +2t((272)7Y
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Part I: The Bias-Variance Tradeoff

2.) Will #(z) fit future observations well?

o Just because 7(z) fits our data well, this doesn’t mean that it
will be a good fit to new data

@ In fact, suppose that we take new measurements y/ at the
same Z;'s:

(Zla)/{)’ (Z2ayé)’ SRR (Znayrl7)
@ Soif (-) is a good model, then #(z;) should also be close to
the new target y/
@ This is the notion of prediction error (PE)
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Part I: The Bias-Variance Tradeoff

Prediction error and the bias-variance tradeoff

@ So good estimators should, on average have, small prediction
errors

@ Let's consider the PE at a particular target point zg (see the
board for a derivation):

PE(z0) = Eyz—7{(Y —f(2))*1Z = 20}
= 02+ Bias’(f(z0)) + Var(f(z0))

@ Such a decomposition is known as the bias-variance tradeo [
o As model becomes more complex (more terms included), local
structure/curvature can be picked up
@ But coefficient estimates suffer from high variance as more
terms are included in the model
@ So introducing a little bias in our estimate for 3 might lead to
a substantial decrease in variance, and hence to a substantial
decrease in PE

Statistics 305: Autumn Quarter 2006/2007 Regularization: Ridge Regression and the LASSO



Part I: The Bias-Variance Tradeoff

Depicting the bias-variance tradeoff

Bias-Variance Tradeoff

Prediction Error|
Bias"2
Variance

Squared Error

Model Complexity

Figure: A graph depicting the bias-variance tradeoff.
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Part 11

Ridge Regression
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1. Solution to the [o1Problem and Some Properties
2. Data Augmentation Approach

3. Bay: Interpretation
4

Part II: Ridge Regression

. The SVD and Ridge Regression

Ridge regression as regularization

o If the ;s are unconstrained...
@ They can explode
& And hence are susceptible to very high variance

@ To control variance, we might regularize the coefficients
o i.e., Might control how large the coefficients grow

@ Might impose the ridge constraint:

M=
X,
IA

n
minimize Z(y; —-B7z))? st
i=1

.
[l
N

M=
X,
IA

= minimize (y —Z8)"(y — Z8) s.t.

-
Il
-

@ By convention (very important!):
o Z is assumed to be standardized (mean 0, unit variance)
@ Y is assumed to be centered
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. Solution to the [o1Problem and Some Properties
» =
Part II: Ridge Regression . D?taj—\ugmem t Approach

yesian Interg on

The SVD and Rid gression

Ridge regression: (»-penalty

o Can write the ridge constraint as the following penalized
residual sum of squares (PRSS):

n

P
PRSS(B)m = > (yi—z] B+ A>3

i=1 j=1

= (y—28)"(y—28) + MBI

. Al
@ lts solution may have smaller average PE than ,65
® PRSS(3)is convex, and hence has a unique solution

@ Taking derivatives, we obtain:

OPRSS(8) 5

— —o97T(y —
98 = —2Z ' (y—2ZB)+2)\3
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. Solution to the [o1Problem and Some Properties
2. Data Augmentation Approach

3. Bayesian e i
4. The SVD and Ridge

Part II: Ridge Regression

The ridge solutions

@ The solution to PRSS(/3)51is now seen to be:

A;\idge — (ZTZ+)\IP)_IZTy

o Remember that Z is standardized
& Y is centered

@ Solution is indexed by the tuning parameter A (more on this
later)

@ Inclusion of A\ makes problem non-singular even if ZTZ is not
invertible

o This was the original motivation for ridge regression (Hoerl
and Kennard, 1970)

Statistics 305: Autumn Quarter 2006/2007 Regularization: Ridge Regression and the LASSO



. Solution to the [o1Problem and Some Properties
Part II: Ridge Regression 2 E:\h Augmentation Approach
. Bay

egression

Tuning parameter A

@ Notice that the solution is indexed by the parameter A

o So for each )\, we have a solution
o Hence, the \'s trace out a path of solutions (see next page)

@ ) is the shrinkage parameter

@ A controls the size of the coefficients
@ ) controls amount of regularization
@ As A | 0, we obtain the least squares solutions

s As A 1 oo, we have ,6: goo = 0 (intercept-only model)
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. Solution to the [o1Problem and Some Properties
2. Data Augmentation Approach

Part II: Ridge Regression Beyesen ImiecEien

4. The SVD and

Ridge coefficient paths

@ The A's trace out a set of ridge solutions, as illustrated below

Ridge Regression Coefficient Paths

Coefficient

DF

Figure: Ridge coefficient path for the diabetes data set found in
the lars library in R.
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. Solution to the [o1Problem and Some Properties

Part II: Ridge Regression 2 E:\h Augmentation Approach
. Bay

egression

Choosing A

@ Need disciplined way of selecting A:

@ That is, we need to “tune” the value of \
@ In their original paper, Hoerl and Kennard introduced ridge
traces:

@ Plot the components of B:dge against A

@ Choose X\ for which the coefficients are not rapidly changing
and have “sensible” signs

& No objective basis; heavily criticized by many

@ Standard practice now is to use cross-validation (defer
discussion until Part 3)
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. Solution to the [o1Problem and Some Properties
2. Data Augmentation Approach
3 n Interpretation

The SVD and R{(lge

Part II: Ridge Regression

~ ridge
Proving that 3, **is biased

o letR=27Z
@ Then:
B;\Idge _ (ZTZ+)\IP)—lzTy
= (R+A,)'RRZT)
= [R(, +ARH'R[(Z272)7'ZTy]
= (I, + \R)IRIRB"
= (I, + AR1)B"
@ So:
~ridge 1\ 5l
EBy~) = E{(l,+ R7)3}

= (Ip +)‘R71):3
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. Solution to the [o1Problem and Some Properties
. Dat: Augmentatlon Approach

3. Bay

4. The S\/D and F\|d~j‘

Part II: Ridge Regression

Data augmentation approach

@ The /5 PRSS can be written as:

n p
PRSS(B)m = Y (vi—z/ B +AD 5
=1 =1
: v
= D i—2z/BP+>_(0— Ig)
i=1 j=1

@ Hence, the /5 criterion can be recast as another least squares
problem for another data set
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Solution to the [o1Problem and Some Properties
Augmentation Approach
an Interpretation
VD and Ridge Regression

Part II: Ridge Regression

1.
2
8
4

Data augmentation approach continued

@ The /5 criterion is the RSS for the augmented data set:

Zl,l Zl,2 21,3 e Zl,p %1

@& Zn2 Zn3 """ Znp Vn

X0 0 0

Z) = 0 N 0 0 YA = 0
V_

0 0 A 0 0

0 0 0 g 5

0 0 0 0 hY 0
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. Solution to the [o1Problem and Some Properties
. Data Augmentation Approach

3. Bayesian Interpretation

4. The SVD and Ridge Regression

Part II: Ridge Regression

Solving the augmented data set

@ So the “least squares” solution for the augmented data set is:

@2z = (@ (Y4 )) @

= (ZTZ+A1,)7 12Ty,

)

which is simply the ridge solution
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. Solution to the [o1Problem and Some Properties
. . 2. Data Augmentation Approach
Part II: R R st .
art idge Regression . Bayesian Interpretation
4. The SVD and Ridge Regression

Bayesian framework

@ Suppose we imposed a multivariate Gaussian prior for 3:
1
;i 0, —1,
2p
@ Then the posterior mean (and also posterior mode) of 3 is:

B = (ZTZ+ M) 2Ty
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1. Solution to the [o1Problem and Some Properties
2. Augmentation Approach

3. Bayesian Interpretation
4

Part II: Ridge Regression
. The SVD and Ridge Regression

Computing the ridge solutions via the SVD

o Recall By = (ZTZ + \I,)"'ZTy

. A ridge . .. . .
® When computing 8 g numerically, matrix inversion is
avoided:
o Inverting ZTZ can be computationally expensive: O(p?)

o Rather, the singular value decomposition is utilized; that is,
Z=UDV',

where:
o U= (uy,Uz,...,Up) is an n < p orthogonal matrix
o D =diag(di, d>,...,=dp) is a p % p diagonal matrix
consisting of the singular values dy = dr =---dp, =0
o VI =(v{,vj,...,v] ) is a p > p matrix orthogonal matrix
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1. Solution to the [o1Problem and Some Properties
2. Data Augmentation Approach

3. Bayesian Interpretation
4

Part II: Ridge Regression
. The SVD and Ridge Regression

) . ~ridge
Numerical computation of 3,

@ Will show on the board that:

BV = (2Tz+A,) 12Ty

d.
J

@ Result uses the eigen (or spectral) decomposition of ZT Z:

z'z = (ubv")T(ubv")
vD'u'ubv'
vD'DV'

= VD2V’
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1. Solution to the [o1Problem and Some Properties
2. Augmentation Approach

3. Bayesian Interpretation
4

Part II: Ridge Regression
. The SVD and Ridge Regression

~rid c .
95 = and principal components

@ A consequence is that:

yridge — ZB;\idge
P d2
J T
2\ )Y

@ Ridge regression has a relationship with principal components
analysis (PCA):
o Fact: The derived variable v; = Zv; = ujd; is the jth principal
component (PC) of Z
@ Hence, ridge regression projects y onto these components with
large d;
o Ridge regression shrinks the coefficients of low-variance
components
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1. Solution to the [o1Problem and Some Properties
2. Augmentation Approach

3. Bayesian Interpretation
4

Part II: Ridge Regression
. The SVD and Ridge Regression

Orthonormal Z in ridge regression

o If Z is orthonormal, then ZTZ = I,,, then a couple of closed
form properties exist

~| .
o Let ,@S denote the LS solution for our orthonormal Z; then

~ridge N 1 s
A =1
@ The optimal choice of A minimizing the expected prediction
error is: )
oo PO
P32
Jj=1"]j

where 8 = (1, 52, ..., 0p) is the true coefficient vector
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1. Solution to the [o1Problem and Some Properties
2 gmentation Approach

3 Interpretation
4

Part II: Ridge Regression
. The SVD and Ridge Regression

Smoother matrices and effective degrees of freedom

o A smoother matrix S is a linear operator satisfying:
y =3y

@ Smoothers put the “hats” ony
@ So the fits are a linear combination of the y;'s, i=1,...,n

o Example: In ordinary least squares, recall the hat matrix

H=2zz'2)"'z"

s For rank(Z) = p, we know that tr(H) = p, which is how many
degrees of freedom are used in the model

@ By analogy, define the e [edtive degrees of freedom (or
effective number of parameters) for a smoother to be:

df(S) = tr(S)
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. Solution to the [o1Problem and Some Properties
2. Data Augmentation Approach
yesian Interpretation

The SVD and Ridge Regression

Part II: Ridge Regression

Degrees of freedom for ridge regression

@ In ridge regression, the fits are given by:
g = Z(Z'Z+ N, 1ZTy
@ So the smoother or “hat” matrix in ridge takes the form:
SA=2Z(Z"Z+Al,)ZT
@ So the effective degrees of freedom in ridge regression are
given by:

p 2
df(\) =tr(Sy) = tr[Z(ZTZ+ A,)"1ZT] = J
(A) =1tr(Sx) rMZ(Z Z + Mp) ] J-_Zldf+A

@ Note that df()\) is monotone decreasing in A
@ Question: What happens when \ = 0?
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Part I11

Cross Validation
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1. K-Fold Cross Validation

Part Ill: Cross Validation 2 Generalized CV

How do we choose \?

@ We need a disciplined way of choosing A

@ Obviously want to choose A that minimizes the mean squared
error

@ lIssue is part of the bigger problem of model selection
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1. K-Fold Cross Validation

Part Ill: Cross Validation 2 Generalized CV

Training sets versus test sets

@ If we have a good model, it should predict well when we have
new data

@ In machine learning terms, we compute our statistical model

A

f(-) from the training set

@ A good estimator lA‘() should then perform well on a new,
independent set of data

@ We “test” or assess how well ?() performs on the new data,
which we call the test set
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X R 1. K-Fold Cross Validation
Part Ill: Cross Validation > Generalized CV

More on training and testing

o ldeally, we would separate our available data into both
training and test sets
o Of course, this is not always possible, especially if we have a
few observations
@ Hope to come up with the best-trained algorithm that will
stand up to the test
o Example: The Netflix contest
(http://www.netflixprize.com/)

@ How can we try to find the best-trained algorithm?
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X R 1. K-Fold Cross Validation
Part Ill: Cross Validation > Generalized CV

K-fold cross validation

@ Most common approach is K-fold cross validation:
(i) Partition the training data T into K separate sets of equal size
@ Suppose T = (T, T2,..., Tk)
@ Commonly chosen K's are K =5 and K =10
(i) Foreach k=1,2,..., K, fit the model IA‘E/,\()(Z) to the training
set excluding the kth-fold Ty
(iii) Compute the fitted values for the observations in Ty, based on
the training data that excluded this fold
(iv) Compute the cross-validation (CV) error for the k-th fold:

(v Eron) = T Y (v =)
(z,y)eT)
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1. K-Fold Cross Validation

Part Ill: Cross Validation 2 Generalized CV

K-fold cross validation (continued)

@ The model then has overall cross-validation error:

(CV Error)® = K1 Z CV Error),, )

@ Select A\* as the one with minimum (CV Error)®)

@ Compute the chosen model ?(Z)O‘qu on the entire training set
T=(T1,To,..., Tx)

o Apply 7(z)*7'to the test set to assess test error

Statistics 305: Autumn Quarter 2006/2007 Regularization: Ridge Regression and the LASSO



1. K-Fold Cross Validation

Part Ill: Cross Validation 2 Generalized CV

Plot of CV errors and standard error bands

CV Bands from a Ridge Regression on Spam Data

Squared Error
0.20
1
pd

df

Figure: Cross validation errors from a ridge regression example on spam
data.
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X R 1. K-Fold Cross Validation
Part Ill: Cross Validation > Generalized CV

Cross validation with few observations

@ Remark: Our data set might be small, so we might not have
enough observations to put aside a test set:
@ In this case, let all of the available data be our training set
@ Still apply K-fold cross validation
@ Still choose A\* as the minimizer of CV error
@ Then refit the model with A* on the entire training set
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1. K-Fold Cross Validation

Part Ill: Cross Validation > Generalized CV

Leave-one-out CV

@ What happens when K =17
@ This is called leave-one-out cross validation

@ For squared error loss, there is a convenient approximation to
CV(1), which is the leave one-out CV error
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1. K-Fold Cross Validation

Part Ill: Cross Validation > Generalized CV

Generalized CV for smoother matrices

@ Recall that a smoother matrix S satisfies:

§ =Sy
@ In many linear fitting methods (as in LS), we have:

n 2 2
V(1) = %Z(Yi_ Fi(z)) = %Z <yll—7fs(,z,l)>

i=1 i=1
@ A convenient approximation to CV(1) is called the
generalized cross validation, or GCV error:

~ 2
1K (yi— ()
GCV = ;Z(l_tr(5)>

i=1 n

@ Recall that tr(S) is the effective degrees of freedom, or
effective number of parameters
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Part IV

The LASSO
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Part IV: The LASSO

The LASSO: /; penalty

@ Tibshirani (Journal of the Royal Statistical Society 1996)
introduced the LASSO: least absolute shrinkage and selection
operator

@ LASSO coefficients are the solutions to the ¢; optimization
problem:

p
minimize (y — Z8) " (y — Z8) s.t. Z 1B)| =<t

Jj=1
@ This is equivalent to loss function:

n

P
PRSS(B)m = > (vi—z/BP+A> 15

i=1 j=1

= (y=28)"(y—28) + MBIl
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Part IV: The LASSO

A (or t) as a tuning parameter

@ Again, we have a tuning parameter \ that controls the
amount of regularization
@ One-to-one correspondence with the threshhold t:

recall the constraint: ,
dIBil=t
Jj=1

@ Hence, have a “path” of solutions indexed by t

o If tg = f:l |le5| (equivalently, A = 0), we obtain no shrinkage
(and hence obtain the LS solutions as our solution)

@ Often, the path of solutions is indexed by a fraction of
shrinkage factor of ty
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Part IV: The LASSO

Sparsity and exact zeros

o Often, we believe that many of the (3;'s should be 0
@ Hence, we seek a set of sparse solutions

@ Large enough A (or small enough t) will set some coefficients
exactly equal to 0!

@ So the LASSO will perform model selection for us!
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Part IV: The LASSO

Computing the LASSO solution

. . . ~ lasso
@ Unlike ridge regression, 35  has no closed form

@ Original implementation involves quadratic programming
techniques from convex optimization

@ lars package in R implements the LASSO
@ But Efron et al. (Annals of Statistics 2004) proposed LARS
(least angle regression), which computes the LASSO path
efficiently
@ Interesting modification called is called forward stagewise
@ In many cases it is the same as the LASSO solution
o Forward stagewise is easy to implement:
http://www-stat.stanford.edu/ hastie/TALKS/nips2005.pdf
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Part IV: The LASSO

Forward stagewise algorithm

@ As usual, assume Z is standardized and y is centered

@ Choose a small . The forward-stagewise algorithm then
proceeds as follows:
© Start with initial residual r=y, and f1 =6, =+ =, =0.
© Find the predictor Z; (j =1, ..., p) most correlated with r
© Update §; — f3 + ¢;, where §; = & - sign[f] Z; [ 3= ¢ - sign(Z]'r).
© Setr — r—§;Z;, and repeat Steps 2 and 3 many times.

@ Try implementing forward stagewise yourself! It's easy!
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Part IV: The LASSO

Example: diabetes data

@ Example taken from lars package documentation:

Call:
lars(x = x, y = y)
R-squared: 0.518
Sequence of LASSO moves:

bmi 1ltg map hdl sex glu tc tch 1dl age hdl hdl
Var 3 9 4 7 2 100 5 8 6 1 -7 7
Step 1 2 3 4 5 6 7 8 9 10 11 12
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Part IV: The LASSO

The LASSO, LARS, and Forward Stagewise paths

LAR
0 2 ) 2 4 7 10
2 EX4
g g
2 g4 g g
g ° <5 °
] ]
S §
5 o -dp— <S5 o=
g o
£ g £ gl
LR g%
g ! g !
o T ] T T s
00 02 04 06 08 10 00 02 04 06 08 10

|betal/max|beta] |betal/max|beta]

Forward Stagewise
0o 2 a4 7 14
W

500

-500

Standardized Coefficients
0

L1
00 02 04 06 08 10

Ibetal/max|betal

Figure: Comparison of the LASSO, LARS, and Forward Stagewise
coefficient paths for the diabetes data set.
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Part V

Model Selection, Oracles, and the Dantzig Selector
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Part V: Model Selection, Oracles, and the Dantzig Selector

Comparing LS, Ridge, and the LASSO

@ Even though ZTZ may not be of full rank, both ridge
regression and the LASSO admit solutions

@ We have a problem when p [—n{lmore predictor variables
than observations)

@ But both ridge regression and the LASSO have solutions
@ Regularization tends to reduce prediction error

Statistics 305: Autumn Quarter 2006/2007 Regularization: Ridge Regression and the LASSO



Part V: Model Selection, Oracles, and the Dantzig Selector

Variable selection

@ The ridge and LASSO solutions are indexed by the continuous
parameter \:
@ Variable selection in least squares is “discrete”:
o Perhaps consider “best” subsets, which is of order O(2P)
(combinatorial explosion — compare to ridge and LASSO)
& Stepwise selection
@ In stepwise procedures, a new variable may be added into the
model even with a miniscule improvement in R?

@ When applying stepwise to a perturbation of the data,
probably have different set of variables enter into the model at

each stage
@ Many model selection techniques based on Mallow's C,, AIC,
and BIC
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Part V: Model Selection, Oracles, and the Dantzig Selector

More comments on variable selection

@ Now suppose p [Cn 1

@ Of course, we would like a parsimonious model (Occam'’s
Razor)

@ Ridge regression produces coefficient values for each of the
p-variables

@ But because of its ¢1 penalty, the LASSO will set many of the
variables exactly equal to 0!

s That is, the LASSO produces sparse solutions
@ So LASSO takes care of model selection for us

@ And we can even see when variables jump into the model by
looking at the LASSO path
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Part V: Model Selection, Oracles, and the Dantzig Selector

Variants

@ Zou and Hastie (2005) propose the elastic net, which is a
convex combination of ridge and the LASSO

o Paper asserts that the elastic net can improve error over
LASSO
o Still produces sparse solutions
@ Frank and Friedman (1993) introduce bridge regression,
which generalizes {4 norms
@ Regularization ideas extended to other contexts:

o Park (Ph.D. Thesis, 2006) computes ¢; regularized paths for
generalized linear models
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Part V: Model Selection, Oracles, and the Dantzig Selector

High-dimensional data and underdetermined systems

@ In many modern data analysis problems, we have p [Cn1
@ These comprise “high-dimensional” problems
@ When fitting the model y = z" 3, we can have many solutions
& i.e., our system is underdetermined
@ Reasonable to suppose that most of the coefficients are
exactly equal to 0
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Part V: Model Selection, Oracles, and the Dantzig Selector

S-sparsity and Oracles

@ Suppose that only S elements of 3 are non-zero
o Candes and Tao call this S-sparsity

@ Now suppose we had an "“Oracle” that told us which
components of the 3 = (51, B2, ..., [p) are truly non-zero

o Let B5be the least squares estimate of this “ideal” estimator;
@ So 3% is 0 in every component that 3 is 0
o The non-zero elements of 3* are computed by regressing y on
only the S important covariates

Statistics 305: Autumn Quarter 2006/2007 Regularization: Ridge Regression and the LASSO



Part V: Model Selection, Oracles, and the Dantzig Selector

The Dantzig selector

Dantzig_

@ Candeés and Tao developed the Dantzig selector ,3

minimize||B||s.t. ||ZTr|||;L (1+t1)/2logp- o

o Here, r is the residual vector and t > 0 is a scalar

@ They showed that with high probability,

Dantzig

113 —BIF = O(log p)E(IIB* — BIP)

@ So the Dantzig selector does comparably well as someone who
was told was S variables to regress on
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