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The purpose of model selection algorithms such asAll Subsets, Forward
Selection and Backward Elimination is to choose a linear model on the
basis of the same set of data to which the model will be applied. Typically
we have available a large collection of possible covariates from which we
hope to select a parsimonious set for the efficient prediction of a response
variable.Least Angle Regression (LARS), a new model selection algorithm,
is a useful and less greedy version of traditional forward selection methods.
Three main properties are derived: (1) A simple modification of the LARS
algorithm implements the Lasso, an attractive version of ordinary least
squares that constrains the sum of the absolute regression coefficients;
the LARS modification calculates all possible Lasso estimates for a given
problem, using an order of magnitude less computer time than previous
methods. (2) A different LARS modification efficiently implements Forward
Stagewise linear regression, another promising new model selection method;
this connection explains the similar numerical results previously observed
for the Lasso and Stagewise, and helps us understand the properties of
both methods, which are seen as constrained versions of the simpler LARS
algorithm. (3) A simple approximation for the degrees of freedom of a LARS
estimate is available, from which we derive aCp estimate of prediction error;
this allows a principled choice among the range of possible LARS estimates.
LARS and its variants are computationally efficient: the paper describes
a publicly available algorithm that requires only the same order of magnitude
of computational effort as ordinary least squares applied to the full set of
covariates.

1. Introduction. Automatic model-building algorithms are familiar, and
sometimes notorious, in the linear model literature: Forward Selection, Backward
Elimination, All Subsets regression and various combinations are used to auto-
matically produce “good” linear models for predicting a responsey on the basis
of some measured covariatesx1, x2, . . . , xm. Goodness is often defined in terms
of prediction accuracy, but parsimony is another important criterion: simpler mod-
els are preferred for the sake of scientific insight into thex − y relationship. Two
promising recent model-building algorithms, the Lasso and Forward Stagewise lin-
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ear regression, will be discussed here, and motivated in terms of a computationally
simpler method called Least Angle Regression.

Least Angle Regression (LARS) relates to the classic model-selection method
known as Forward Selection, or “forward stepwise regression,” described in
Weisberg [(1980), Section 8.5]: given a collection of possible predictors, we
select the one having largest absolute correlation with the responsey, sayxj1,
and perform simple linear regression ofy on xj1. This leaves a residual vector
orthogonal toxj1, now considered to be the response. We project the other
predictors orthogonally toxj1 and repeat the selection process. Afterk steps this
results in a set of predictorsxj1, xj2, . . . , xjk

that are then used in the usual way
to construct ak-parameter linear model. Forward Selection is an aggressive fitting
technique that can be overly greedy, perhaps eliminating at the second step useful
predictors that happen to be correlated withxj1.

Forward Stagewise, as described below, is a much more cautious version of
Forward Selection, which may take thousands of tiny steps as it moves toward
a final model. It turns out, and this was the original motivation for the LARS
algorithm, that a simple formula allows Forward Stagewise to be implemented
using fairly large steps, though not as large as a classic Forward Selection, greatly
reducing the computational burden. The geometry of the algorithm, described in
Section 2, suggests the name “Least Angle Regression.” It then happens that this
same geometry applies to another, seemingly quite different, selection method
called the Lasso [Tibshirani (1996)]. The LARS–Lasso–Stagewise connection is
conceptually as well as computationally useful. The Lasso is described next, in
terms of the main example used in this paper.

Table 1 shows a small part of the data for our main example.
Ten baseline variables, age, sex, body mass index, average blood pressure

and six blood serum measurements, were obtained for each ofn = 442 diabetes

TABLE 1
Diabetes study: 442diabetes patients were measured on 10 baseline variables; a prediction model

was desired for the response variable, a measure of disease progression one year after baseline

AGE SEX BMI BP Serum measurements Response

Patient x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y

1 59 2 32.1 101 157 93.2 38 4 4.9 87 151
2 48 1 21.6 87 183 103.2 70 3 3.9 69 75
3 72 2 30.5 93 156 93.6 41 4 4.7 85 141
4 24 1 25.3 84 198 131.4 40 5 4.9 89 206
5 50 1 23.0 101 192 125.4 52 4 4.3 80 135
6 23 1 22.6 89 139 64.8 61 2 4.2 68 97
...

...
...

...
...

...
...

...
...

...
...

...

441 36 1 30.0 95 201 125.2 42 5 5.1 85 220
442 36 1 19.6 71 250 133.2 97 3 4.6 92 57
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patients, as well as the response of interest, a quantitative measure of disease
progression one year after baseline. The statisticians were asked to construct
a model that predicted responsey from covariatesx1, x2, . . . , x10. Two hopes
were evident here, that the model would produce accurate baseline predictions
of response for future patients and that the form of the model would suggest which
covariates were important factors in disease progression.

The Lasso is a constrained version of ordinary least squares (OLS). Letx1,x2,

. . . ,xm be n-vectors representing the covariates,m = 10 andn = 442 in the
diabetes study, and lety be the vector of responses for then cases. By location
and scale transformations we can always assume that the covariates have been
standardized to have mean 0 and unit length, and that the response has mean 0,

n∑
i=1

yi = 0,

n∑
i=1

xij = 0,

n∑
i=1

x2
ij = 1 for j = 1,2, . . . ,m.(1.1)

This is assumed to be the case in the theory which follows, except that numerical
results are expressed in the original units of the diabetes example.

A candidate vector of regression coefficientŝβ = (β̂1, β̂2, . . . , β̂m)′ gives
prediction vector̂µ,

µ̂ =
m∑

j=1

xj β̂j = Xβ̂ [Xn×m = (x1,x2, . . . ,xm)](1.2)

with total squared error

S(β̂) = ‖y − µ̂‖2 =
n∑

i=1

(yi − µ̂i)
2.(1.3)

Let T (β̂) be the absolute norm of̂β ,

T (β̂) =
m∑

j=1

|β̂j |.(1.4)

The Lasso chooseŝβ by minimizingS(β̂) subject to a boundt onT (β̂),

Lasso: minimize S(β̂) subject to T (β̂) ≤ t.(1.5)

Quadratic programming techniques can be used to solve (1.5) though we will
present an easier method here, closely related to the “homotopy method” of
Osborne, Presnell and Turlach (2000a).

The left panel of Figure 1 shows all Lasso solutionsβ̂(t) for the diabetes study,
as t increases from 0, wherêβ = 0, to t = 3460.00, whereβ̂ equals the OLS
regression vector, the constraint in (1.5) no longer binding. We see that the Lasso
tends to shrink the OLS coefficients toward 0, more so for small values oft .
Shrinkage often improves prediction accuracy, trading off decreased variance for
increased bias as discussed in Hastie, Tibshirani and Friedman (2001).
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FIG. 1. Estimates of regression coefficients β̂j , j = 1,2, . . . ,10, for the diabetes study. (Left

panel)Lasso estimates, as a function of t = ∑
j |β̂j |. The covariates enter the regression equation

sequentially as t increases, in order j = 3,9,4,7, . . . ,1. (Right panel)The same plot for Forward
Stagewise Linear Regression. The two plots are nearly identical, but differ slightly for large t as
shown in the track of covariate 8.

The Lasso also has a parsimony property: for any given constraint valuet , only
a subset of the covariates have nonzero values ofβ̂j . At t = 1000, for example,
only variables 3, 9, 4 and 7 enter the Lasso regression model (1.2). If this model
provides adequate predictions, a crucial question considered in Section 4, the
statisticians could report these four variables as the important ones.

Forward Stagewise Linear Regression, henceforth calledStagewise, is an
iterative technique that begins witĥµ = 0 and builds up the regression function
in successive small steps. If̂µ is the current Stagewise estimate, letc(µ̂) be the
vector ofcurrent correlations

ĉ = c(µ̂) = X′(y − µ̂),(1.6)

so that̂cj is proportional to the correlation between covariatexj and the current
residual vector. The next step of the Stagewise algorithm is taken in the direction
of the greatest current correlation,

ĵ = arg max|̂cj | and µ̂ → µ̂ + ε · sign(ĉ
ĵ
) · x

ĵ
,(1.7)

with ε some small constant. “Small” is important here: the “big” choiceε = |̂c
ĵ
|

leads to the classic Forward Selection technique, which can be overly greedy,
impulsively eliminating covariates which are correlated withx

ĵ
. The Stagewise

procedure is related to boosting and also to Friedman’s MART algorithm
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[Friedman (2001)]; see Section 8, as well as Hastie, Tibshirani and Friedman
[(2001), Chapter 10 and Algorithm 10.4].

The right panel of Figure 1 shows the coefficient plot for Stagewise applied to
the diabetes data. The estimates were built up in 6000 Stagewise steps [making
ε in (1.7) small enough to conceal the “Etch-a-Sketch” staircase seen in Figure 2,
Section 2]. The striking fact is the similarity between the Lasso and Stagewise
estimates. Although their definitions look completely different, the results are
nearly,but not exactly, identical.

The main point of this paper is that both Lasso and Stagewise are variants of
a basic procedure called Least Angle Regression, abbreviated LARS (the “S”
suggesting “Lasso” and “Stagewise”). Section 2 describes the LARS algorithm
while Section 3 discusses modifications that turn LARS into Lasso or Stagewise,
reducing the computational burden by at least an order of magnitude for either one.
Sections 5 and 6 verify the connections stated in Section 3.

Least Angle Regression is interesting in its own right, its simple structure
lending itself to inferential analysis. Section 4 analyzes the “degrees of freedom”
of a LARS regression estimate. This leads to aCp type statistic that suggests which
estimate we should prefer among a collection of possibilities like those in Figure 1.
A particularly simpleCp approximation, requiring no additional computation
beyond that for thêβ vectors, is available for LARS.

Section 7 briefly discusses computational questions. An efficientS program for
all three methods, LARS, Lasso and Stagewise, is available. Section 8 elaborates
on the connections with boosting.

2. The LARS algorithm. Least Angle Regression is a stylized version of the
Stagewise procedure that uses a simple mathematical formula to accelerate
the computations. Onlym steps are required for the full set of solutions, where
m is the number of covariates:m = 10 in the diabetes example compared to the
6000 steps used in the right panel of Figure 1. This section describes the LARS
algorithm. Modifications of LARS that produce Lasso and Stagewise solutions are
discussed in Section 3, and verified in Sections 5 and 6. Section 4 uses the simple
structure of LARS to help analyze its estimation properties.

The LARS procedure works roughly as follows. As with classic Forward
Selection, we start with all coefficients equal to zero, and find the predictor
most correlated with the response, sayxj1. We take the largest step possible in
the direction of this predictor until some other predictor, sayxj2, has as much
correlation with the current residual. At this point LARS parts company with
Forward Selection. Instead of continuing alongxj1, LARS proceeds in a direction
equiangular between the two predictors until a third variablexj3 earns its way
into the “most correlated” set. LARS then proceeds equiangularly betweenxj1, xj2

andxj3, that is, along the “least angle direction,” until a fourth variable enters, and
so on.
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The remainder of this section describes the algebra necessary to execute the
equiangular strategy. As usual the algebraic details look more complicated than
the simple underlying geometry, but they lead to the highly efficient computational
algorithm described in Section 7.

LARS builds up estimateŝµ = Xβ̂ , (1.2), in successive steps, each step adding
one covariate to the model, so that afterk steps justk of the β̂j ’s are nonzero.
Figure 2 illustrates the algorithm in the situation withm = 2 covariates,X =
(x1,x2). In this case the current correlations (1.6) depend only on the projectionȳ2
of y into the linear spaceL(X) spanned byx1 andx2,

c(µ̂) = X′(y − µ̂) = X′(ȳ2 − µ̂).(2.1)

The algorithm begins at̂µ0 = 0 [remembering that the response has had its
mean subtracted off, as in (1.1)]. Figure 2 hasȳ2 − µ̂0 making a smaller angle
with x1 thanx2, that is,c1(µ̂0) > c2(µ̂0). LARS then augmentŝµ0 in the direction
of x1, to

µ̂1 = µ̂0 + γ̂1x1.(2.2)

Stagewise would choosêγ1 equal to some small valueε, and then repeat the
process many times. Classic Forward Selection would takeγ̂1 large enough to
make µ̂1 equal ȳ1, the projection ofy into L(x1). LARS uses an intermediate
value ofγ̂1, the value that makes̄y2 − µ̂, equally correlated withx1 andx2; that is,
ȳ2 − µ̂1 bisects the angle betweenx1 andx2, soc1(µ̂1) = c2(µ̂1).

FIG. 2. The LARS algorithm in the case of m = 2 covariates; ȳ2 is the projection of y into
L(x1,x2). Beginning at µ̂0 = 0, the residual vector ȳ2 − µ̂0 has greater correlation with x1 than x2;
the next LARS estimate is µ̂1 = µ̂0 + γ̂1x1, where γ̂1 is chosen such that ȳ2 − µ̂1 bisects the angle
between x1 and x2; then µ̂2 = µ̂1 + γ̂2u2, where u2 is the unit bisector; µ̂2 = ȳ2 in the case m = 2,
but not for the case m > 2; see Figure 4. The staircase indicates a typical Stagewise path. Here LARS
gives the Stagewise track as ε → 0, but a modification is necessary to guarantee agreement in higher
dimensions; see Section 3.2.
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Let u2 be the unit vector lying along the bisector. The next LARS estimate is

µ̂2 = µ̂1 + γ̂2u2,(2.3)

with γ̂2 chosen to makêµ2 = ȳ2 in the casem = 2. With m > 2 covariates,
γ̂2 would be smaller, leading to another change of direction, as illustrated in
Figure 4. The “staircase” in Figure 2 indicates a typical Stagewise path. LARS
is motivated by the fact that it is easy to calculate the step sizesγ̂1, γ̂2, . . .

theoretically, short-circuiting the small Stagewise steps.
Subsequent LARS steps, beyond two covariates, are taken alongequiangular

vectors, generalizing the bisectoru2 in Figure 2.We assume that the covariate
vectors x1,x2, . . . ,xm are linearly independent. For A a subset of the indices
{1,2, . . . ,m}, define the matrix

XA = (· · · sjxj · · ·)j∈A,(2.4)

where the signssj equal±1. Let

GA = X′
AXA and AA = (1′

AG−1
A 1A)−1/2,(2.5)

1A being a vector of 1’s of length equaling|A|, the size ofA. The

equiangular vector uA = XAwA wherewA = AAG−1
A 1A,(2.6)

is the unit vector making equal angles, less than 90◦, with the columns ofXA,

X′
AuA = AA1A and ‖uA‖2 = 1.(2.7)

We can now fully describe the LARS algorithm. As with the Stagewise
procedure we begin at̂µ0 = 0 and build upµ̂ by steps, larger steps in the LARS
case. Suppose that̂µA is the current LARS estimate and that

ĉ = X′(y − µ̂A)(2.8)

is the vector of current correlations (1.6). Theactive set A is the set of indices
corresponding to covariates with the greatest absolute current correlations,

Ĉ = max
j

{|̂cj |} and A = {j : |̂cj | = Ĉ}.(2.9)

Letting

sj = sign{ĉj } for j ∈ A,(2.10)

we computeXA,AA anduA as in (2.4)–(2.6), and also the inner product vector

a ≡ X′uA.(2.11)

Then the next step of the LARS algorithm updatesµ̂A, say to

µ̂A+ = µ̂A + γ̂ uA,(2.12)
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where

γ̂ = min
j∈Ac

+
{

Ĉ − ĉj

AA − aj

,
Ĉ + ĉj

AA + aj

}
;(2.13)

“min+” indicates that the minimum is taken over only positive components within
each choice ofj in (2.13).

Formulas (2.12) and (2.13) have the following interpretation: define

µ(γ ) = µ̂A + γ uA,(2.14)

for γ > 0, so that the current correlation

cj (γ ) = x′
j

(
y − µ(γ )

) = ĉj − γ aj .(2.15)

For j ∈ A, (2.7)–(2.9) yield

|cj (γ )| = Ĉ − γAA,(2.16)

showing that all of the maximal absolute current correlations decline equally.
For j ∈ Ac, equating (2.15) with (2.16) shows thatcj (γ ) equals the maximal
value atγ = (Ĉ − ĉj )/(AA −aj ). Likewise−cj (γ ), the current correlation for the
reversed covariate−xj , achieves maximality at(Ĉ + ĉj )/(AA + aj ). Thereforêγ
in (2.13) is the smallest positive value of γ such that some new index ĵ joins
the active set; ĵ is the minimizing index in (2.13), and the new active setA+ is
A ∪ {ĵ}; the new maximum absolute correlation isĈ+ = Ĉ − γ̂ AA.

Figure 3 concerns the LARS analysis of the diabetes data. The complete
algorithm required onlym = 10 steps of procedure (2.8)–(2.13), with the variables

FIG. 3. LARS analysis of the diabetes study: (left) estimates of regression coefficients β̂j ,
j = 1,2, . . . ,10; plotted versus

∑ |β̂j |; plot is slightly different than either Lasso or Stagewise,
Figure 1; (right) absolute current correlations as function of LARS step; variables enter active
set (2.9) in order 3,9,4,7, . . . ,1; heavy curve shows maximum current correlation Ĉk declining
with k.
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joining the active setA in the same order as for the Lasso: 3,9,4,7, . . . ,1. Tracks
of the regression coefficientŝβj are nearly but not exactly the same as either the
Lasso or Stagewise tracks of Figure 1.

The right panel shows the absolute current correlations

|̂ckj | = |x′
j (y − µ̂k−1)|(2.17)

for variablesj = 1,2, . . . ,10, as a function of the LARS stepk. The maximum
correlation

Ĉk = max{|̂ckj |} = Ĉk−1 − γ̂k−1Ak−1(2.18)

declines withk, as it must. At each step a new variablej joins the active set,
henceforth having|̂ckj | = Ĉk . The signsj of eachxj in (2.4) stays constant as the
active set increases.

Section 4 makes use of the relationship between Least Angle Regression and
Ordinary Least Squares illustrated in Figure 4. Suppose LARS has just completed
stepk − 1, giving µ̂k−1, and is embarking upon stepk. The active setAk , (2.9),
will have k members, givingXk,Gk,Ak anduk as in (2.4)–(2.6) (here replacing
subscriptA with “k”). Let ȳk indicate the projection ofy into L(Xk), which, since
µ̂k−1 ∈ L(Xk−1), is

ȳk = µ̂k−1 + XkG
−1
k X′

k(y − µ̂k−1) = µ̂k−1 + Ĉk

Ak

uk,(2.19)

the last equality following from (2.6) and the fact that the signed current
correlations inAk all equalĈk ,

X′
k(y − µ̂k−1) = Ĉk1A.(2.20)

Sinceuk is a unit vector, (2.19) says thatȳk − µ̂k−1 has length

γ̄k ≡ Ĉk

Ak

.(2.21)

Comparison with (2.12) shows that the LARS estimateµ̂k lies on the line

FIG. 4. At each stage the LARS estimate µ̂k approaches, but does not reach, the corresponding
OLS estimate ȳk .
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from µ̂k−1 to ȳk,

µ̂k − µ̂k−1 = γ̂k

γ̄k

(ȳk − µ̂k−1).(2.22)

It is easy to see that̂γk , (2.12), is always less than̄γk , so that̂µk lies closer than̄yk

to µ̂k−1. Figure 4 shows the successive LARS estimatesµ̂k always approaching
but never reaching the OLS estimatesȳk.

The exception is at the last stage: sinceAm contains all covariates, (2.13) is not
defined. By convention the algorithm takesγ̂m = γ̄m = Ĉm/Am, makingµ̂m = ȳm

andβ̂m equal the OLS estimate for the full set ofm covariates.
The LARS algorithm is computationally thrifty. Organizing the calculations

correctly, the computational cost for the entirem steps is of the same order as
that required for the usual Least Squares solution for the full set ofm covariates.
Section 7 describes an efficient LARS program available from the authors.
With the modifications described in the next section, this program also provides
economical Lasso and Stagewise solutions.

3. Modified versions of Least Angle Regression. Figures 1 and 3 show
Lasso, Stagewise and LARS yielding remarkably similar estimates for the diabetes
data. The similarity is no coincidence. This section describes simple modifications
of the LARS algorithm that produce Lasso or Stagewise estimates. Besides
improved computational efficiency, these relationships elucidate the methods’
rationale: all three algorithms can be viewed as moderately greedy forward
stepwise procedures whose forward progress is determined by compromise among
the currently most correlated covariates. LARS moves along the most obvious
compromise direction, the equiangular vector (2.6), while Lasso and Stagewise
put some restrictions on the equiangular strategy.

3.1. The LARS–Lasso relationship. The full set of Lasso solutions, as shown
for the diabetes study in Figure 1, can be generated by a minor modification of
the LARS algorithm (2.8)–(2.13). Our main result is described here and verified
in Section 5. It closely parallels the homotopy method in the papers by Osborne,
Presnell and Turlach (2000a, b), though the LARS approach is somewhat more
direct.

Let β̂ be a Lasso solution (1.5), witĥµ = Xβ̂ . Then it is easy to show that
the sign of any nonzero coordinatêβj must agree with the signsj of the current
correlation̂cj = x′

j (y − µ̂),

sign(β̂j ) = sign( ĉj ) = sj ;(3.1)

see Lemma 8 of Section 5. The LARS algorithm does not enforce restriction (3.1),
but it can easily be modified to do so.
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Suppose we have just completed a LARS step, giving a new active setA as
in (2.9), and that the corresponding LARS estimateµ̂A corresponds to a Lasso
solutionµ̂ = Xβ̂ . Let

wA = AAG−1
A 1A,(3.2)

a vector of length the size ofA, and (somewhat abusing subscript notation)
definêd to be them-vector equalingsjwAj for j ∈ A and zero elsewhere. Moving
in the positiveγ direction along the LARS line (2.14), we see that

µ(γ ) = Xβ(γ ), whereβj (γ ) = β̂j + γ d̂j(3.3)

for j ∈ A. Thereforeβj(γ ) will change sign at

γj = −β̂j /d̂j ,(3.4)

the first such change occurring at

γ̃ = min
γj>0

{γj },(3.5)

say for covariatex
j̃
; γ̃ equals infinity by definition if there is noγj > 0.

If γ̃ is less than̂γ , (2.13), thenβj (γ ) cannot be a Lasso solution forγ > γ̃ since
the sign restriction (3.1) must be violated:β

j̃
(γ ) has changed sign whilec

j̃
(γ ) has

not. [The continuous functionc
j̃
(γ ) cannot change sign within a single LARS step

since|c
j̃
(γ )| = Ĉ − γAA > 0, (2.16).]

LASSO MODIFICATION. If γ̃ < γ̂ , stop the ongoing LARS step atγ = γ̃ and
removej̃ from the calculation of the next equiangular direction. That is,

µ̂A+ = µ̂A + γ̃ uA and A+ = A − {j̃}(3.6)

rather than (2.12).

THEOREM 1. Under the Lasso modification, and assuming the “one at a time”
condition discussed below, the LARS algorithm yields all Lasso solutions.

The active setsA grow monotonically larger as the original LARS algorithm
progresses, but the Lasso modification allowsA to decrease. “One at a time”
means that the increases and decreases never involve more than a single indexj .
This is the usual case for quantitative data and can always be realized by adding a
little jitter to they values. Section 5 discusses tied situations.

The Lasso diagram in Figure 1 was actually calculated using the modified LARS
algorithm. Modification (3.6) came into play only once, at the arrowed point in
the left panel. ThereA contained all 10 indices whileA+ = A − {7}. Variable 7
was restored to the active set one LARS step later, the next and last step then
taking β̂ all the way to the full OLS solution. The brief absence of variable 7
had an effect on the tracks of the others, noticeablyβ̂8. The price of using Lasso
instead of unmodified LARS comes in the form of added steps, 12 instead of 10
in this example. For the more complicated “quadratic model” of Section 4, the
comparison was 103 Lasso steps versus 64 for LARS.
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3.2. The LARS–Stagewise relationship. The staircase in Figure 2 indicates
how the Stagewise algorithm might proceed forward fromµ̂1, a point of equal
current correlationŝc1 = ĉ2, (2.8). The first small step has (randomly) selected
indexj = 1, taking us tôµ1 + εx1. Now variable 2 is more correlated,

x′
2(y − µ̂1 − εx1) > x′

1(y − µ̂1 − εx1),(3.7)

forcing j = 2 to be the next Stagewise choice and so on.
We will consider an idealized Stagewise procedure in which the step size ε goes

to zero. This collapses the staircase along the direction of the bisectoru2 in
Figure 2, making the Stagewise and LARS estimates agree. They always agree
for m = 2 covariates, but another modification is necessary for LARS to produce
Stagewise estimates in general. Section 6 verifies the main result described next.

Suppose that the Stagewise procedure has takenN steps of infinitesimal size
ε from some previous estimatêµ, with

Nj ≡ #{steps with selected indexj}, j = 1,2, . . . ,m.(3.8)

It is easy to show, as in Lemma 11 of Section 6, thatNj = 0 for j not in the active
setA defined by the current correlationsx′

j (y − µ̂), (2.9). Letting

P ≡ (N1,N2, . . . ,Nm)/N,(3.9)

with PA indicating the coordinates ofP for j ∈ A, the new estimate is

µ = µ̂ + NεXAPA [(2.4)].(3.10)

(Notice that the Stagewise steps are taken along the directionssjxj .)
The LARS algorithm (2.14) progresses along

µA + γXAwA, wherewA = AAG−1
A 1A [(2.6)–(3.2)].(3.11)

Comparing (3.10) with (3.11) shows that LARS cannot agree with Stagewise if
wA has negative components, sincePA is nonnegative. To put it another way, the
direction of Stagewise progressXAPA must lie in the convex cone generated by
the columns ofXA,

CA =
{

v = ∑
j∈A

sj xjPj , Pj ≥ 0

}
.(3.12)

If uA ∈ CA then there is no contradiction between (3.12) and (3.13). If not it
seems natural to replaceuA with its projection intoCA, that is, the nearest point
in the convex cone.

STAGEWISE MODIFICATION. Proceed as in (2.8)–(2.13), except withuA

replaced byuB̂ , the unit vector lying along the projection ofuA into CA. (See
Figure 9 in Section 6.)
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THEOREM 2. Under the Stagewise modification, the LARS algorithm yields
all Stagewise solutions.

The vectoruB̂ in the Stagewise modification is the equiangular vector (2.6) for
the subset̂B ⊆ A corresponding to the face ofCA into which the projection falls.
Stagewise is a LARS type algorithm that allows the active set to decrease by one
or more indices. This happened at the arrowed point in the right panel of Figure 1:
there the setA = {3,9,4,7,2,10,5,8} was decreased tôB = A−{3,7}. It took a
total of 13 modified LARS steps to reach the full OLS solutionβ̄m = (X′X)−1X′y.
The three methods, LARS, Lasso and Stagewise, always reach OLS eventually,
but LARS does so in onlym steps while Lasso and, especially, Stagewise can take
longer. For them = 64 quadratic model of Section 4, Stagewise took 255 steps.

According to Theorem 2 the difference between successive Stagewise–modified
LARS estimates is

µ̂A+ − µ̂A = γ̂ uB̂ = γ̂ XB̂wB̂,(3.13)

as in (3.13). SinceuB̂ exists in the convex coneCA, wB̂ must have nonnegative
components. This says that the difference of successive coefficient estimates for
coordinatej ∈ B̂ satisfies

sign(β̂+j − β̂j ) = sj ,(3.14)

wheresj = sign{x′
j (y − µ̂)}.

We can now make a useful comparison of the three methods:

1. Stagewise—successive differences of̂βj agree in sign with the current
correlation̂cj = x′

j (y − µ̂);
2. Lasso—β̂j agrees in sign witĥcj ;
3. LARS—no sign restrictions (but see Lemma 4 of Section 5).

From this point of view, Lasso is intermediate between the LARS and Stagewise
methods.

The successive difference property (3.14) makes the Stagewiseβ̂j estimates
move monotonically away from 0. Reversals are possible only ifĉj changes sign
while β̂j is “resting” between two periods of change. This happened to variable 7
in Figure 1 between the 8th and 10th Stagewise-modified LARS steps.

3.3. Simulation study. A small simulation study was carried out comparing
the LARS, Lasso and Stagewise algorithms. TheX matrix for the simulation was
based on the diabetes example of Table 1, but now using a “Quadratic Model”
havingm = 64 predictors, including interactions and squares of the 10 original
covariates:

Quadratic Model 10 main effects,45 interactions,9 squares,(3.15)
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the last being the squares of eachxj except the dichotomous variablex2. The true
mean vectorµ for the simulation wasµ = Xβ , whereβ was obtained by running
LARS for 10 steps on the original(X,y) diabetes data (agreeing in this case with
the 10-step Lasso or Stagewise analysis). Subtractingµ from a centered version of
the originaly vector of Table 1 gave a vectorε = y − µ of n = 442 residuals. The
“true R2” for this model,‖µ‖2/(‖µ‖2 + ‖ε‖2), equaled 0.416.

100 simulated response vectorsy∗ were generated from the model

y∗ = µ + ε∗,(3.16)

with ε∗ = (ε∗
1, ε∗

2, . . . , ε∗
n) a random sample, with replacement, from the compo-

nents ofε. The LARS algorithm withK = 40 steps was run for each simulated
data set(X,y∗), yielding a sequence of estimatesµ̂(k)∗, k = 1,2, . . . ,40, and like-
wise using the Lasso and Stagewise algorithms.

Figure 5 compares the LARS, Lasso and Stagewise estimates. For a given
estimatêµ define theproportion explained pe(µ̂) to be

pe(µ̂) = 1− ‖µ̂ − µ‖2/‖µ‖2,(3.17)

so pe(0) = 0 and pe(µ) = 1. The solid curve graphs the average of pe(µ̂(k)∗)
over the 100 simulations, versus step numberk for LARS, k = 1,2, . . . ,40.
The corresponding curves are graphed for Lasso and Stagewise, except that the
horizontal axis is now the average number of nonzeroβ̂∗

j terms composinĝµ(k)∗.

For example,̂µ(40)∗ averaged 33.23 nonzero terms with Stagewise, compared to
35.83 for Lasso and 40 for LARS.

Figure 5’s most striking message is that the three algorithms performed almost
identically, and rather well. The average proportion explained rises quickly,

FIG. 5. Simulation study comparing LARS, Lasso and Stagewise algorithms; 100 replications of
model (3.15)–(3.16). Solid curve shows average proportion explained, (3.17), for LARS estimates
as function of number of steps k = 1,2, . . . ,40; Lasso and Stagewise give nearly identical results;
small dots indicate plus or minus one standard deviation over the 100 simulations. Classic Forward
Selection (heavy dashed curve) rises and falls more abruptly.
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reaching a maximum of 0.963 atk = 10, and then declines slowly ask grows
to 40. The light dots display the small standard deviation of pe(µ̂(k)∗) over the 100
simulations, roughly±0.02. Stopping at any point betweenk = 5 and 25 typically
gave âµ(k)∗ with true predictiveR2 about 0.40, compared to the ideal value 0.416
for µ.

The dashed curve in Figure 5 tracks the average proportion explained by classic
Forward Selection. It rises very quickly, to a maximum of 0.950 afterk = 3 steps,
and then falls back more abruptly than the LARS–Lasso–Stagewise curves. This
behavior agrees with the characterization of Forward Selection as a dangerously
greedy algorithm.

3.4. Other LARS modifications. Here are a few more examples of LARS type
model-building algorithms.

POSITIVE LASSO. Constraint (1.5) can be strengthened to

minimize S(β̂) subject to T (β̂) ≤ t and allβ̂j ≥ 0.(3.18)

This would be appropriate if the statisticians or scientists believed that the
variables xj must enter the prediction equation in their defined directions.
Situation (3.18) is a more difficult quadratic programming problem than (1.5),
but it can be solved by a further modification of the Lasso-modified LARS
algorithm: change|̂cj | to ĉj at both places in (2.9), setsj = 1 instead of (2.10)
and change (2.13) to

γ̂ = min
j∈Ac

+
{

Ĉ − ĉj

AA − aj

}
.(3.19)

The positive Lasso usually doesnot converge to the full OLS solution̄βm, even for
very large choices oft .

The changes above amount to considering thexj as generating half-lines rather
than full one-dimensional spaces. A positive Stagewise version can be developed
in the same way, and has the property that theβ̂j tracks are always monotone.

LARS–OLS hybrid. After k steps the LARS algorithm has identified a setAk

of covariates, for example,A4 = {3,9,4,7} in the diabetes study. Instead ofβ̂k we
might preferβ̄k , the OLS coefficients based on the linear model with covariates
in Ak—using LARS to find the model but not to estimate the coefficients. Besides
looking more familiar, this will always increase the usual empiricalR2 measure of
fit (though not necessarily the true fitting accuracy),

R2(β̄k) − R2(β̂k) = 1− ρ2
k

ρk(2− ρk)
[R2(β̂k) − R2(β̂k−1)],(3.20)

whereρk = γ̂k/γ̄k as in (2.22).
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The increases inR2 were small in the diabetes example, on the order of 0.01
for k ≥ 4 compared withR2 =̇ 0.50, which is expected from (3.20) since we
would usually continue LARS untilR2(β̂k) − R2(β̂k−1) was small. For the same
reasonβ̄k and β̂k are likely to lie near each other as they did in the diabetes
example.

Main effects first. It is straightforward to restrict the order in which variables
are allowed to enter the LARS algorithm. For example, having obtainedA4 =
{3,9,4,7} for the diabetes study, we mightthen wish to check for interactions. To
do this we begin LARS again, replacingy with y − µ̂4 andx with then× 6 matrix
whose columns represent the interactionsx3:9,x3:4, . . . ,x4:7.

Backward Lasso. The Lasso–modified LARS algorithm can be run backward,
starting from the full OLS solution̄βm. Assuming that all the coordinates ofβ̄m

are nonzero, their signs must agree with the signssj that the current correlations
had during the final LARS step. This allows us to calculate the last equiangular
direction uA, (2.4)–(2.6). Moving backward from̂µm = Xβ̄m along the line
µ(γ ) = µ̂m − γ uA, we eliminate from the active set the index of the firstβ̂j

that becomes zero. Continuing backward, we keep track of all coefficientsβ̂j and
current correlationŝcj , following essentially the same rules for changingA as in
Section 3.1. As in (2.3), (3.5) the calculation ofγ̃ andγ̂ is easy.

The crucial property of the Lasso that makes backward navigation possible
is (3.1), which permits calculation of the correct equiangular directionuA at each
step. In this sense Lasso can be just as well thought of as a backward-moving
algorithm. This is not the case for LARS or Stagewise, both of which are inherently
forward-moving algorithms.

4. Degrees of freedom and Cp estimates. Figures 1 and 3 show all possible
Lasso, Stagewise or LARS estimates of the vectorβ for the diabetes data. The
scientists want just a singlêβ of course, so we need some rule for selecting among
the possibilities. This section concerns aCp-type selection criterion, especially as
it applies to the choice of LARS estimate.

Let µ̂ = g(y) represent a formula for estimatingµ from the data vectory.
Here, as usual in regression situations, we are considering the covariate vectors
x1,x2, . . . ,xm fixed at their observed values. We assume that given thex’s, y is
generated according to an homoskedastic model

y ∼ (µ, σ 2I),(4.1)

meaning that the componentsyi are uncorrelated, with meanµi and varianceσ 2.
Taking expectations in the identity

(µ̂i − µi)
2 = (yi − µ̂i)

2 − (yi − µi)
2 + 2(µ̂i − µi)(yi − µi),(4.2)
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and summing overi, yields

E

{‖µ̂ − µ‖2

σ 2

}
= E

{‖y − µ̂‖2

σ 2 − n

}
+ 2

n∑
i=1

cov(µ̂i , yi)

σ 2 .(4.3)

The last term of (4.3) leads to a convenient definition of thedegrees of freedom
for an estimator̂µ = g(y),

dfµ,σ2 =
n∑

i=1

cov(µ̂i, yi)/σ
2,(4.4)

and aCp-type risk estimation formula,

Cp(µ̂) = ‖y − µ̂‖2

σ 2
− n + 2dfµ,σ2.(4.5)

If σ 2 and dfµ,σ2 are known,Cp(µ̂) is an unbiased estimator of the true risk
E{‖µ̂ − µ‖2/σ 2}. For linear estimatorŝµ = My, model (4.1) makesdfµ,σ2 =
trace(M), equaling the usual definition of degrees of freedom for OLS, and
coinciding with the proposal of Mallows (1973). Section 6 of Efron and Tibshirani
(1997) and Section 7 of Efron (1986) discuss formulas (4.4) and (4.5) and their
role inCp, Akaike information criterion (AIC) and Stein’s unbiased risk estimated
(SURE) estimation theory, a more recent reference being Ye (1998).

Practical use ofCp formula (4.5) requires preliminary estimates ofµ, σ 2 and
dfµ,σ2. In the numerical results below, the usual OLS estimatesµ̄ and σ̄ 2 from
the full OLS model were used to calculate bootstrap estimates ofdfµ,σ2; bootstrap
samplesy∗ and replicationŝµ∗ were then generated according to

y∗ ∼ N(µ̄, σ̄ 2) and µ̂∗ = g(y∗).(4.6)

Independently repeating (4.6) sayB times gives straightforward estimates for the
covariances in (4.4),

ĉovi =
∑B

b=1 µ̂∗
i (b)[y∗

i (b) − y∗
i (·)]

B − 1
, wherey∗(·) =

∑B
b=1 y∗(b)

B
,(4.7)

and then

d̂f =
n∑

i=1

ĉovi/σ̄
2.(4.8)

Normality is not crucial in (4.6). Nearly the same results were obtained using
y∗ = µ̄∗ + e∗, where the components ofe∗ were resampled frome = y − µ̄.

The left panel of Figure 6 showŝdfk for the diabetes data LARS esti-
matesµ̂k, k = 1,2, . . . ,m = 10. It portrays a startlingly simple situation that we
will call the “simple approximation,”

df (µ̂k) =̇ k.(4.9)
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FIG. 6. Degrees of freedom for LARS estimates µ̂k : (left) diabetes study, Table 1, k = 1,

2, . . . ,m = 10; (right) quadratic model (3.15) for the diabetes data, m = 64. Solid line is simple
approximation dfk = k. Dashed lines are approximate 95% confidence intervals for the bootstrap
estimates. Each panel based on B = 500bootstrap replications.

The right panel also applies to the diabetes data, but this time with the quadratic
model (3.15), havingm = 64 predictors. We see that the simple approxima-
tion (4.9) is again accurate within the limits of the bootstrap computation (4.8),
whereB = 500 replications were divided into 10 groups of 50 each in order to
calculate Student-t confidence intervals.

If (4.9) can be believed, and we will offer some evidence in its behalf, we can
estimate the risk of ak-step LARS estimator̂µk by

Cp(µ̂k) =̇ ‖y − µ̂k‖2/σ̄ 2 − n + 2k.(4.10)

The formula, which is the same as theCp estimate of risk for an OLS estimator
based on a subset ofk preselected predictor vectors, has the great advantage of not
requiring any further calculations beyond those for the original LARS estimates.
The formula applies only to LARS, and not to Lasso or Stagewise.

Figure 7 displaysCp(µ̂k) as a function ofk for the two situations of Figure 6.
Minimum Cp was achieved at stepsk = 7 andk = 16, respectively. Both of the
minimumCp models looked sensible, their first several selections of “important”
covariates agreeing with an earlier model based on a detailed inspection of the data
assisted by medical expertise.

The simple approximation becomes a theorem in two cases.

THEOREM 3. If the covariate vectors x1,x2, . . . ,xm are mutually orthogonal,
then the k-step LARS estimate µ̂k has df (µ̂k) = k.

To state the second more general setting we introduce the following condition.
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FIG. 7. Cp estimates of risk (4.10) for the two situations of Figure 6: (left) m = 10 model has
smallest Cp at k = 7; (right)m = 64 model has smallest Cp at k = 16.

POSITIVE CONE CONDITION. For all possible subsetsXA of the full design
matrix X,

G−1
A 1A > 0,(4.11)

where the inequality is taken element-wise.

The positive cone condition holds ifX is orthogonal. It is strictly more general
than orthogonality, but counterexamples (such as the diabetes data) show that not
all design matricesX satisfy it.

It is also easy to show that LARS, Lasso and Stagewise all coincide under the
positive cone condition, so the degrees-of-freedom formula applies to them too in
this case.

THEOREM 4. Under the positive cone condition, df (µ̂k) = k.

The proof, which appears later in this section, is an application of Stein’s
unbiased risk estimate (SURE) [Stein (1981)]. Suppose thatg :Rn → R

n is almost
differentiable (see Remark A.1 in the Appendix) and set∇ · g = ∑n

i=1 ∂gi/∂xi .

If y ∼ Nn(µ, σ 2I), then Stein’s formula states that
n∑

i=1

cov(gi, yi)/σ
2 = E[∇ · g(y)].(4.12)

The left-hand side isdf (g) for the general estimatorg(y). Focusing specifically
on LARS, it will turn out that∇ · µ̂k(y) = k in all situations with probability 1,
but that the continuity assumptions underlying (4.12) and SURE can fail in certain
nonorthogonal cases where the positive cone condition does not hold.
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A range of simulations suggested that the simple approximation is quite
accurate even when thexj ’s are highly correlated and that it requires concerted
effort at pathology to makedf (µ̂k) much different thank.

Stein’s formula assumes normality,y ∼ N(µ, σ 2I). A cruder “delta method”
rationale for the simple approximation requires only homoskedasticity, (4.1). The
geometry of Figure 4 implies

µ̂k = ȳk − cotk · ‖ȳk+1 − ȳk‖,(4.13)

where cotk is the cotangent of the angle betweenuk anduk+1,

cotk = u′
kuk+1

[1− (u′
kuk+1)2]1/2 .(4.14)

Let vk be the unit vector orthogonal toL(Xb), the linear space spanned by the first
k covariates selected by LARS, and pointing intoL(Xk+1) along the direction of
ȳk+1 − ȳk. Fory∗ neary we can reexpress (4.13) as a locally linear transformation,

µ̂∗
k = µ̂k + Mk(y∗ − y) with Mk = Pk − cotk · ukv′

k,(4.15)

Pk being the usual projection matrix fromRn into L(Xk); (4.15) holds within a
neighborhood ofy such that the LARS choicesL(Xk) andvk remain the same.

The matrixMk has trace(Mk) = k. Since the trace equals the degrees of freedom
for linear estimators, the simple approximation (4.9) is seen to be a delta method
approximation to the bootstrap estimates (4.6) and (4.7).

It is clear that (4.9)df (µ̂k) =̇ k cannot hold for the Lasso, since the degrees of
freedom ism for the full model but the total number of steps taken can exceedm.
However, we have found empirically that an intuitively plausible result holds: the
degrees of freedom is well approximated by the number of nonzero predictors in
the model. Specifically, starting at step 0, let�(k) be the index of the last model
in the Lasso sequence containingk predictors. Thendf (µ̂�(k)) =̇ k. We do not yet
have any mathematical support for this claim.

4.1. Orthogonal designs. In the orthogonal case, we assume thatxj = ej

for j = 1, . . . ,m. The LARS algorithm then has a particularly simple form,
reducing to soft thresholding at the order statistics of the data.

To be specific, define the soft thresholding operation on a scalary1 at thresholdt
by

η(y1; t) =


y1 − t, if y1 > t,
0, if |y1| ≤ t,
y1 + t, if y1 < −t.

The order statistics of the absolute values of the data are denoted by

|y|(1) ≥ |y|(2) ≥ · · · ≥ |y|(n) ≥ |y|(n+1) := 0.(4.16)

We note thatym+1, . . . , yn do not enter into the estimation procedure, and so we
may as well assume thatm = n.
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LEMMA 1. For an orthogonal design with xj = ej , j = 1, . . . , n, the kth LARS
estimate (0 ≤ k ≤ n) is given by

µ̂k,i(y) =


yi − |y|(k+1), if yi > |y|(k+1),
0, if |yi| ≤ |y|(k+1),
yi + |y|(k+1), if yi < −|y|(k+1),

(4.17)

= η
(
yi; |y|(k+1)

)
.(4.18)

PROOF. The proof is by induction, stepping through the LARS sequence. First
note that the LARS parameters take a simple form in the orthogonal setting:

GA = IA, AA = |A|−1/2, uA = |A|−1/21A, ak,j = 0, j /∈ Ak.

We assume for the moment that there are no ties in the order statistics (4.16), so
that the variables enter one at a time. Letj (l) be the index corresponding to the
lth order statistic,|y|(l) = slyj (l): we will see thatAk = {j (1), . . . , j (k)}.

We havex′
jy = yj , and so at the first step LARS picks variablej (1) and sets

Ĉ1 = |y|(1). It is easily seen that

γ̂1 = min
j �=j (1)

{|y|(1) − |yj |} = |y|(1) − |y|(2)

and so

µ̂1 = [|y|(1) − |y|(2)

]
ej (1),

which is precisely (4.17) fork = 1.
Suppose now that stepk −1 has been completed, so thatAk = {j (1), . . . , j (k)}

and (4.17) holds forµ̂k−1. The current correlationŝCk = |y|(k) and ĉk,j = yj

for j /∈ Ak . SinceAk − ak,j = k−1/2, we have

γ̂k = min
j /∈Ak

k1/2{|y|(k) − |yj |}
and

γ̂kuk = [|y|(k) − |y|(k+1)

]
1{j ∈ Ak}.

Adding this term toµ̂k−1 yields (4.17) for stepk.
The argument clearly extends to the case in which there are ties in the order

statistics (4.16): if|y|(k+1) = · · · = |y|(k+r), thenAk(y) expands byr variables at
stepk + 1 andµ̂k+ν(y), ν = 1, . . . , r , are all determined at the same time and are
equal toµ̂k+1(y). �

PROOF OF THEOREM 4 (Orthogonal case). The argument is particularly
simple in this setting, and so worth giving separately. First we note from (4.17)
that µ̂k is continuous and Lipschitz(1) and so certainly almost differentiable.
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Hence (4.12) shows that we simply have to calculate∇ · µ̂k . Inspection of (4.17)
shows that

∇ · µ̂k = ∑
i

∂µ̂k,i

∂yi

(y)

= ∑
i

I
{|yi | > |y|(k+1)

} = k

almost surely, that is, except for ties. This completes the proof.�

4.2. The divergence formula. While for the most general design matricesX, it
can happen that̂µk fails to be almost differentiable, we will see that the divergence
formula

∇ · µ̂k(y) = k(4.19)

does hold almost everywhere. Indeed, certain authors [e.g., Meyer and Woodroofe
(2000)] have argued that the divergence∇ · µ̂ of an estimator provides itself a
useful measure of the effective dimension of a model.

Turning to LARS, we shall say that̂µ(y) is locally linear at a data pointy0
if there is some small open neighborhood ofy0 on which µ̂(y) = My is exactly
linear. Of course, the matrixM = M(y0) can depend ony0—in the case of LARS,
it will be seen to be constant on the interior of polygonal regions, with jumps
across the boundaries. We say that a setG has full measure if its complement has
Lebesgue measure zero.

LEMMA 2. There is an open set Gk of full measure such that, at all y ∈ Gk,
µ̂k(y) is locally linear and ∇ · µ̂k(y) = k.

PROOF. We give here only the part of the proof that relates to actual
calculation of the divergence in (4.19). The arguments establishing continuity and
local linearity are delayed to the Appendix.

So, let us fix a pointy in the interior ofGk . From Lemma 13 in the Appendix,
this means that neary the active setAk(y) is locally constant, that a single variable
enters at the next step, this variable being the same neary. In addition,µ̂k(y) is
locally linear, and hence in particular differentiable. SinceGk ⊂ Gl for l < k, the
same story applies at all previous steps and we have

µ̂k(y) =
k∑

l=1

γl(y)ul .(4.20)

Differentiating thej th component of vector̂µk(y) yields

∂µ̂k,j

∂yi

(y) =
k∑

l=1

∂γl(y)

∂yi

ul,j .
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In particular, for the divergence

∇ · µ̂k(y) =
n∑

i=1

∂µ̂k,i

∂yi

=
k∑

l=1

〈∇γl,ul〉,(4.21)

the brackets indicating inner product.
The active set isAk = {1,2, . . . , k} and xk+1 is the variable to enter next.

Fork ≥ 2, write δk = xl −xk for any choicel < k—as remarked in the Conventions
in the Appendix, the choice ofl is immaterial (e.g.,l = 1 for definiteness).
Let bk+1 = 〈δk+1,uk〉, which is nonzero, as argued in the proof of Lemma 13.
As shown in (A.4) in the Appendix, (2.13) can be rewritten

γk(y) = b−1
k+1〈δk+1,y − µ̂k−1〉.(4.22)

Fork ≥ 2, define the linear space of vectors equiangular with the active set

Lk = Lk(y) = {
u : 〈x1,u〉 = · · · = 〈xk,u〉 for xl with l ∈ Ak(y)

}
.

[We may drop the dependence ony sinceAk(y) is locally fixed.] Clearly dimLk =
n − k + 1 and

uk ∈ Lk, Lk+1 ⊂ Lk.(4.23)

We shall now verify that, for eachk ≥ 1,

〈∇γk,uk〉 = 1 and 〈∇γk,u〉 = 0 for u ∈ Lk+1.(4.24)

Formula (4.21) shows that this suffices to prove Lemma 2.
First, fork = 1 we haveγ1(y) = b−1

2 〈δ2,y〉 and〈∇γ1,u〉 = b−1
2 〈δ2,u〉, and that

〈δ2,u〉 = 〈x1 − x2,u〉 =
{

b2, if u = u1,
0, if u ∈ L2.

Now, for generalk, combine (4.22) and (4.20):

bk+1γk(y) = 〈δk+1,y〉 −
k−1∑
l=1

〈δk+1,ul〉γl(y),

and hence

bk+1〈∇γk,u〉 = 〈δk+1,u〉 −
k−1∑
l=1

〈δk+1,ul〉〈∇γl,u〉.

From the definitions ofbk+1 andLk+1 we have

〈δk+1,u〉 = 〈xl − xk+1〉 =
{

bk+1, if u = uk,
0, if u ∈ Lk+1.

Hence the truth of (4.24) for stepk follows from its truth at stepk − 1 because of
the containment properties (4.23).�
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4.3. Proof of Theorem 4. To complete the proof of Theorem 4, we state the
following regularity result, proved in the Appendix.

LEMMA 3. Under the positive cone condition, µ̂k(y) is continuous and almost
differentiable.

This guarantees that Stein’s formula (4.12) is valid forµ̂k under the positive
cone condition, so the divergence formula of Lemma 2 then immediately yields
Theorem 4.

5. LARS and Lasso properties. The LARS and Lasso algorithms are
described more carefully in this section, with an eye toward fully understanding
their relationship. Theorem 1 of Section 3 will be verified. The latter material
overlaps results in Osborne, Presnell and Turlach (2000a), particularly in their
Section 4. Our point of view here allows the Lasso to be described as a quite
simple modification of LARS, itself a variation of traditional Forward Selection
methodology, and in this sense should be more accessible to statistical audiences.
In any case we will stick to the language of regression and correlation rather
than convex optimization, though some of the techniques are familiar from the
optimization literature.

The results will be developed in a series of lemmas, eventually lending to a proof
of Theorem 1 and its generalizations. The first three lemmas refer to attributes of
the LARS procedure that are not specific to its Lasso modification.

Using notation as in (2.17)–(2.20), suppose LARS has completed stepk − 1,
giving estimatêµk−1 and active setAk for stepk, with covariatexk the newest
addition to the active set.

LEMMA 4. If xk is the only addition to the active set at the end of
step k − 1, then the coefficient vector wk = AkG

−1
k 1k for the equiangular vector

uk = Xkwk , (2.6), has its kth component wkk agreeing in sign with the current
correlation ckk = x′

k(y − µ̂k−1). Moreover, the regression vector β̂k for µ̂k = Xβ̂k

has its kth component β̂kk agreeing in sign with ckk .

Lemma 4 says that new variablesenter the LARS active set in the “correct”
direction, a weakened version of the Lasso requirement (3.1). This will turn out to
be a crucial connection for the LARS–Lasso relationship.

PROOF OFLEMMA 4. The casek = 1 is apparent. Note that since

X′
k(y − µ̂k−1) = Ĉk1k,

(2.20), from (2.6) we have

wk = AkĈ
−1
k [(X′

kXk)
−1X′

k(y − µ̂k−1)] := AkĈ
−1
k w∗

k .(5.1)
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The term in square braces is the least squares coefficient vector in the regression
of the current residual onXk , and the term preceding it is positive.

Note also that

X′
k(y − ȳk−1) = (0, δ)′ with δ > 0,(5.2)

sinceX′
k−1(y − ȳk−1) = 0 by definition (this0 hask − 1 elements), andck(γ ) =

x′
k(y − γ uk−1) decreases more slowly inγ thancj (γ ) for j ∈ Ak−1:

ck(γ )


< cj(γ ), for γ < γ̂k−1,
= cj (γ ) = Ĉk, for γ = γ̂k−1,
> cj(γ ), for γ̂k−1 < γ < γ̄k−1.

(5.3)

Thus

ŵ∗
k = (X′

kXk)
−1X′

k(y − ȳk−1 + ȳk−1 − µ̂k−1)(5.4)

= (X′
kXk)

−1
(

0
δ

)
+ (X′

kXk)
−1X′

k[(γ̄k−1 − γ̂k−1)uk−1].(5.5)

Thekth element of̂w∗
k is positive, because it is in the first term in (5.5) [(X′

kXk) is
positive definite], and in the second term it is 0 sinceuk−1 ∈ L(Xk−1).

This proves the first statement in Lemma 4. The second follows from

β̂kk = β̂k−1,k + γ̂kwkk,(5.6)

andβ̂k−1,k = 0, xk not being active before stepk. �

Our second lemma interprets the quantityAA = (1′G−1
A 1)−1/2, (2.4) and (2.5).

Let SA indicate the extended simplex generated by the columns ofXA,

SA =
{

v = ∑
j∈A

sj xjPj :
∑
j∈A

Pj = 1

}
,(5.7)

“extended” meaning that the coefficientsPj are allowed to be negative.

LEMMA 5. The point in SA nearest the origin is

vA = AAuA = AAXAwA where wA = AAG−1
A 1A,(5.8)

with length ‖vA‖ = AA. If A ⊆ B, then AA ≥ AB , the largest possible value
being AA = 1 for A a singleton.

PROOF. For anyv ∈ SA, the squared distance to the origin is‖XAP ‖2 =
P ′GAP . Introducing a Lagrange multiplier to enforce the summation constraint,
we differentiate

P ′GAP − λ(1′
AP − 1),(5.9)
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and find that the minimizingPA = λG−1
A 1A. Summing, we getλ1′

AG−1
A 1A = 1,

and hence

PA = A2
AG−1

A 1A = AAwA.(5.10)

HencevA = XAPA ∈ SA and

‖vA‖2 = P ′
AG−1

A PA = A4
A1′

AG−1
A 1A = A2

A,(5.11)

verifying (5.8). If A ⊆ B, thenSA ⊆ SB , so the nearest distanceAB must be
equal to or less than the nearest distanceAA. AA obviously equals 1 if and only
if A has only one member.�

The LARS algorithm and its various modifications proceed in piecewise linear
steps. Form-vectorŝβ andd, let

β(γ ) = β̂ + γ d and S(γ ) = ‖y − Xβ(γ )‖2.(5.12)

LEMMA 6. Letting ĉ = X′(y − Xβ̂) be the current correlation vector
at µ̂ = Xβ̂ ,

S(γ ) − S(0) = −2 ĉ ′dγ + d′X′Xdγ 2.(5.13)

PROOF. S(γ ) is a quadratic function ofγ , with first two derivatives atγ = 0,

Ṡ(0) = −2 ĉ ′d and S̈(0) = 2d′X′Xd.(5.14) �

The remainder of this section concerns the LARS–Lasso relationship. Now
β̂ = β̂(t) will indicate a Lasso solution (1.5), and likewisêµ = µ̂(t) = Xβ̂(t).
BecauseS(β̂) andT (β̂) are both convex functions of̂β, with S strictly convex,
standard results show thatβ̂(t) andµ̂(t) are unique and continuous functions oft .

For a given value oft let

A = {j : β̂j (t) �= 0}.(5.15)

We will show later thatA is also the active set that determines the equiangular
directionuA, (2.6), for the LARS–Lasso computations.

We wish to characterize the track of the Lasso solutionsβ̂(t) or equivalently
of µ̂(t) as t increases from 0 to its maximum effective value. LetT be an open
interval of thet axis, with infimumt0, within which the setA of nonzero Lasso
coefficientsβ̂j (t) remains constant.

LEMMA 7. The Lasso estimates µ̂(t) satisfy

µ̂(t) = µ̂(t0) + AA(t − t0)uA(5.16)

for t ∈ T , where uA is the equiangular vector XAwA,wA = AAG−1
A 1A, (2.7).
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PROOF. The lemma says that, fort in T , µ̂(t) moves linearly along the
equiangular vectoruA determined byA. We can also state this in terms of
the nonzero regression coefficientsβ̂A(t),

β̂A(t) = β̂A(t0) + SAAA(t − t0)wA,(5.17)

whereSA is the diagonal matrix with diagonal elementssj , j ∈ A. [SA is needed
in (5.17) because definitions (2.4), (2.10) requireµ̂(t) = Xβ̂(t) = XASAβ̂A(t).]

Sinceβ̂(t) satisfies (1.5) and has nonzero setA, it also minimizes

S(β̂A) = ‖y − XASAβ̂A‖2(5.18)

subject to ∑
A

sj β̂j = t and sign(β̂j ) = sj for j ∈ A.(5.19)

[The inequality in (1.5) can be replaced byT (β̂) = t as long ast is less than∑ |β̄j | for the full m-variable OLS solutionβ̄m.] Moreover, the fact that the
minimizing point β̂A(t) occurs strictlyinside the simplex (5.19), combined with
the strict convexity ofS(β̂A), implies we can drop the second condition in (5.19)
so thatβ̂A(t) solves

minimize {S(β̂A)} subject to
∑
A

sj β̂j = t.(5.20)

Introducing a Lagrange multiplier, (5.20) becomes

minimize 1
2‖y − XASAβ̂A‖2 + λ

∑
A

sj β̂j .(5.21)

Differentiating we get

−SAX′
A(y − XASAβ̂A) + λSA1A = 0.(5.22)

Consider two valuest1 and t2 in T with t0 < t1 < t2. Corresponding to each
of these are values for the Lagrange multiplierλ such thatλ1 > λ2, and solutions
β̂A(t1) and β̂A(t2). Inserting these into (5.22), differencing and premultiplying
by SA we get

X′
AXASA

(
β̂A(t2) − β̂A(t1)

) = (λ1 − λ2)1A.(5.23)

Hence

β̂A(t2) − β̂A(t1) = (λ1 − λ2)SAG−1
A 1A.(5.24)

However,s′
A[(β̂A(t2) − β̂A(t1)] = t2 − t1 according to the Lasso definition, so

t2 − t1 = (λ1 −λ2)s
′
ASAG−1

A 1A = (λ1 −λ2)1′
AG−1

A 1A = (λ1 −λ2)A
−2
A(5.25)

and

β̂A(t2) − β̂A(t1) = SAA2
A(t2 − t1)G

−1
A 1A = SAAA(t − t1)wA.(5.26)
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Letting t2 = t and t1 → t0 gives (5.17) by the continuity of̂β(t), and
finally (5.16). Note that (5.16) implies that the maximum absolute correlationĈ(t)

equalsĈ(t0) − A2
A(t − t0), so thatĈ(t) is a piecewise linear decreasing function

of the Lasso parametert . �

The Lasso solution̂β(t) occurs on the surface of the diamond-shaped convex
polytope

D(t) =
{
β :

∑ |βj | ≤ t
}
,(5.27)

D(t) increasing witht . Lemma 7 says that, fort ∈ T , β̂(t) moves linearly along
edgeA of the polytope, the edge havingβj = 0 for j /∈ A. Moreover the regression
estimateŝµ(t) move in the LARS equiangular directionuA, (2.6). It remains to
show that “A” changes according to the rules of Theorem 1, which is the purpose
of the next three lemmas.

LEMMA 8. A Lasso solution β̂ has

ĉj = Ĉ · sign(β̂j ) for j ∈ A,(5.28)

where ĉj equals the current correlation x′
j (y − µ̂) = x′

j (y − Xβ̂). In particular,
this implies that

sign(β̂j ) = sign(ĉj ) for j ∈ A.(5.29)

PROOF. This follows immediately from (5.22) by noting that thej th element
of the left-hand side iŝcj , and the right-hand side isλ · sign(β̂j ) for j ∈ A.
Likewiseλ = |̂cj | = Ĉ. �

LEMMA 9. Within an interval T of constant nonzero set A, and also at t0 =
inf(T ), the Lasso current correlations cj (t) = x′

j (y − µ̂(t)) satisfy

|cj (t)| = Ĉ(t) ≡ max{|c�(t)|} for j ∈ A

and

|cj (t)| ≤ Ĉ(t) for j /∈ A.(5.30)

PROOF. Equation (5.28) says that the|cj (t)| have identical values, saŷCt ,
for j ∈ A. It remains to show that̂Ct has the extremum properties indicated
in (5.30). For anm-vectord we defineβ(γ ) = β̂(t) + γ d andS(γ ) as in (5.12),
likewiseT (γ ) = ∑ |βj(γ )|, and

Rt(d) = −Ṡ(0)/Ṫ (0).(5.31)

Again assuminĝβj > 0 for j ∈ A, by redefinition ofxj if necessary, (5.14) and
(5.28) yield

Rt(d) = 2

[
Ĉt

∑
A

dj +∑
Ac

cj (t)dj

]/[∑
A

dj +∑
Ac

|dj |
]
.(5.32)
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If dj = 0 for j /∈ A, and
∑

dj �= 0,

Rt(d) = 2Ĉt ,(5.33)

while if d has only componentj nonzero we can make

Rt(d) = 2|cj (t)|.(5.34)

According to Lemma 7 the Lasso solutions fort ∈ T usedA proportional towA

with dj = 0 for j /∈ A, so

Rt ≡ Rt(wA)(5.35)

is the downward slope of the curve (T,S(T )) at T = t , and by the definition of
the Lasso must maximizeRt(d). This shows that̂Ct = Ĉ(t), and verifies (5.30),
which also holds att0 = inf(T ) by the continuity of the current correlations.�

We note that Lemmas 7–9 follow relatively easily from the Karush–Kuhn–
Tucker conditions for optimality for the quadratic programming Lasso problem
[Osborne, Presnell and Turlach (2000a)]; we have chosen a more geometrical
argument here to demonstrate the nature of the Lasso path.

Figure 8 shows the(T , S) curve corresponding to the Lasso estimates in
Figure 1. The arrow indicates the tangent to the curve att = 1000, which has

FIG. 8. Plot of S versus T for Lasso applied to diabetes data; points indicate the 12modified LARS
steps of Figure 1; triangle is (T ,S) boundary point at t = 1000;dashed arrow is tangent at t = 1000,
negative slope Rt , (5.31).The (T ,S) curve is a decreasing, convex, quadratic spline.
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downward slopeR1000. The argument above relies on the fact thatRt(d) cannot be
greater thanRt , or else there would be(T , S) values lying below the optimal curve.
Using Lemmas 3 and 4 it can be shown that the(T , S) curve is always convex, as
in Figure 8, being a quadratic spline withṠ(T ) = −2Ĉ(T ) andS̈(T ) = 2A2

A.
We now consider in detail the choice of active set at a breakpoint of the

piecewise linear Lasso path. Lett = t0 indicate such a point,t0 = inf(T ) as in
Lemma 9, with Lasso regression vectorβ̂, prediction estimatêµ = Xβ̂ , current
correlationŝc = X′(y − µ̂), sj = sign(ĉj ) and maximum absolute correlation̂C.
Define

A1 = {j : β̂j �= 0}, A0 = {j : β̂j = 0 and|̂cj | = Ĉ},(5.36)

A10 = A1 ∪ A0 andA2 = Ac
10, and takeβ(γ ) = β̂ + γ d for somem-vectord;

alsoS(γ ) = ‖y − Xβ(γ )‖2 andT (γ ) = ∑ |βj(γ )|.

LEMMA 10. The negative slope (5.31)at t0 is bounded by 2Ĉ,

R(d) = −Ṡ(0)/Ṫ (0) ≤ 2Ĉ,(5.37)

with equality only if dj = 0 for j ∈ A2. If so, the differences �S = S(γ ) − S(0)

and �T = T (γ ) − T (0) satisfy

�S = −2Ĉ�T + L(d)2 · (�T )2,(5.38)

where

L(d) = ‖Xd/d+‖.(5.39)

PROOF. We can assumêcj ≥ 0 for all j , by redefinition if necessary, sôβj ≥ 0
according to Lemma 8. Proceeding as in (5.32),

R(d) = 2Ĉ

[∑
A10

dj +∑
A2

(ĉj /Ĉ)dj

]/[∑
A1

dj + ∑
A0∪A2

|dj |
]
.(5.40)

We needdj ≥ 0 for j ∈ A0 ∪ A2 in order to maximize (5.40), in which case

R(d) = 2Ĉ

[∑
A10

dj +∑
A2

(ĉj /Ĉ)dj

]/[∑
A10

dj +∑
A2

dj

]
.(5.41)

This is< 2Ĉ unlessdj = 0 for j ∈ A2, verifying (5.37), and also implying

T (γ ) = T (0) + γ
∑
A10

dj .(5.42)

The first term on the right-hand side of (5.13) is then−2Ĉ(�T ), while the second
term equals(d/d+)′X′X(d/d+)(�T )2 = L(d)2. �
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Lemma 10 has an important consequence. Suppose thatA is the current active
set for the Lasso, as in (5.17), and thatA ⊆ A10. Then Lemma 5 says thatL(d)

is ≥ AA, and (5.38) gives

�S ≥ −2Ĉ · �T + A2
A · (�T )2,(5.43)

with equality if d is chosen to give the equiangular vectoruA, dA = SAwA,
dAc = 0. The Lasso operates to minimizeS(T ) so we want�S to be as negative
as possible. Lemma 10 says that if the support ofd is not confined toA10, then
Ṡ(0) exceeds the optimum value−2Ĉ; if it is confined, thenṠ(0) = −2Ĉ but S̈(0)

exceeds the minimum value 2AA unlessdA is proportional toSAwA as in (5.17).
Suppose that̂β, a Lasso solution, exactly equals aβ̂ obtained from the Lasso-

modified LARS algorithm, henceforth called LARS–Lasso, as att = 1000 in
Figures 1 and 3. We know from Lemma 7 that subsequent Lasso estimates will
follow a linear track determined by some subsetA, µ(γ ) = µ̂ + γ uA, and so will
the LARS–Lasso estimates, but to verify Theorem 1 we need to show that “A” is
the same set in both cases.

Lemmas 4–7 put four constraints on the Lasso choice ofA. DefineA1, A0 and
A10 as at (5.36).

CONSTRAINT 1. A1 ⊆ A. This follows from Lemma 7 since for sufficiently
smallγ the subsequent Lasso coefficients (5.17),

β̂A(γ ) = β̂A + γ SAwA,(5.44)

will have β̂j (γ ) �= 0, j ∈ A1.

CONSTRAINT 2. A ⊆ A10. Lemma 10, (5.37) shows that the Lasso choiced̂
in β(γ ) = β̂ + γ d̂ must have its nonzero support inA10, or equivalently that
µ̂(γ ) = µ̂ + γ uA must haveuA ∈ L(XA10). (It is possible thatuA happens to
equaluB for someB ⊃ A10, but that does not affect the argument below.)

CONSTRAINT 3. wA = AAG−1
A 1A cannot have sign(wj ) �= sign(ĉj ) for any

coordinatej ∈ A0. If it does, then sign(β̂j (γ )) �= sign(ĉj (γ )) for sufficiently
smallγ , violating Lemma 8.

CONSTRAINT 4. Subject to Constraints 1–3,A must minimizeAA. This
follows from Lemma 10 as in (5.43), and the requirement that the Lasso
curveS(T ) declines at the fastest possible rate.

Theorem 1 follows by induction: beginning atβ̂0 = 0, we follow the LARS–
Lasso algorithm and show that at every succeeding step it must continue to agree
with the Lasso definition (1.5). First of all, suppose thatβ̂ , our hypothesized Lasso
and LARS–Lasso solution, has occurred strictlywithin a LARS–Lasso step. Then
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A0 is empty so that Constraints 1 and 2 imply thatA cannot change its current
value: the equivalence between Lasso and LARS–Lasso must continue at least to
the end of the step.

The one-at-a-time assumption of Theorem 1 says that at a LARS–Lasso
breakpoint,A0 has exactly one member, sayj0, so A must equalA1 or A10.
There are two cases: ifj0 has just beenadded to the set{|̂cj | = Ĉ}, then Lemma 4
says that sign(wj0) = sign(ĉj0), so that Constraint 3 is not violated; the other
three constraints and Lemma 5 imply that the Lasso choiceA = A10 agrees with
the LARS–Lasso algorithm. The other case hasj0 deleted from the active set as
in (3.6). Now the choiceA = A10 is ruled out by Constraint 3: it would keepwA

the same as in the previous LARS–Lasso step, and we know that that was stopped
in (3.6) to prevent a sign contradiction at coordinatej0. In other words,A = A1,
in accordance with the Lasso modification of LARS. This completes the proof
of Theorem 1.

A LARS–Lasso algorithm is available even if the one-at-a-time condition does
not hold, but at the expense of additional computation. Suppose, for example,
two new membersj1 and j2 are added to the set{|̂cj | = Ĉ}, so A0 = {j1, j2}.
It is possible but not certain thatA10 does not violate Constraint 3, in which
caseA = A10. However, if it does violate Constraint 3, then both possibilities
A = A1 ∪ {j1} and A = A1 ∪ {j2} must be examined to see which one gives
the smaller value ofAA. Since one-at-a-time computations, perhaps with some
addedy jitter, apply to all practical situations, the LARS algorithm described in
Section 7 is not equipped to handle many-at-a-time problems.

6. Stagewise properties. The main goal of this section is to verify Theorem 2.
Doing so also gives us a chance to make a more detailed comparison of the LARS
and Stagewise procedures. Assume thatβ̂ is a Stagewise estimate of the regression
coefficients, for example, as indicated at

∑ |β̂j | = 2000 in the right panel of
Figure 1, with prediction vector̂µ = Xβ̂, current correlationŝc = X′(y − µ̂),
Ĉ = max{|̂cj |} and maximal setA = {j : |̂cj | = Ĉ}. We must show that successive
Stagewise estimates ofβ develop according to the modified LARS algorithm of
Theorem 2, henceforth called LARS–Stagewise. For convenience we can assume,
by redefinition ofxj as−xj, if necessary, that the signssj = sign(ĉj ) are all non-
negative.

As in (3.8)–(3.10) we suppose that the Stagewise procedure (1.7) has taken
N additionalε-steps forward from̂µ = Xβ̂, giving new prediction vector̂µ(N).

LEMMA 11. For sufficiently small ε, only j ∈ A can have Pj = Nj/N > 0.

PROOF. Letting Nε ≡ γ , ‖µ̂(N) − µ̂‖ ≤ γ so that̂c(N) = X′(y − µ̂(N))

satisfies

|̂cj (N) − ĉj | =
∣∣x′

j

(
µ̂(N) − µ̂

)∣∣ ≤ ‖xj‖ · ‖µ̂(N) − µ̂‖ ≤ γ.(6.1)
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Forγ < 1
2[Ĉ − maxAc{ĉj }], j in Ac cannot have maximal current correlation and

can never be involved in theN steps. �

Lemma 11 says that we can write the developing Stagewise prediction vector as

µ̂(γ ) = µ̂ + γ v, wherev = XAPA,(6.2)

PA a vector of length|A|, with componentsNj/N for j ∈ A. The nature of the
Stagewise procedure puts three constraints onv, the most obvious of which is
the following.

CONSTRAINT I. The vectorv ∈ S+
A, the nonnegative simplex

S+
A =

{
v : v = ∑

j∈A

xjPj ,Pj ≥ 0,
∑
j∈A

Pj = 1

}
.(6.3)

Equivalently,γ v ∈ CA, the convex cone (3.12).

The Stagewise procedure, unlike LARS, is not required to use all of the maximal
setA as the active set, and can instead restrict the nonzero coordinatesPj to a
subsetB ⊆ A. Thenv ∈ L(XB), the linear space spanned by the columns ofXB ,
but not all such vectorsv are allowable Stagewise forward directions.

CONSTRAINT II. The vectorv must be proportional to the equiangular vector
uB , (2.6), that is,v = vB , (5.8),

vB = A2
BXBG−1

B 1B = ABuB .(6.4)

Constraint II amounts to requiring that the current correlations inB decline at
an equal rate: since

ĉj (γ ) = x′
j (y − µ̂ − γ v) = ĉj − γ x′

jv,(6.5)

we needX′
Bv = λ1B for someλ > 0, implying v = λG−1

B 1B ; choosingλ = A2
B

satisfies Constraint II. Violating Constraint II makes the current correlationsĉj (γ )

unequal so that the Stagewise algorithm as defined at (1.7) could not proceed in
directionv.

Equation (6.4) givesX′
BvB = A2

B1B , or

x′
jvB = A2

B for j ∈ B.(6.6)

CONSTRAINT III. The vectorv = vB must satisfy

x′
j vB ≥ A2

B for j ∈ A − B.(6.7)
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Constraint III follows from (6.5). It says that the current correlations for
members ofA = {j : |̂cj | = Ĉ} not in B must decline at least as quickly as those
in B. If this were not true, thenvB would not be an allowable direction for
Stagewise development since variables inA−B would immediately reenter (1.7).

To obtain strict inequality in (6.7), letB0 ⊂ A − B be the set of indices for
which x′

jvB = A2
B . It is easy to show thatvB∪Bo = vB . In other words, if we

take B to be thelargest set having a givenvB proportional to its equiangular
vector, thenx′

jvB > A2
B for j ∈ A − B.

Writing µ̂(γ ) = µ̂ + γ v as in (6.2) presupposes that the Stagewise solutions
follow a piecewise linear track. However, the presupposition can be reduced
to one of piecewise differentiability by takingγ infinitesimally small. We can
always express the family of Stagewise solutions asβ̂(z), where the real-valued
parameterZ plays the role ofT for the Lasso, increasing from 0 to some maximum
value aŝβ(z) goes from0 to the full OLS estimate. [The choiceZ = T used in
Figure 1 may not necessarily yield a one-to-one mapping;Z = S(0) − S(β̂), the
reduction in residual squared error, always does.] We suppose that the Stagewise
estimatêβ(z) is everywhere right differentiable with respect toz. Then the right
derivative

v̂ = dβ̂(z)/dz(6.8)

must obey the three constraints.
The definition of the idealized Stagewise procedure in Section 3.2, in which

ε → 0 in rule (1.7), is somewhat vague but the three constraints apply to any
reasonable interpretation. It turns out that the LARS–Stagewise algorithm satisfies
the constraints and is unique in doing so. This is the meaning of Theorem 2.
[Of course the LARS–Stagewise algorithm is also supported by direct numerical
comparisons with (1.7), as in Figure 1’s right panel.]

If uA ∈ CA, then v = vA obviously satisfies the three constraints. The
interesting situation for Theorem 2 isuA /∈ CA, which we now assume to be the
case. Any subsetB ⊂ A determines a face of the convex cone of dimension|B|,
the face havingPj > 0 in (3.12) for j ∈ B and Pj = 0 for j ∈ A − B. The
orthogonal projection ofuA into the linear subspaceL(XB), say ProjB(uA), is
proportional toB ’s equiangular vectoruB : using (2.7),

ProjB(uA) = XBG−1
B X′

BuA = XBG−1
B AA1B = (AA/AB) · uB ,(6.9)

or equivalently

ProjB(vA) = (AA/AB)2vB .(6.10)

The nearest point touA in CA, sayûA, is of the formAxj P̂j with P̂j ≥ 0.
ThereforêuA exists strictly within facêB, whereB̂ = {j : P̂j > 0}, and must equal
ProjB̂(uA). According to (6.9),̂uA is proportional toB̂ ’s equiangular vectoruB̂ ,
and also tovB̂ = ABuB . In other wordsvB̂ satisfies Constraint II, and it obviously
also satisfies Constraint I. Figure 9 schematically illustrates the geometry.
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FIG. 9. The geometry of the LARS–Stagewise modification.

LEMMA 12. The vector vB̂ satisfies Constraints I–III, and conversely if v
satisfies the three constraints, then v = vB̂ .

PROOF. Let Cos≡ AA/AB and Sin= [1 − Cos2]1/2, the latter being greater
than zero by Lemma 5. For any faceB ⊂ A, (6.9) implies

uA = Cos·uB + Sin·zB,(6.11)

where zB is a unit vector orthogonal toL(XB), pointing away fromCA. By
an n-dimensional coordinate rotation we can makeL(XB) = L(c1, c2, . . . , cJ ),

J = |B|, the space ofn-vectors with lastn − J coordinates zero, and also

uB = (1,0,0,0), uA = (Cos,0,Sin,0),(6.12)

the first0 having lengthJ − 1, the second0 lengthn − J − 1. Then we can write

xj = (
AB,xj2,0,0

)
for j ∈ B,(6.13)

the first coordinateAB being required sincex′
juB = AB , (2.7). Notice that

x′
juA = Cos·AB = AA, as also required by (2.7).

For� ∈ A − B denotex� as

x� = (
x�1,x�2, x�3,x�4

)
,(6.14)

so (2.7) yields

AA = x′
�uA = Cos·x�1 + Sin·x�3.(6.15)
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Now assumeB = B̂. In this case a separating hyperplaneH orthogonal to
zB̂ in (6.11) passes between the convex coneCA anduA, througĥuA = Cos·uB̂ ,
implying x�3 ≤ 0 [i.e., x� and uA are on opposite sides ofH , x�3 being
negative since the corresponding coordinate ofuA, “Sin” in (6.12), is positive].
Equation (6.15) gives Cos·x�1 ≥ AA = Cos·AB̂ or

x′
�vB̂ = x′

�(AB̂uB̂) = AB̂x�1 ≥ A2
B̂

,(6.16)

verifying that Constraint III is satisfied.
Conversely suppose thatv satisfies Constraints I–III so thatv ∈ S+

A andv = vB

for the nonzero coefficient setB: vB = BxjPj ,Pj > 0. LetH be the hyperplane
passing through Cos· uB orthogonally tozB , (6.9), (6.11). IfvB �= vB̂ , then at
least one of the vectorsx�, � ∈ A − B, must lie on the same side ofH asuA, so
that x�3 > 0 (or elseH would be a separating hyperplane betweenuA andCA,
and vB would be proportional tôuA, the nearest point touA in CA, implying
vB = vB̂). Now (6.15) gives Cos· x�1 < AA = Cos· AB , or

x′
�vB = x′

�(ABuB) = ABx�1 < A2
B .(6.17)

This violates Constraint III, showing thatv must equalvB̂ . �

Notice that the direction of advancêv = vB̂ of the idealized Stagewise
procedure is a function only of the current maximal setÂ = {j : |̂cj | = Ĉ},
sayv̂ = φ(Â ). In the language of (6.7),

dβ̂(z)

dz
= φ(Â ).(6.18)

The LARS–Stagewise algorithm of Theorem 2 produces an evolving family of
estimateŝβ that everywhere satisfies (6.18). This is true at every LARS–Stagewise
breakpoint by the definition of the Stagewise modification. It is also true between
breakpoints. Let̂A be the maximal set at the breakpoint, givingv̂ = vB̂ = φ(Â).
In the succeeding LARS–Stagewise intervalµ̂(γ ) = µ̂ + γ vB̂ , the maximal set is
immediately reduced tôB, according to properties (6.6), (6.7) ofvB̂ , at which it
stays during the entire interval. However,φ(B̂ ) = φ(Â ) = vB̂ sincevB̂ ∈ CB̂ ,
so the LARS–Stagewise procedure, which continues in the directionv̂ until a
new member is added to the active set, continues to obey the idealized Stagewise
equation (6.18).

All of this shows that the LARS–Stagewise algorithm produces a legitimate
version of the idealized Stagewise track. The converse of Lemma 12 says that
there are no other versions, verifying Theorem 2.

The Stagewise procedure has its potential generality as an advantage over LARS
and Lasso: it is easy to define forward Stagewise methods for a wide variety
of nonlinear fitting problems, as in Hastie, Tibshirani and Friedman [(2001),
Chapter 10, which begins with a Stagewise analysis of “boosting”]. Comparisons
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with LARS and Lasso within the linear model framework, as at the end of
Section 3.2, help us better understand Stagewise methodology. This section’s
results permit further comparisons.

Consider proceeding forward from̂µ along unit vectoru, µ̂(γ ) = µ̂ + γ u, two
interesting choices being the LARS directionuÂ and the Stagewise direction̂µB̂ .
For u ∈ L(XÂ), the rate of change ofS(γ ) = ‖y − µ̂(γ )‖2 is

−∂S(γ )

∂γ

∣∣∣∣
0
= 2Ĉ · u′

A · u
AÂ

,(6.19)

(6.19) following quickly from (5.14). This shows that the LARS directionuÂ
maximizes the instantaneous decrease inS. The ratio

∂SStage(γ )

∂γ

∣∣∣∣
0

/ ∂SLARS(γ )

∂γ

∣∣∣∣
0
= AÂ

AB̂

,(6.20)

equaling the quantity “Cos” in (6.15).
The comparison goes the other way for the maximum absolute correlationĈ(γ ).

Proceeding as in (2.15),

−∂Ĉ(γ )

∂γ

∣∣∣∣
0
= min

Â
{|x′

ju|}.(6.21)

The argument for Lemma 12, using Constraints II and III, shows thatuB̂ maxi-
mizes (6.21) atAB̂ , and that

∂ĈLARS(γ )

∂γ

∣∣∣∣
0

/ ∂ĈStage(γ )

∂γ

∣∣∣∣
0
= AÂ

AB̂

.(6.22)

The original motivation for the Stagewise procedure was to minimize residual
squared error within a framework of parsimonious forward search. However, (6.20)
shows that Stagewise is less greedy than LARS in this regard, it being more
accurate to describe Stagewise as striving to minimize the maximum absolute
residual correlation.

7. Computations. The entire sequence of steps in the LARS algorithm
with m < n variables requiresO(m3 + nm2) computations—the cost of a least
squares fit onm variables.

In detail, at thekth of m steps, we computem − k inner productscjk of the
nonactivexj with the current residuals to identify the next active variable, and then
invert thek × k matrix Gk = X′

kXk to find the next LARS direction. We do this
by updating the Cholesky factorizationRk−1 of Gk−1 found at the previous step
[Golub and Van Loan (1983)]. At the final stepm, we have computed the Cholesky
R = Rm for the full cross-product matrix, which is the dominant calculation for a
least squares fit. Hence the LARS sequence can be seen as a Cholesky factorization
with a guided ordering of the variables.
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The computations can be reduced further by recognizing that the inner products
above can be updated at each iteration using the cross-product matrixX′X and the
current directions. Form � n, this strategy is counterproductive and is not used.

For thelasso modification, the computations are similar, except that occasion-
ally one has to drop a variable, and hencedowndate Rk [costing at mostO(m2)

operations per downdate]. For thestagewise modification of LARS, we need to
check at each iteration that the components ofw are all positive. If not, one or
more variables are dropped [using theinner loop of the NNLS algorithm described
in Lawson and Hanson (1974)], again requiring downdating ofRk . With many
correlated variables, the stagewise version can take many more steps than LARS
because of frequent dropping and adding of variables, increasing the computations
by a factor up to 5 or more in extreme cases.

The LARS algorithm (in any of the three states above) works gracefully for the
case where there are many more variables than observations:m � n. In this case
LARS terminates at the saturated least squares fit aftern−1 variables have entered
the active set [at a cost ofO(n3) operations]. (This number isn − 1 rather thann,
because the columns ofX have been mean centered, and hence it has row-rank
n − 1.) We make a few more remarks about them � n case in thelasso state:

1. The LARS algorithm continues to provide Lasso solutions along the way, and
the final solution highlights the fact that a Lasso fit can have no more thann−1
(mean centered) variables with nonzero coefficients.

2. Although the model involves no more thann − 1 variables at any time, the
number ofdifferent variables ever to have entered the model during the entire
sequence can be—and typically is—greater thann − 1.

3. The model sequence, particularly near the saturated end, tends to be quite
variable with respect to small changes iny.

4. The estimation ofσ 2 may have to depend on an auxiliary method such as
nearest neighbors (since the final model is saturated). We have not investigated
the accuracy of the simple approximation formula (4.12) for the casem > n.

Documented S-PLUS implementations of LARS and associated functions
are available from www-stat.stanford.edu/∼hastie/Papers/; the diabetes data also
appears there.

8. Boosting procedures. One motivation for studying the Forward Stagewise
algorithm is its usefulness in adaptive fitting for data mining. In particular, Forward
Stagewise ideas are used in “boosting,” an important class of fitting methods for
data mining introduced by Freund and Schapire (1997). These methods are one of
the hottest topics in the area of machine learning, and one of the most effective
prediction methods in current use. Boosting can use any adaptive fitting procedure
as its “base learner” (model fitter): trees are a popular choice, as implemented in
CART [Breiman, Friedman, Olshen and Stone (1984)].
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Friedman, Hastie and Tibshirani (2000) and Friedman (2001) studied boosting
and proposed a number of procedures, the most relevant to this discussion being
least squares boosting. This procedure works by successive fitting of regression
trees to the current residuals. Specifically we start with the residualr = y and the
fit ŷ = 0. We fit a tree inx1,x2, . . . ,xm to the responsey giving a fitted treet1

(an n-vector of fitted values). Then we updateŷ to ŷ + ε · t1, r to y − ŷ and
continue for many iterations. Hereε is a small positive constant. Empirical studies
show that small values ofε work better thanε = 1: in fact, for prediction accuracy
“the smaller the better.” The only drawback in taking very small values ofε is
computational slowness.

A major research question has been why boosting works so well, and
specifically why isε-shrinkage so important? To understand boosted trees in
the present context, we think of our predictors not as our original variables
x1,x2, . . . ,xm, but instead as the set of all treestk that could be fitted to our data.
There is a strong similarity between least squares boosting and Forward Stagewise
regression as defined earlier. Fitting a tree to the current residual is a numerical way
of finding the “predictor” most correlated with the residual. Note, however, that the
greedy algorithms used in CART do not search among all possible trees, but only
a subset of them. In addition the set of all trees, including a parametrization for
the predicted values in the terminal nodes, is infinite. Nevertheless one can define
idealized versions of least-squares boosting that look much like Forward Stagewise
regression.

Hastie, Tibshirani and Friedman (2001) noted the the striking similarity between
Forward Stagewise regression and the Lasso, and conjectured that this may help
explain the success of the Forward Stagewise process used in least squares
boosting. That is, in some sense least squares boosting may be carrying out a Lasso
fit on the infinite set of tree predictors. Note that direct computation of the Lasso
via the LARS procedure would not be feasible in this setting because the number
of trees is infinite and one could not compute the optimal step length. However,
Forward Stagewise regression is feasible because it only need find the the most
correlated predictor among the infinite set, where it approximates by numerical
search.

In this paper we have established the connection between the Lasso and Forward
Stagewise regression. We are now thinking about how these results can help to
understand and improve boosting procedures. One such idea is a modified form of
Forward Stagewise: we find the best tree as usual, but rather than taking a small
step in only that tree, we take a small least squares step in all trees currently in our
model. One can show that for small step sizes this procedure approximates LARS;
its advantage is that it can be carried out on an infinite set of predictors such as
trees.
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APPENDIX

A.1. Local linearity and Lemma 2.

CONVENTIONS. We write xl with subscriptl for members of the active
setAk . Thusxl denotes thelth variable to enter, being an abuse of notation for
slxj (l) = sgn(ĉj (l))xj (l). Expressionsx′

l(y − µ̂k−1(y)) = Ĉk(y) and x′
luk = Ak

clearly do not depend on whichxl ∈ Ak we choose.
By writing j /∈ Ak , we intend that bothxj and−xj are candidates for inclusion

at the next step. One could think of negative indices−j corresponding to “new”
variablesx−j = −xj .

The active setAk(y) depends on the datay. WhenAk(y) is the same for ally in
a neighborhood ofy0, we say thatAk(y) is locally fixed [atAk = Ak(y0)].

A functiong(y) is locally Lipschitz aty if for all sufficiently small vectors�y,

‖�g‖ = ‖g(y + �y) − g(y)‖ ≤ L‖�y‖.(A.1)

If the constantL applies for ally, we say thatg is uniformly locally Lipschitz(L),
and the word “locally” may be dropped.

LEMMA 13. For each k, 0≤ k ≤ m, there is an open set Gk of full measure
on which Ak(y) and Ak+1(y) are locally fixed and differ by 1,and µ̂k(y) is locally
linear. The sets Gk are decreasing as k increases.

PROOF. The argument is by induction. The induction hypothesis states that for
eachy0 ∈ Gk−1 there is a small ballB(y0) on which (a) the active setsAk−1(y)

andAk(y) are fixed and equal toAk−1 andAk , respectively, (b)|Ak \ Ak−1| = 1
so that the same single variable enters locally at stagek −1 and (c)µ̂k−1(y) = My
is linear. We construct a setGk with the same property.

Fix a point y0 and the corresponding ballB(y0) ⊂ Gk−1, on which y −
µ̂k−1(y) = y − My = Ry, say. For indicesj1, j2 /∈ A, let N(j1, j2) be the set ofy
for which there exists aγ such that

w′(Ry − γ uk) = x′
j1

(Ry − γ uk) = x′
j2

(Ry − γ uk).(A.2)

Setting δ1 = xl − xj1, the first equality may be writtenδ′
1Ry = γ δ′

1uk and so
whenδ′

1uk �= 0 determines

γ = δ′
1Ry/δ′

1uk =: η′
1y.

[If δ′
1uk = 0, there are no qualifyingy, and N(j1, j2) is empty.] Now using

the second equality and settingδ2 = xl − xj2, we see thatN(j1, j2) is contained
in the set ofy for which

δ′
2Ry = η′

1y δ′
2uk.
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In other words, settingη2 = R′δ2 − (δ′
2uk)η1, we have

N(j1, j2) ⊂ {y :η′
2y = 0}.

If we define

N(y0) = ⋃{N(j1, j2) : j1, j2 /∈ A, j1 �= j2},
it is evident thatN(y0) is a finite union of hyperplanes and hence closed. For
y ∈ B(y0) \ N(y0), a unique new variable joins the active set at stepk. Near each
suchy the “joining” variable is locally the same andγk(y)uk is locally linear.

We then defineGk ⊂ Gk−1 as the union of such setsB(y)\N(y) overy ∈ Gk−1.
Thus Gk is open and, onGk, Ak+1(y) is locally constant and̂µk(y) is locally
linear. Thus properties (a)–(c) hold forGk.

The same argument works for the initial casek = 0: sinceµ̂0 = 0, there is no
circularity.

Finally, since the intersection ofGk with any compact set is covered by a finite
number ofB(yi) \ N(yi), it is clear thatGk has full measure.�

LEMMA 14. Suppose that, for y near y0, µ̂k−1(y) is continuous (resp. linear)
and that Ak(y) = Ak . Suppose also that, at y0, Ak+1(y0) = A ∪ {k + 1}.

Then for y near y0, Ak+1(y) = Ak ∪ {k + 1} and γ̂k(y) and hence µ̂k(y) are
continuous (resp. linear) and uniformly Lipschitz.

PROOF. Consider first the situation aty0, with Ĉk and ĉkj defined in
(2.18) and (2.17), respectively. Sincek + 1 /∈ Ak , we have|Ĉk(y0)| > ĉk,k+1(y0),
andγ̂k(y0) > 0 satisfies

Ĉk(y0) − γ̂k(y0)Ak

{=
>

}
ĉk,j (y0) − γ̂k(y0)ak,j as

{
j = k + 1
j > k + 1

.(A.3)

In particular, it must be thatAk �= ak,k+1, and hence

γ̂k(y0) = Ĉk(y0) − ĉk,k+1(y0)

Ak − ak,k+1
> 0.

Call an indexj admissible ifj /∈ Ak andak,j �= Ak. Fory neary0, this property
is independent ofy. For admissiblej , define

Rk,j (y) = Ĉk(y) − ĉk,j (y)

Ak − ak,j

,

which is continuous (resp. linear) neary0 from the assumption on̂µk−1. By
definition,

γ̂k(y) = min
j∈Pk(y)

Rk,j (y),
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where

Pk(y) = {j admissible andRk,j (y) > 0}.
For admissiblej , Rk,j (y0) �= 0, and neary0 the functionsy → Rk,j (y) are
continuous and of fixed sign. Thus, neary0 the setPk(y) stays fixed atPk(y0)

and (A.3) implies that

Rk,k+1(y) < Rk,j (y), j > k + 1, j ∈ Pk(y).

Consequently, fory near y0, only variablek + 1 joins the active set, and so
Ak+1(y) = Ak ∪ {k + 1}, and

γ̂k(y) = Rk,k+1(y) = (xl − xk+1)
′(y − µ̂k−1(y))

(xl − xk+1)
′uk

.(A.4)

This representation shows that bothγ̂k(y) and hencêµk(y) = µ̂k−1(y) + γ̂k(y)uk

are continuous (resp. linear) neary0.
To show thatγ̂k is locally Lipschitz aty, we setδ = w − xk+1 and write, using

notation from (A.1),

�γ̂k = δ′(�y − �µ̂k−1)

δ′uk

.

As y varies, there is a finite list of vectors(xl,xk+1,uk) that can occur in
the denominator termδ′uk , and since all such terms are positive [as observed
below (A.3)], they have a uniform positive lower bound,amin say. Since‖δ‖ ≤ 2
andµ̂k−1 is Lipschitz(Lk−1) by assumption, we conclude that

|�γ̂k|
‖�y‖ ≤ 2a−1

min(1+ Lk−1) =: Lk. �

A.2. Consequences of the positive cone condition.

LEMMA 15. Suppose that |A+| = |A| + 1 and that XA+ = [XA x+] (where
x+ = sj xj for some j /∈ A). Let PA = XAG−1

A X′
A denote projection on span(XA),

so that a = x′+PAx+ < 1. The +-component of G−1
A+1A+ is

(G−1
A+1A+)+ = (1− a)−1

(
1− x′+uA

AA

)
.(A.5)

Consequently, under the positive cone condition (4.11),

x′+uA < AA.(A.6)

PROOF. Write GA+ as a partitioned matrix

GA+ =
(

X′X X′x+
x′+X x′+x+

)
=

(
A B

B ′ D

)
.
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Applying the formula for the inverse of a partitioned matrix [e.g., Rao (1973), page
33],

(G−1
A+1A+)+ = −E−1F ′1 + E−1,

where

E = D − B ′A−1B = 1− x′+PAx+,

F = A−1B = G−1
A X′x+,

from which (A.5) follows. The positive cone condition implies thatG−1
A+1A+ > 0,

and so (A.6) is immediate.�

A.3. Global continuity and Lemma 3. We shall cally0 a multiple point at
stepk if two or more variables enter at the same time. Lemma 14 shows that
such points form a set of measure zero, but they can and do cause discontinuities
in µ̂k+1 at y0 in general. We will see, however, that the positive cone condition
prevents such discontinuities.

We confine our discussion to double points, hoping that these arguments will
be sufficient to establish the same pattern of behavior at points of multiplicity 3
or higher. In addition, by renumbering, we shall suppose that indicesk + 1 and
k + 2 are those that are added at double pointy0. Similarly, for convenience only,
we assume thatAk(y) is constant neary0. Our task then is to show that, fory near
a double pointy0, bothµ̂k(y) andµ̂k+1(y) are continuous and uniformly locally
Lipschitz.

LEMMA 16. Suppose that Ak(y) = Ak is constant near y0 and that
Ak+(y0) = Ak ∪ {k + 1, k + 2}. Then for y near y0, Ak+(y) \ Ak can only be
one of three possibilities, namely {k + 1}, {k + 2} or {k + 1, k + 2}. In all cases
µ̂k(y) = µ̂k−1(y) + γ̂k(y)uk as usual, and both γk(y) and µ̂k(y) are continuous
and locally Lipschitz.

PROOF. We use notation and tools from the proof of Lemma 14. Sincey0 is a
double point and the positivity setPk(y) = Pk neary0, we have

0 < Rk,k+1(y0) = Rk,k+2(y0) < Rk,j (y0) for j ∈ Pk \ {k + 1, k + 2}.
Continuity ofRk,j implies that neary0 we still have

0< Rk,k+1(y),Rk,k+2(y) < min
{
Rk,j (y); j ∈ Pk \ {k + 1, k + 2}}.

HenceAk+ \ Ak must equal{k + 1} or {k + 2} or {k + 1, k + 2} according
asRk,k+1(y) is less than, greater than or equal toRk,k+2(y). The continuity of

γ̂k(y) = min{Rk,k+1(y),Rk,k+2(y)}
is immediate, and the local Lipschitz property follows from the arguments of
Lemma 14. �
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LEMMA 17. Assume the conditions of Lemma 16 and in addition that the
positive cone condition (4.11) holds. Then µ̂k+1(y) is continuous and locally
Lipschitz near y0.

PROOF. Sincey0 is a double point, property (A.3) holds, but now with equality
whenj = k+1 ork+2 and strict inequality otherwise. In other words, there exists
δ0 > 0 for which

Ĉk+1(y0) − ĉk+1,j (y0)

{= 0, if j = k + 2,
≥ δ0, if j > k + 2.

Consider a neighborhoodB(y0) of y0 and letN(y0) be the set of double points
in B(y0), that is, those for whichAk+1(y) \ Ak = {k + 1, k + 2}. We establish the
convention that at such double pointsµ̂k+1(y) = µ̂k(y); at other pointsy in B(y0),
µ̂k+1(y) is defined byµ̂k(y) + γ̂k+1(y)uk+1 as usual.

Now consider thosey neary0 for which Ak+1(y) \ Ak = {k + 1}, and so, from
the previous lemma,Ak+2(y) \ Ak+1 = {k + 2}. For suchy, continuity and the
local Lipschitz property for̂µk imply that

Ĉk+1(y) − ĉk+1,j (y)

{= O(‖y − y0‖), if j = k + 2,
> δ0/2, if j > k + 2.

It is at this point that we use the positive cone condition (via Lemma 15) to
guarantee thatAk+1 > ak+1,k+2. Also, sinceAk+1(y) \ Ak = {k + 1}, we have

Ĉk+1(y) > ĉk+1,k+2(y).

These two facts together show thatk + 2 ∈ Pk+1(y) and hence that

γ̂k+1(y) = Ĉk+1(y) − ĉk+1,k+2(y)

Ak+1 − ak+1,k+2
= O(‖y − y0‖)

is continuous and locally Lipschitz. In particular, asy approachesN(y0), we have
γ̂k+1(y) → 0. �

REMARK A.1. We say that a functiong :Rn → R is almost differentiable if it
is absolutely continuous on almost all line segments parallel to the coordinate axes,
and its partial derivatives (which consequently exist a.e.) are locally integrable.
This definition of almost differentiability appears superficially to be weaker than
that given by Stein, but it is in fact precisely the property used in his proof.
Furthermore, this definition is equivalent to the standard definition of weak
differentiability used in analysis.

PROOF OF LEMMA 3. We have shown explicitly that̂µk(y) is continuous
and uniformly locally Lipschitz near single and double points. Similar arguments
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extend the property to points of multiplicity 3 and higher, and so all pointsy are
covered. Finally, absolute continuity ofy → µ̂k(y) on line segments is a simple
consequence of the uniform Lipschitz property, and soµ̂k is almost differentiable.

�
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DISCUSSION

BY HEMANT ISHWARAN

Cleveland Clinic Foundation

Being able to reliably, and automatically, select variables in linear regression
models is a notoriously difficult problem. This research attacks this question
head on, introducing not only a computationally efficient algorithm and method,
LARS (and its derivatives), but at the same time introducing comprehensive theory
explaining the intricate details of the procedure as well as theory to guide its
practical implementation. This is a fascinating paper and I commend the authors
for this important work.

Automatic variable selection, the main theme of this paper, has many goals.
So before embarking upon a discussion of the paper it is important to first sit
down and clearly identify what the objectives are. The authors make it clear in
their introduction that, while often the goal in variable selection is to select a
“good” linear model, where goodness is measured in terms of prediction accuracy
performance, it is also important at the same time to choose models which
lean toward the parsimonious side. So here the goals are pretty clear: we want
good prediction error performance but also simpler models. These are certainly
reasonable objectives and quite justifiable in many scientific settings. At the same,
however, one should recognize the difficulty of the task, as the two goals, low
prediction error and smaller models, can be diametrically opposed. By this I mean
that certainly from an oracle point of view it is true that minimizing prediction error
will identify the true model, and thus, by going after prediction error (in a perfect
world), we will also get smaller models by default. However, in practice, what
happens is that small gains in prediction error often translate into larger models
and less dimension reduction. So as procedures get better at reducing prediction
error, they can also get worse at picking out variables accurately.

Unfortunately, I have some misgivings that LARS might be falling into this trap.
Mostly my concern is fueled by the fact that Mallows’Cp is the criterion used for
determining the optimal LARS model. The use ofCp often leads to overfitting, and
this coupled with the fact that LARS is a forward optimization procedure, which
is often found to be greedy, raises some potential flags. This, by the way, does not
necessarily mean that LARS per se is overfitting, but rather that I thinkCp may
be an inappropriate model selection criterion for LARS. It is this point that will be
the focus of my discussion. I will offer some evidence thatCp can sometimes be
used effectively ifmodel uncertainty is accounted for, thus pointing to ways for its
more appropriate use within LARS. Mostly I will make my arguments by way of
high-dimensional simulations. My focus on high dimensions is motivated in part
by the increasing interest in such problems, but also because it is in such problems
that performance breakdowns become magnified and are more easily identified.
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Note that throughout my discussion I will talk only about LARS, but, given the
connections outlined in the paper, the results should also naturally apply to the
Lasso and Stagewise derivatives.

1. Is Cp the correct stopping rule for LARS? The Cp criterion was
introduced by Mallows (1973) to be used with the OLS as an unbiased estimator
for the model error. However, it is important to keep in mind that it was not
intended to be usedwhen the model is selected by the data as this can lead
to selection bias and in some cases poor subset selection [Breiman (1992)].
Thus, choosing the model with lowestCp value is only a heuristic technique
with sometimes bad performance. Indeed, ultimately, this leads to an inconsistent
procedure for the OLS [Shao (1993)]. Therefore, while I think it is reasonable to
assume that theCp formula (4.10) is correct [i.e., that it is reasonable to expect that
df (µ̂k) ≈ k under a wide variety of settings], there is really no reason to expect
that minimizing theCp value will lead to an optimal procedure for LARS.

In fact, usingCp in a Forward Stagewise procedure of any kind seems to
me to be a risky thing to do given thatCp often overfits and that Stagewise
procedures are typically greedy. Figure 5 of the paper is introduced (partly) to
dispel these types of concerns about LARS being greedy. The message there
is that pe(µ̂), a performance measurement related to prediction error, declines
slowly from its maximum value for LARS compared to the quick drop seen with
standard forward stepwise regression. Thus, LARS acts differently than well-
known greedy algorithms and so we should not be worried. However, I see the
message quite differently. If the maximum proportion explained for LARS is
roughly the same over a large range of steps, and hence models of different
dimension, then this implies that there is not much to distinguish between higher-
and lower-dimensional models. Combine this with the use ofCp which could
provide poor estimates for the prediction error due to selection bias and there is
real concern for estimating models that are too large.

To study this issue, let me start by reanalyzing the diabetes data (which was
the basis for generating Figure 5). In this analysis I will compare LARS to a
Bayesian method developed in Ishwaran and Rao (2000), referred to as SVS
(short for Stochastic Variable Selection). The SVS procedure is a hybrid of the
spike-and-slab model approach pioneered by Mitchell and Beauchamp (1988)
and later developed in George and McCulloch (1993). Details for SVS can
be found in Ishwaran and Rao (2000, 2003). My reason for using SVS as a
comparison procedure is that, like LARS, its coefficient estimates are derived via
shrinkage. However, unlike LARS, these estimates are based on model averaging
in combination with shrinkage. The use of model averaging is a way of accounting
for model uncertainty, and my argument will be that models selected viaCp based
on SVS coefficients will be more stable than those found using LARS thanks to
the extra benefit of model averaging.
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FIG. 1. Cp values from main effects model for diabetes data: thick line is values from SVS; thin
dashed line is from LARS. Covariates listed at the top of the graph are ordered by importance as
measured by their absolute posterior mean.

Figures 1 and 2 present theCp values for the main effects model and the
quadratic model from both procedures (the analysis for LARS was based on
S-PLUS code kindly provided by Trevor Hastie). TheCp values for SVS were
computed by (a) finding the posterior mean values for coefficients, (b) ranking
covariates by the size of their absolute posterior mean coefficient values (with
the top rank going to the largest absolute mean) and (c) computing theCp value
Cp(µ̃k) = ‖y− µ̃k‖/σ 2−n+2k, wherẽµk is the OLS estimate based on thek top
ranked covariates. All covariates were standardized. This technique of usingCp

with SVS was discussed in Ishwaran and Rao (2000).
We immediately see some differences in the figures. In Figure 1, the final model

selected by SVS hadk = 6 variables, while LARS hadk = 7 variables. More
interesting, though, are the discrepancies for the quadratic model seen in Figure 2.
Here the optimal SVS model hadk = 8 variables in contrast to the much higher
k = 15 variables found by LARS. The top eight variables from SVS (some of these
can be read off the top of the plot) are bmi, ltg, map, hdl, sex, age.sex, bmi.map
and glu.2. The last three variables are interaction effects and a squared main effects
term. The top eight variables from LARS are bmi, ltg, map, hdl, bmi.map, age.sex,
glu.2 and bmi.2. Although there is a reasonable overlap in variables, there is still
enough of a discrepancy to be concerned. The different model sizes are also cause
for concern. Another worrisome aspect for LARS seen in Figure 2 is that itsCp

values remain bounded away from zero. This should be compared to theCp values
for SVS, which attain a near-zero mininum value, as we would hope for.
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FIG. 2. Cp values from quadratic model: best model from SVS is k = 8 (thick line) compared
with k = 15 from LARS (thin dashed line). Note how the minimum value for SVS is nearly zero.

2. High-dimensional simulations. Of course, since we do not know the true
answer in the diabetes example, we cannot definitively assess if the LARS models
are too large. Instead, it will be helpful to look at some simulations for a more
systematic study. The simulations I used were designed following the recipe given
in Breiman (1992). Data was simulated in all cases by using i.i.d. N(0,1) variables
for εi . Covariatesxi , for i = 1, . . . , n, were generated independently from a
multivariate normal distribution with zero mean and with covariance satisfying
E(xi,jxi,k) = ρ|j−k|. I considered two settings forρ: (i) ρ = 0 (uncorrelated);
(ii) ρ = 0.90 (correlated). In all simulations,n = 800 andm = 400. Nonzero
βj coefficients were in 15 clusters of 7 adjacent variables centered at every
25th variable. For example, for the variables clustered around the 25th variable, the
coefficient values were given byβ25+j = |h− j |1.25 for |j | < h, whereh = 4. The
other 14 clusters were defined similarly. All other coefficients were set to zero. This
gave a total of 105 nonzero values and 295 zero values. Coefficient values were
adjusted by multiplying by a common constant to make the theoreticalR2 value
equal to 0.75 [see Breiman (1992) for a discussion of this point]. Please note that,
while the various parameters chosen for the simulations might appear specific,
I also experimented with other simulations (not reported) by considering different
configurations for the dimensionm, sample sizen, correlationρ and the number of
nonzero coefficients. What I found was consistent with the results presented here.

For eachρ correlation setting, simulations were repeated 100 times indepen-
dently. Results are recorded in Table 1. There I have recorded what I call TotalMiss,
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TABLE 1
Breiman simulation: m = 400,n = 800and 105nonzero βj

ρ = 0 (uncorrelated X) ρ = 0.9 (correlated X)

m̂ pe(µ̂) TotalMiss FDR FNR m̂ pe(µ̂) TotalMiss FDR FNR

LARS 210.69 0.907 126.63 0.547 0.055 99.51 0.962 75.77 0.347 0.135
svsCp 126.66 0.887 61.14 0.323 0.072 58.86 0.952 66.38 0.153 0.164
svsBMA 400.00 0.918 295.00 0.737 0.000 400.00 0.966 295.00 0.737 0.000
Step 135.53 0.876 70.35 0.367 0.075 129.24 0.884 137.10 0.552 0.208

FDR and FNR. TotalMiss is the total number of misclassified variables, that is, the
total number of falsely identified nonzeroβj coefficients and falsely identified zero
coefficients; FDR and FNR are the false discovery and false nondiscovery rates de-
fined as the false positive and false negative rates for those coefficients identified as
nonzero and zero, respectively. The TotalMiss, FDR and FNR values reported are
the averaged values from the 100 simulations. Also recorded in the table ism̂, the
average number of variables selected by a procedure, as well as the performance
value pe(µ̂) [cf. (3.17)], again averaged over the 100 simulations.

Table 1 records the results from various procedures. The entry “svsCp”
refers to theCp-based SVS method used earlier; “Step” is standard forward
stepwise regression using theCp criterion; “svsBMA” is the Bayesian model
averaged estimator from SVS. My only reason for including svsBMA is to
gauge the prediction error performance of the other procedures. Its variable
selection performance is not of interest. Pure Bayesian model averaging leads to
improved prediction, but because it does no dimension reduction at all it cannot be
considered as a serious candidate for selecting variables.

The overall conclusions from Table 1 are summarized as follows:

1. The total number of misclassified coefficients and FDR values is high in
the uncorrelated case for LARS and high in the correlated case for stepwise
regression. Their estimated models are just too large. In comparison, svsCp
does well in both cases. Overall it does the best in terms of selecting
variables by maintaining low FDR and TotalMiss values. It also maintains good
performance values.

2. LARS’s performance values are good, second only to svsBMA. However, low
prediction error does not necessarily imply good variable selection.

3. LARS Cp values in orthogonal models. Figure 3 shows theCp values
for LARS from the two sets of simulations. It is immediately apparent that the
Cp curve in the uncorrelated case is too flat, leading to models which are too large.
These simulations were designed to reflect an orthogonal design setting (at least
asymptotically), so what is it about the orthogonal case that is adversely affecting
LARS?
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FIG. 3. Cp values from simulations where ρ = 0 (left) and ρ = 0.9 (right):bottom curves are from
SVS; top curves are from LARS. The lines seen on each curve are the mean Cp values based on
100simulations. Note how the minimum value for SVS is near zero in both cases. Also superimposed
on each curve are error bars representing mean values plus or minus one standard deviation.

We can use Lemma 1 of the paper to gain some insight into this. For this
argument I will assume thatm is fixed (the lemma is stated form = n but
applies in general) and I will need to assume thatXn×m is a random orthogonal
matrix, chosen so that its rows are exchangeable. To produce such anX, choose
m valuesei1, . . . , eim without replacement from{e1, . . . , en}, whereej is defined
as in Section 4.1, and setX = [ei1, . . . , eim]. It is easy to see that this ensures
row-exchangeability. Hence,µ1, . . . ,µn are exchangeable and, therefore,Yi =
µi + εi are exchangeable sinceεi are i.i.d. I will assume, as in (4.1), thatεi are
independent N(0, σ 2) variables.

For simplicity takeσ 2 = σ 2 = 1. Let Vj , for j = 0, . . . ,m − 1, denote the
(j + 1)st largest value from the set of values{|Yi1|, . . . , |Yim |}. Let k0 denote
the true dimension, that is, the number of nonzero coordinates of the trueβ , and
suppose thatk is some dimension larger thank0 such that 1≤ k0 < k ≤ m ≤ n.
Notice thatVk ≤ Vk0, and thus, by Lemma 1 and (4.10),

Cp(µ̂k) − Cp

(
µ̂k0

) = (
V 2

k − V 2
k0

) m∑
j=1

1
{∣∣Yij

∣∣ > Vk0

}+ V 2
k

m∑
j=1

1
{
Vk <

∣∣Yij

∣∣ ≤ Vk0

}

−
m∑

j=1

Y 2
ij
1
{
Vk <

∣∣Yij

∣∣ ≤ Vk0

}+ 2(k − k0)

≤ −�kBk + 2(k − k0),

where �k = V 2
k0

− V 2
k ≥ 0 and Bk = ∑m

j=1 1{|Yij | > Vk0}. Observe that by
exchangeabilityBk is a Binomial(m, k0/m) random variable. It is a little messy
to work out the distribution for�k explicitly. However, it is not hard to see that
�k can be reasonably large with high probability. Now ifk0 > k − k0 andk0 is
large, thenBk , which has a mean ofk0, will become the dominant term in�kBk
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and�kBk will become larger than 2(k − k0) with high probability. This suggests,
at least in this setting, thatCp will overfit if the dimension of the problem is high.
In this case there will be too much improvement in the residual sums of squares
when moving fromk0 to k because of the nonvanishing difference between the
squared order statisticsV 2

k0
andV 2

k .

4. Summary. The use ofCp seems to encourage large models in LARS,
especially in high-dimensional orthogonal problems, and can adversely affect
variable selection performance. It can also be unreliable when used with stepwise
regression. The use ofCp with SVS, however, seems better motivated due to
the benefits of model averaging, which mitigates the selection bias effect. This
suggests thatCp can be used effectively if model uncertainty is accounted for.
This might be one remedy. Another remedy would be simply to use a different
model selection criteria when using LARS.
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DISCUSSION

BY KEITH KNIGHT

University of Toronto

First, I congratulate the authors for a truly stimulating paper. The paper resolves
a number of important questions but, at the same time, raises many others. I would
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like to focus my comments to two specific points.

1. The similarity of Stagewise and LARS fitting to the Lasso suggests that
the estimates produced by Stagewise and LARS fitting may minimize an objective
function that is similar to the appropriate Lasso objective function. It is not at
all (at least to me) obvious how this might work though. I note, though, that
the construction of such an objective function may be easier than it seems. For
example, in the case of bagging [Breiman (1996)] or subagging [Bühlmann and
Yu (2002)], an “implied” objective function can be constructed. Suppose that
θ̂1, . . . , θ̂m are estimates (e.g., computed from subsamples or bootstrap samples)
that minimize, respectively, objective functionsZ1, . . . ,Zm and define

θ̂ = g(θ̂1, . . . , θ̂m);
thenθ̂ minimizes the objective function

Z(t) = inf{Z1(t1) + · · · + Zm(tm) :g(t1, . . . , tm) = t}.
(Thanks to Gib Bassett for pointing this out to me.) A similar construction for
stagewise fitting (or LARS in general) could facilitate the analysis of the statistical
properties of the estimators obtained via these algorithms.

2. When I first started experimenting with the Lasso, I was impressed by
its robustness to small changes in its tuning parameter relative to more classical
stepwise subset selection methods such as Forward Selection and Backward
Elimination. (This is well illustrated by Figure 5; at its best, Forward Selection
is comparable to LARS, Stagewise and the Lasso but the performance of Forward
Selection is highly dependent on the model size.) Upon reflection, I realized that
there was a simple explanation for this robustness. Specifically, the strict convexity
in β for eacht in the Lasso objective function (1.5) together with the continuity
(in the appropriate sense) int of these objective functions implies that the Lasso
solutionsβ̂(t) are continuous int ; this continuity breaks down for nonconvex
objective functions. Of course, the same can be said of other penalized least
squares estimates whose penalty is convex. What seems to make the Lasso special
is (i) its ability to produce exact 0 estimates and (ii) the “fact” that its bias seems
to be more controllable than it is for other methods (e.g., ridge regression, which
naturally overshrinks large effects) in the sense that for a fixed tuning parameter the
bias is bounded by a constant that depends on the design but not the true parameter
values. At the same time, though, it is perhaps unfair to compare stepwise methods
to the Lasso, LARS or Stagewise fitting since the space of models considered by
the latter methods seems to be “nicer” than it is for the former and (perhaps more
important) since the underlying motivation for using Forward Selection is typically
not prediction. For example, bagged Forward Selection might perform as well as
the other methods in many situations.
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DISCUSSION

BY JEAN-MICHEL LOUBES AND PASCAL MASSART

Université Paris-Sud

The issue of model selection has drawn the attention of both applied and
theoretical statisticians for a long time. Indeed, there has been an enormous
range of contribution in model selection proposals, including work by Akaike
(1973), Mallows (1973), Foster and George (1994), Birgé and Massart (2001a)
and Abramovich, Benjamini, Donoho and Johnstone (2000). Over the last decade,
modern computer-driven methods have been developed such as All Subsets,
Forward Selection, Forward Stagewise or Lasso. Such methods are useful in the
setting of the standard linear model, where we observe noisy data and wish to
predict the response variable using only a few covariates, since they provide
automatically linear models that fit the data. The procedure described in this paper
is, on the one hand, numerically very efficient and, on the other hand, very general,
since, with slight modifications, it enables us to recover the estimates given by the
Lasso and Stagewise.

1. Estimation procedure. The “LARS” method is based on a recursive
procedure selecting, at each step, the covariates having largest absolute correlation
with the responsey. In the case of an orthogonal design, the estimates can then be
viewed as anl1-penalized estimator. Consider the linear regression model where
we observey with some random noiseε, with orthogonal design assumptions:

y = Xβ + ε.

Using the soft-thresholding form of the estimator, we can write it, equivalently, as
the minimum of an ordinary least squares and anl1 penalty over the coefficients
of the regression. As a matter of fact, at stepk = 1, . . . ,m, the estimatorŝβk =
X−1µ̂k are given by

µ̂k = arg min
µ∈Rn

(‖Y − µ‖2
n + 2λ2

n(k)‖µ‖1
)
.
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There is a trade-off between the two terms, balanced by the smoothing decreasing
sequenceλ2

n(k). The more stress is laid on the penalty, the more parsimonious the
representation will be. The choice of thel1 penalty enables us to keep the largest
coefficients, while the smallest ones shrink toward zero in a soft-thresholding
scheme. This point of view is investigated in the Lasso algorithm as well as in
studying the false discovery rate (FDR).

So, choosing these weights in an optimal way determines the form of the
estimator as well as its asymptotic behavior. In the case of the algorithmic
procedure, the suggested level is the(k + 1)-order statistic:

λ2
n(k) = |y|(k+1).

As a result, it seems possible to study the asymptotic behavior of the LARS
estimates under some conditions on the coefficients ofβ. For instance, if there
exists a roughness parameterρ ∈ [0,2], such that

∑m
j=1 |βj |ρ ≤ M , metric entropy

theory results lead to an upper bound for the mean square error‖β̂ −β‖2. Here we
refer to the results obtained in Loubes and van de Geer (2002). Consistency should
be followed by the asymptotic distribution, as is done for the Lasso in Knight and
Fu (2000).

The interest for such an investigation is double: first, it gives some insight into
the properties of such estimators. Second, it suggests an approach for choosing the
thresholdλ2

n which can justify the empirical cross-validation method, developed
later in the paper. Moreover, the asymptotic distributions of the estimators are
needed for inference.

Other choices of penalty and loss functions can also be considered. First, for
γ ∈ (0,1], consider

Jγ (β) =
m∑

j=1

(Xβ)
γ
j .

If γ < 1, the penalty is not convex anymore, but there exist algorithms to solve
the minimization problem. Constraints on thelγ norm of the coefficients are
equivalent to lacunarity assumptions and may make estimation of sparse signals
easier, which is often the case for high-dimensional data for instance.

Moreover, replacing the quadratic loss function with anl1 loss gives rise to a
robust estimator, the penalized absolute deviation of the form

µ̃k = arg min
µ∈Rn

(‖Y − µ‖n,1 + 2λ2
n(k)‖µ‖1

)
.

Hence, it is possible to get rid of the problem of variance estimation for the model
with these estimates whose asymptotic behavior can be derived from Loubes and
van de Geer (2002), in the regression framework.

Finally, a penalty over both the number of coefficients and the smoothness of the
coefficients can be used to study, from a theoretical point of view, the asymptotics
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of the estimate. Such a penalty is analogous to complexity penalties studied in van
de Geer (2001):

µ� = arg min
µ∈Rn,k∈[1,m]

(‖Y − µ‖2
n + 2λ2

n(k)‖µ‖1 + pen(k)
)
.

2. Mallows’ Cp. We now discuss the crucial issue of selecting the numberk

of influential variables. To make this discussion clear, let us first assume the
varianceσ 2 of the regression errors to be known. Interestingly the penalized
criterion which is proposed by the authors is exactly equivalent to Mallows’Cp

when the design is orthogonal (this is indeed the meaning of their Theorem 3).
More precisely, using the same notation as in the paper, let us focus on the
following situation which illustrates what happens in the orthogonal case where
LARS is equivalent to the Lasso. One observes some random vectory in R

n,
with expectationµ and covariance matrixσ 2In. The variable selection problem
that we want to solve here is to determine which components ofy are influential.
According to Lemma 1, givenk, thekth LARS estimatêµk of µ can be explicitly
computed as a soft-thresholding estimator. Indeed, considering the order statistics
of the absolute values of the data denoted by

|y|(1) ≥ |y|(2) ≥ · · · ≥ |y|(n)

and defining the soft threshold functionη(·, t) with level t ≥ 0 as

η(x, t) = x1|x|>t

(
1− t

|x|
)
,

one has

µ̂k,i = η
(
yi,|y|(k+1)

)
.

To selectk, the authors propose to minimize theCp criterion

Cp(µ̂k) = ‖y − µ̂k‖2 − nσ 2 + 2kσ 2.(1)

Our purpose is to analyze this proposal with the help of the results on penalized
model selection criteria proved in Birgé and Massart (2001a, b). In these papers
some oracle type inequalities are proved for selection procedures among some
arbitrary collection of projection estimators on linear models when the regression
errors are Gaussian. In particular one can apply them to the variable subset
selection problem above, assuming the random vectory to be Gaussian. If one
decides to penalize in the same way the subsets of variables with the same
cardinality, then the penalized criteriastudied in Birgé and Massart (2001a, b)
take the form

C′
p(µ̃k) = ‖y − µ̃k‖2 − nσ 2 + pen(k),(2)



LEAST ANGLE REGRESSION 463

where pen(k) is some penalty to be chosen andµ̃k denotes the hard threshold
estimator with components

µ̃k,i = η′(yi,|y|(k+1)

)
,

where

η′(x, t) = x1|x|>t .

The essence of the results proved by Birgé and Massart (2001a, b) in this case is
the following. Their analysis covers penalties of the form

pen(k) = 2kσ 2C

(
log

(
n

k

)
+ C′

)
[note that the FDR penalty proposed in Abramovich, Benjamini, Donoho and
Johnstone (2000) corresponds to the caseC = 1]. It is proved in Birgé and Massart
(2001a) that if the penalty pen(k) is heavy enough (i.e.,C > 1 and C′ is an
adequate absolute constant), then the model selection procedure works in the
sense that, up to a constant, the selected estimatorµ̃k̃ performs as well as the
best estimator among the collection{µ̃k,1 ≤ k ≤ n} in terms of quadratic risk.
On the contrary, it is proved in Birgé and Massart (2001b) that ifC < 1, then at
least asymptotically, whateverC′, the model selection does not work, in the sense
that, even ifµ = 0, the procedure will systematically choose large values ofk,
leading to a suboptimal order for the quadratic risk of the selected estimatorµ̃k̃ .
So, to summarize, some 2kσ 2 log(n/k) term should be present in the penalty, in
order to make the model selection criterion (2) work. In particular, the choice
pen(k) = 2kσ 2 is not appropriate, which means that Mallows’Cp does not work
in this context. At first glance, these results seem to indicate that some problems
could occur with the use of the Mallows’Cp criterion (1). Fortunately, however,
this is not at all the case because a very interesting phenomenon occurs, due to the
soft-thresholding effect. As a matter of fact, if we compare the residual sums of
squares of the soft threshold estimatorµ̂k and the hard threshold estimatorµ̃k, we
easily get

‖y − µ̂k‖2 − ‖y − µ̃k‖2 =
n∑

i=1

|y|2(k+1)1|yi |>|y|(k+1)
= k|y|2(k+1)

so that the “soft”Cp criterion (1) can be interpreted as a “hard” criterion (2) with
random penalty

pen(k) = k|y|2(k+1) + 2kσ 2.(3)

Of course this kind of penalty escapesstricto sensu to the analysis of Birgé and
Massart (2001a, b) as described above since the penalty is not deterministic.
However, it is quite easy to realize that, in this penalty,|y|2(k+1) plays the role of the
apparently “missing” logarithmic factor 2σ 2 log(n/k). Indeed, let us consider the
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pure noise situation whereµ = 0 to keep the calculations as simple as possible.
Then, if we consider the order statistics of a sampleU1, . . . ,Un of the uniform
distribution on[0,1]

U(1) ≤ U(2) ≤ · · · ≤ U(n),

taking care of the fact that these statistics are taken according to the usual
increasing order while the order statistics on the data are taken according to the
reverse order,σ−2|y|2(k+1) has the same distribution as

Q−1(U(k+1)

)
,

whereQ denotes the tail function of the chi-square distribution with 1 degree of
freedom. Now using the double approximationsQ−1(u) ∼ 2 log(|u|) as u goes
to 0 andU(k+1) ≈ (k + 1)/n (which at least means that, givenk, nU(k+1) tends
to k + 1 almost surely asn goes to infinity but can also be expressed with much
more precise probability bounds) we derive that|y|2(k+1) ≈ 2σ 2 log(n/(k+1)). The
conclusion is that it is possible to interpret the “soft”Cp criterion (1) as a randomly
penalized “hard” criterion (2). The random part of the penaltyk|y|2(k+1) cleverly

plays the role of the unavoidable logarithmic term 2σ 2k log(n/k), allowing the
hope that the usual 2kσ 2 term will be heavy enough to make the selection
procedure work as we believe it does. A very interesting feature of the penalty (3)
is that its random part depends neither on the scale parameterσ 2 nor on the tail
of the errors. This means that one could think to adapt the data-driven strategy
proposed in Birgé and Massart (2001b) to choose the penalty without knowing the
scale parameter to this context, even if the errors are not Gaussian. This would
lead to the following heuristics. For large values ofk, one can expect the quantity
−‖y − µ̂k‖2 to behave as an affine function ofk with slopeα(n)σ 2. If one is able
to computeα(n), either theoretically or numerically (our guess is that it varies
slowly with n and that it is close to 1.5), then one can just estimate the slope
(for instance by making a regression of−‖y − µ̂k‖2 with respect tok for large
enough values ofk) and plug the resulting estimate ofσ 2 into (1). Of course, some
more efforts would be required to complete this analysis and provide rigorous
oracle inequalities in the spirit of those given in Birgé and Massart (2001a, b) or
Abramovich, Benjamini, Donoho and Johnstone (2000) and also some simulations
to check whether our proposal to estimateσ 2 is valid or not.

Our purpose here was just to mention some possible explorations starting from
the present paper that we have found very stimulating. It seems to us that it
solves practical questions of crucial interest and raises very interesting theoretical
questions: consistency of LARS estimator; efficiency of Mallows’Cp in this
context; use of random penalties in model selection for more general frameworks.
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DISCUSSION

BY DAVID MADIGAN AND GREG RIDGEWAY

Rutgers University and Avaya Labs Research, and RAND

Algorithms for simultaneous shrinkage and selection in regression and classifi-
cation provide attractive solutions to knotty old statistical challenges. Nevertheless,
as far as we can tell, Tibshirani’s Lasso algorithm has had little impact on statisti-
cal practice. Two particular reasons for this may be the relative inefficiency of the
original Lasso algorithm and the relative complexity of more recent Lasso algo-
rithms [e.g., Osborne, Presnell and Turlach (2000)]. Efron, Hastie, Johnstone and
Tibshirani have provided an efficient, simple algorithm for the Lasso as well as
algorithms for stagewise regression and the new least angle regression. As such
this paper is an important contribution to statistical computing.

1. Predictive performance. The authors say little about predictive per-
formance issues. In our work, however, the relative out-of-sample predictive
performance of LARS, Lasso and Forward Stagewise (and variants thereof ) takes
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TABLE 1
Stagewise, LARS and Lasso mean square error predictive performance, comparing

cross-validation with Cp

Diabetes Boston Servo

CV Cp CV Cp CV Cp

Stagewise 3083 3082 Stagewise 25.7 25.8 Stagewise 1.33 1.32
LARS 3080 3083 LARS 25.5 25.4 LARS 1.33 1.30
Lasso 3083 3082 Lasso 25.8 25.7 Lasso 1.34 1.31

center stage. Interesting connections exist between boosting and stagewise algo-
rithms so predictive comparisons with boosting are also of interest.

The authors present a simpleCp statistic for LARS. In practice, a cross-
validation (CV) type approach for selecting the degree of shrinkage, while
computationally more expensive, may lead to better predictions. We considered
this using the LARS software. Here we report results for the authors’ diabetes
data, the Boston housing data and the Servo data from the UCI Machine Learning
Repository. Specifically, we held out 10% of the data and chose the shrinkage level
using eitherCp or nine-fold CV using 90% of the data. Then we estimated mean
square error (MSE) on the 10% hold-out sample. Table 1 shows the results for
main-effects models.

Table 1 exhibits two particular characteristics. First, as expected, Stagewise,
LARS and Lasso perform similarly. Second,Cp performs as well as cross-
validation; if this holds up more generally, larger-scale applications will want to
useCp to select the degree of shrinkage.

Table 2 presents a reanalysis of the same three datasets but now considering

TABLE 2
Predictive performance of competing methods: LM is a main-effects linear model with

least squares fitting; LARS is least angle regression with main effects and CV shrinkage
selection; LARS two-way Cp is least angle regression with main effects and all two-way

interactions, shrinkage selection via Cp; GBM additive and GBM two-way use least
squares boosting, the former using main effects only, the latter using main effects

and all two-way interactions; MSE is mean square error on a 10%holdout
sample; MAD is mean absolute deviation

Diabetes Boston Servo

MSE MAD MSE MAD MSE MAD

LM 3000 44.2 23.8 3.40 1.28 0.91
LARS 3087 45.4 24.7 3.53 1.33 0.95
LARS two-wayCp 3090 45.1 14.2 2.58 0.93 0.60
GBM additive 3198 46.7 16.5 2.75 0.90 0.65
GBM two-way 3185 46.8 14.1 2.52 0.80 0.60
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five different models: least squares; LARS using cross-validation to select the
coefficients; LARS usingCp to select the coefficients and allowing for two-
way interactions; least squares boosting fitting only main effects; least squares
boosting allowing for two-way interactions. Again we used the authors’ LARS
software and, for the boosting results, the gbm package in R [Ridgeway (2003)].
We evaluated all the models using the same cross-validation group assignments.

A plain linear model provides the best out-of-sample predictive performance for
the diabetes dataset. By contrast, the Boston housing and Servo data exhibit more
complex structure and models incorporating higher-order structure do a better job.

While no general conclusions can emerge from such a limited analysis, LARS
seems to be competitive with these particular alternatives. We note, however, that
for the Boston housing and Servo datasets Breiman (2001) reports substantially
better predictive performance using random forests.

2. Extensions to generalized linear models. The minimal computational
complexity of LARS derives largely from the squared error loss function. Applying
LARS-type strategies to models with nonlinear loss functions will require some
form of approximation. Here we consider LARS-type algorithms for logistic
regression.

Consider the logistic log-likelihood for a regression functionf (x) which will
be linear inx:

�(f ) =
N∑

i=1

yif (xi ) − log
(
1+ exp(f (xi))

)
.(1)

We can initializef (x) = log(ȳ/(1 − ȳ)). For someα we wish to find the
covariatexj that offers the greatest improvement in the logistic log-likelihood,
�(f (x)+xt

j α). To find thisxj we can compute the directional derivative for eachj

and choose the maximum,

j∗ = arg max
j

∣∣∣∣ d

dα
�
(
f (x) + xt

jα
)∣∣∣∣

α=0
(2)

= arg max
j

∣∣∣∣xt
j

(
y − 1

1+ exp(−f (x))

)∣∣∣∣.(3)

Note that as with LARS this is the covariate that is most highly correlated with
the residuals. The selected covariate is the first member of the active set,A. Forα
small enough (3) implies

(sj∗xj∗ − sj xj )
t

(
y − 1

1+ exp(−f (x) − xt
j∗α)

)
≥ 0(4)

for all j ∈ AC , wheresj indicates the sign of the correlation as in the LARS
development. Choosingα to have the largest magnitude while maintaining the
constraint in (4) involves a nonlinear optimization. However, linearizing (4) yields
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a fairly simple approximate solution. Ifx2 is the variable with the second largest
correlation with the residual, then

α̂ = (sj∗xj∗ − s2x2)
t (y − p(x))

(sj∗xj∗ − s2x2)t (p(x)(1− p(x))xj∗)
.(5)

The algorithm may need to iterate (5) to obtain the exact optimalα̂. Similar logic
yields an algorithm for the full solution.

We simulatedN = 1000 observations with 10 independent normal covariates
xi ∼ N10(0, I) with outcomesYi ∼ Bern(1/(1 + exp(−xt

iβ))), where β ∼
N10(0,1). Figure 1 shows a comparison of the coefficient estimates using Forward
Stagewise and the Least Angle method of estimating coefficients, the final
estimates arriving at the MLE. While the paper presents LARS for squared error
problems, the Least Angle approach seems applicable to a wider family of models.
However, an out-of-sample evaluation of predictive performance is essential to
assess the utility of such a modeling strategy.

FIG. 1. Comparison of coefficient estimation for Forward Stagewise and Least Angle Logistic
Regression.



LEAST ANGLE REGRESSION 469

Specifically for the Lasso, one alternative strategy for logistic regression is
to use a quadratic approximation for the log-likelihood. Consider the Bayesian
version of Lasso with hyperparameterγ (i.e., the penalized rather than constrained
version of Lasso):

logf (β|y1, . . . , yn)

∝
n∑

i=1

log
(
yi�(xiβ) + (1− yi)

(
1− �(xiβ)

))+ d log
(

γ 1/2

2

)
− γ 1/2

d∑
i=1

|βi|

≈
(

n∑
i=1

ai(xiβ)2 + bi(xiβ) + ci

)
+ d log

(
γ 1/2

2

)
− γ 1/2

d∑
i=1

|βi|,

where� denotes the logistic link,d is the dimension ofβ andai, bi andci are
Taylor coefficients. Fu’s elegant coordinatewise “Shooting algorithm” [Fu (1998)],
can optimize this target starting from either the least squares solution or from zero.
In our experience the shooting algorithm converges rapidly.
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DISCUSSION

BY SAHARON ROSSET ANDJI ZHU

IBM T. J. Watson Research Center and Stanford University

1. Introduction. We congratulate the authors on their excellent work. The
paper combines elegant theory and useful practical results in an intriguing manner.
The LAR–Lasso–boosting relationship opens the door for new insights on existing
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methods’ underlying statistical mechanisms and for the development of new and
promising methodology. Two issues in particular have captured our attention, as
their implications go beyond the squared error loss case presented in this paper,
into wider statistical domains: robust fitting, classification, machine learning and
more. We concentrate our discussion on these two results and their extensions.

2. Piecewise linear regularized solution paths. The first issue is the piece-
wise linear solution paths to regularized optimization problems. As the discussion
paper shows, the path of optimal solutions to the “Lasso” regularized optimization
problem

β̂(λ) = arg min
β

‖y − Xβ‖2
2 + λ‖β‖1(1)

is piecewise linear as a function ofλ; that is, there exist∞ > λ0 > λ1 > · · · >

λm = 0 such that∀λ ≥ 0, with λk ≥ λ ≥ λk+1, we have

β̂(λ) = β̂(λk) − (λ − λk)γk.

In the discussion paper’s terms,γk is the “LAR” direction for thekth step of the
LAR–Lasso algorithm.

This property allows the LAR–Lasso algorithm to generate the whole path of
Lasso solutions,̂β(λ), for “practically” the cost of one least squares calculation on
the data (this is exactly the case for LAR but not for LAR–Lasso, which may be
significantly more computationally intensive on some data sets). The important
practical consequence is that it is not necessary to select the regularization
parameterλ in advance, and it is now computationally feasible to optimize it based
on cross-validation (or approximateCp, as presented in the discussion paper).

The question we ask is: what makes the solution paths piecewise linear? Is it
the use of squared error loss? Or the Lasso penalty? The answer is that both play
an important role. However, the family of (loss, penalty) pairs which facilitates
piecewise linear solution paths turns out to contain many other interesting and
useful optimization problems.

We now briefly review our results, presented in detail in Rosset and Zhu (2004).
Consider the general regularized optimization problem

β̂(λ) = argmin
β

∑
i

L(yi,xt
iβ) + λJ (β),(2)

where we only assume that the lossL and the penaltyJ are both convex functions
of β for any sample{xt

i , yi}ni=1. For our discussion, the data sample is assumed
fixed, and so we will use the notationL(β), where the dependence on the data is
implicit.

Notice that piecewise linearity is equivalent to requiring that

∂β̂(λ)

∂λ
∈ Rp
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is piecewise constant as a function ofλ. If L, J are twice differentiable functions
of β, then it is easy to derive that

∂β̂(λ)

∂λ
= −(∇2L(β̂(λ)) + λ∇2J (β̂(λ))

)−1∇J
(
β̂(λ)

)
.(3)

With a little more work we extend this result to “almost twice differentiable”
loss and penalty functions (i.e., twice differentiable everywhere except at a finite
number of points), which leads us to the followingsufficient conditions for
piecewise linear β̂(λ):

1. ∇2L(β̂(λ)) is piecewise constant as a function ofλ. This condition is met if
L is a piecewise-quadratic function ofβ. This class includes the squared error
loss of the Lasso, but also absolute loss and combinations of the two, such as
Huber’s loss.

2. ∇J (β̂(λ)) is piecewise constant as a function ofλ. This condition is met ifJ is
a piecewise-linear function ofβ. This class includes thel1 penalty of the Lasso,
but also thel∞ norm penalty.

2.1. Examples. Our first example is the “Huberized” Lasso; that is, we use the
loss

L(y,xβ) =
{

(y − xt β)2, if |y − xtβ| ≤ δ,
δ2 + 2δ(|y − xβ| − δ), otherwise,

(4)

with the Lasso penalty. This loss is more robust than squared error loss against
outliers and long-tailed residual distributions, while still allowing us to calculate
the whole path of regularized solutions efficiently.

To illustrate the importance of robustness in addition to regularization, consider
the following simple simulated example: taken = 100 observations andp = 80
predictors, where allxij are i.i.d.N(0,1) and the true model is

yi = 10· xi1 + εi,(5)

εi
i.i.d.∼ 0.9 · N(0,1) + 0.1 · N(0,100).(6)

So the normality of residuals, implicitly assumed by using squared error loss, is
violated.

Figure 1 shows the optimal coefficient pathsβ̂(λ) for the Lasso (right) and
“Huberized” Lasso, usingδ = 1 (left). We observe that the Lasso fails in
identifying the correct modelE(Y |x) = 10x1 while the robust loss identifies it
almost exactly,if we choose the appropriate regularization parameter.

As a second example, consider a classification scenario where the loss we use
depends on the marginyxtβ rather than on the residual. In particular, consider the
1-norm support vector machine regularized optimization problem, popular in the
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FIG. 1. Coefficient paths for Huberized Lasso (left) and Lasso (right) for data example: β̂1(λ) is
the full line; the true model is E(Y |x) = 10x1.

machine learning community. It consists of minimizing the “hinge loss” with a
Lasso penalty:

L(y,xtβ) =
{

(1− yxtβ), if yxtβ ≤ 1,
0, otherwise.

(7)

This problem obeys our conditions for piecewise linearity, and so we can
generate all regularized solutions for this fitting problem efficiently. This is
particularly advantageous in high-dimensional machine learning problems, where
regularization is critical, and it is usually not clear in advance what a good
regularization parameter would be. A detailed discussion of the computational
and methodological aspects of this example appears in Zhu, Rosset, Hastie, and
Tibshirani (2004).

3. Relationship between “boosting” algorithms and l1-regularized fitting.
The discussion paper establishes the close relationship betweenε-stagewise linear
regression and the Lasso. Figure 1 in that paper illustrates the near-equivalence in



LEAST ANGLE REGRESSION 473

the solution paths generated by the two methods, and Theorem 2 formally states a
related result. It should be noted, however, that their theorem falls short of proving
the global relation between the methods, which the examples suggest.

In Rosset, Zhu and Hastie (2003) we demonstrate that this relation between the
path of l1-regularized optimal solutions [which we have denoted above byβ̂(λ)]
and the path of “generalized”ε-stagewise (AKA boosting) solutions extends
beyond squared error loss and in fact applies to any convex differentiable loss.

More concretely, consider the following generic gradient-based “ε-boosting”
algorithm [we follow Friedman (2001) and Mason, Baxter, Bartlett and Frean
(2000) in this view of boosting], which iteratively builds the solution pathβ(t):

ALGORITHM 1 (Generic gradient-based boosting algorithm).

1. Setβ(0) = 0.
2. Fort = 1 : T ,

(a) Letjt = argmaxj | ∂
∑

i L(yi ,xt
iβ

(t−1))

∂β
(t−1)
j

|.

(b) Setβ(t)
jt

= β
(t−1)
jt

− ε sign(
∂
∑

i L(yi ,xt
iβ

(t−1))

∂β
(t−1)
jt

) andβ
(t)
k = β

(t−1)
k , k �= jt .

This is a coordinate descent algorithm, which reduces to forward stagewise, as
defined in the discussion paper, if we take the loss to be squared error loss:
L(yi,xt

iβ
(t−1)) = (yi − xt

iβ
(t−1))2. If we take the loss to be the exponential loss,

L
(
yi,xt

iβ
(t−1)

) = exp
(−yixt

iβ
(t−1)

)
,

we get a variant of AdaBoost [Freund and Schapire (1997)]—the original and most
famous boosting algorithm.

Figure 2 illustrates the equivalence between Algorithm 1 and the optimal
solution path for a simple logistic regression example, using five variables from
the “spam” dataset. We can see that there is a perfect equivalence between the
regularized solution path (left) and the “boosting” solution path (right).

In Rosset, Zhu and Hastie (2003) we formally state this equivalence, with
the required conditions, as a conjecture. We also generalize the weaker result,
proven by the discussion paper for the case of squared error loss, to any convex
differentiable loss.

This result is interesting in the boosting context because it facilitates a view
of boosting as approximate and implicit regularized optimization. The situations
in which boosting is employed in practice are ones where explicitly solving
regularized optimization problems is not practical (usually very high-dimensional
predictor spaces). The approximate regularized optimization view which emerges
from our results allows us to better understand boosting and its great empirical
success [Breiman (1999)]. It also allows us to derive approximate convergence
results for boosting.
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FIG. 2. Exact coefficient paths (left) for l1-constrained logistic regression and boosting coefficient
paths (right) with binomial log-likelihood loss on five variables from the “spam” dataset. The
boosting path was generated using ε = 0.003and 7000iterations.

4. Conclusion. The computational and theoretical results of the discussion
paper shed new light on variable selection and regularization methods for linear
regression. However, we believe that variants of these results are useful and
applicable beyond that domain. We hope that the two extensions that we have
presented convey this message successfully.

Acknowledgment. We thank Giles Hooker for useful comments.
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DISCUSSION

BY ROBERT A. STINE

University of Pennsylvania

I have enjoyed reading the work of each of these authors over the years, so
it is a real pleasure to have this opportunity to contribute to the discussion of
this collaboration. The geometry of LARS furnishes an elegant bridge between
the Lasso and Stagewise regression, methods that I would not have suspected to
be so related. Toward my own interests, LARS offers a rather different way to
construct a regression model by gradually blending predictors rather than using
a predictor all at once. I feel that the problem of “automatic feature generation”
(proposing predictors to consider in a model) is a current challenge in building
regression models that can compete with those from computer science, and LARS
suggests a new approach to this task. In the examples of Efron, Hastie, Johnstone
and Tibshirani (EHJT) (particularly that summarized in their Figure 5), LARS
produces models with smaller predictive error than the old workhorse, stepwise
regression. Furthermore, as an added bonus, the code supplied by the authors runs
faster for me than thestep routine for stepwise regression supplied withR, the
generic version of S-PLUS that I use.

My discussion focuses on the use ofCp to choose the number of predictors.
The bootstrap simulations in EHJT show that LARS reaches higher levels of
“proportion explained” than stepwise regression. Furthermore, the goodness-of-
fit obtained by LARS remains high over a wide range of models, in sharp contrast
to the narrow peak produced by stepwise selection. Because the cost of overfitting
with LARS appears less severe than with stepwise, LARS would seem to have a
clear advantage in this respect. Even if we do overfit, the fit of LARS degrades
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only slightly. The issue becomes learning how much LARS overfits, particularly
in situations with many potential predictors (m as large as or larger thann).

To investigate the model-selection aspects of LARS further, I compared LARS
to stepwise regression using a “reversed” five-fold cross-validation. The cross-
validation is reversed in the sense that I estimate the models on one fold
(88 observations) and then predict the other four. This division with more set aside
for validation than used in estimation offers a better comparison of models. For
example, Shao (1993) shows that one needs to let the proportion used for validation
grow large in order to get cross validation to find the right model. This reversed
design also adds a further benefit of making the variable selection harder. The
quadratic model fitted to the diabetes data in EHJT selects fromm = 64 predictors
using a sample ofn = 442 cases, or about 7 cases per predictor. Reversed cross-
validation is closer to a typical data-mining problem. With only one fold of 88
observations to train the model, observation noise obscures subtle predictors.
Also, only a few degrees of freedom remain to estimate the error varianceσ2

that appears inCp [equation (4.5)]. Because I also wanted to see what happens
whenm > n, I repeated the cross-validation with 5 additional possible predictors
added to the 10 in the diabetes data. These 5 spurious predictors were simulated
i.i.d. Gaussian noise; one can think of them as extraneous predictors that one
might encounter when working with an energetic, creative colleague who suggests
many ideas to explore. With these 15 base predictors, the search must consider
m = 15+ (15

2

)+ 14= 134 possible predictors.
Here are a few details of the cross-validation. To obtain the stepwise results,

I ran forward stepwise using the hard threshold 2 logm, which is also known as
the risk inflation criterion (RIC) [Donoho and Johnstone (1994) and Foster and
George (1994)]. One begins with the most significant predictor. If the squared
t-statistic for this predictor, sayt2

(1), is less than the threshold 2 logm, then the
search stops, leaving us with the “null” model that consists of just an intercept.
If insteadt2

(1) ≥ 2 logm, the associated predictor, sayX(1), joins the model and
the search moves on to the next predictor. The second predictorX(2) joins the
model if t2

(2) ≥ 2 logm; otherwise the search stops with the one-predictor model.
The search continues until reaching a predictor whoset-statistic fails this test,
t2
(q+1) < 2 logm, leaving a model withq predictors. To obtain the results for LARS,
I picked the order of the fit by minimizingCp. Unlike the forward, sequential
stepwise search, LARS globally searches a collection of models up to some large
size, seeking the model which has the smallestCp. I set the maximum model
size to 50 (form = 64) or 64 (form = 134). In either case, the model is chosen
from the collection of linear and quadratic effects in the 10 or 15 basic predictors.
Neither search enforces the principle of marginality; an interaction can join the
model without adding main effects.

I repeated the five-fold cross validation 20 times, each time randomly partition-
ing the 442 cases into 5 folds. This produces 100 stepwise and LARS fits. For each
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FIG. 1. Five-fold cross-validation of the prediction error and size of stepwise regression and LARS
when fitting models to a collection of 64 (left)or 134predictors (right).LARS fits chosen by Cp overfit
and have larger RMSE than stepwise; with Cp replaced by the alternative criterion Sp defined in (3),
the LARS fits become more parsimonious with smaller RMSE. The random splitting into estimation
and validation samples was repeated 20 times, for a total of 100stepwise and LARS fits.

of these, I computed the square root of the out-of-sample mean square error (MSE)
when the model fit on one fold was used to predict the held-back 354 [= 4(88)+2]
observations. I also saved the sizeq for each fit.

Figure 1 summarizes the results of the cross-validation. The comparison
boxplots on the left compare the square root of the MSE (top) and selected
model order (bottom) of stepwise to LARS when picking fromm = 64 candidate
predictors; those on the right summarize what happens withm = 134. When
choosing from among 64 predictors, the median size of a LARS model identified
by Cp is 39. The median stepwise model has but 2 predictors. (I will describe the
Sp criterion further below.) The effects of overfitting on the prediction error of
LARS are clear: LARS has higher RMSE than stepwise. The median RMSE for
stepwise is near 62. For LARS, the median RMSE is larger, about 78. Although the
predictive accuracy of LARS declines more slowly than that of stepwise when it
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overfits (imagine the fit of stepwise with 39 predictors), LARS overfits by enough
in this case that it predicts worse than the far more parsimonious stepwise models.
With more predictors (m = 134), the boxplots on the right of Figure 1 show that
Cp tends to pick the largest possible model—here a model with 64 predictors.

Why does LARS overfit? As usual with variable selection in regression, it is
simpler to try to understand when thinking about the utopian orthogonal regression
with knownσ 2. Assume, as in Lemma 1 of EHJT, that the predictorsXj are the
columns of an identity matrix,Xj = ej = (0, . . . ,0,1j ,0, . . . ,0). Assume also
that we knowσ 2 = 1 and use it in place of the troublesomeσ2 in Cp, so that for
this discussion

Cp = RSS(p) − n + 2p.(1)

To define RSS(p) in this context, denote the ordered values of the response as

Y 2
(1) > Y 2

(2) > · · · > Y 2
(n).

The soft thresholding summarized in Lemma 1 of EHJT implies that the residual
sum-of-squares of LARS withq predictors is

RSS(q) = (q + 1)Y 2
(q+1) +

n∑
j=q+2

Y 2
(j ).

Consequently, the drop inCp when going from the model withq to the model with
q + 1 predictors is

Cq − Cq+1 = (q + 1) dq − 2,

with

dq = Y 2
(q+1) − Y 2

(q+2);
Cp addsXq+1 to the model ifCq − Cq+1 > 0.

This use ofCp works well for the orthogonal “null” model, but overfits when
the model includes much signal. Figure 2 shows a graph of the mean and standard
deviation of RSS(q) − RSS(0) + 2q for an orthogonal model withn = m = 100

andYi
i.i.d.∼ N(0,1). I subtracted RSS(0) rather thann to reduce the variation in

the simulation. Figure 3 gives a rather different impression. The simulation is
identical except that the data have some signal. Now,EYi = 3 for i = 1, . . . ,5.
The remaining 95 observations areN(0,1). The “true” model has only 5 nonzero
components, but the minimal expectedCp falls near 20.

This stylized example suggests an explanation for the overfitting—as well as
motivates a way to avoid some of it. Consider the change in RSS for a null model
when adding the sixth predictor. For this step, RSS(5) − RSS(6) = 6(Y 2

(6) − Y 2
(7)).

Even though we multiply the difference between the squares by 6, adjacent order
statistics become closer when removed from the extremes, andCp tends to increase
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FIG. 2. A simulation of Cp for LARS applied to orthogonal, normal data with no signal correctly
identifies the null model. These results are from a simulation with 1000replications, each consisting
of a sample of 100 i.i.d. standard normal observations. Error bars indicate ±1 standard deviation.

as shown in Figure 2. The situation changes when signal is present. First, the five
observations with mean 3 are likely to be the first five ordered observations. So,
their spacing is likely to be larger because their order is determined by a sample of
five normals;Cp adds these. When reaching the noise, the differenceY 2

(6) − Y 2
(7)

now behaves like the difference between thefirst two squared order statistics in an

FIG. 3. A simulation of Cp for LARS applied to orthogonal, normal data with signal present
overfits. Results are from a simulation with 1000 replications, each consisting of 5 observations
with mean 3 combined with a sample of 95 i.i.d. standard normal observations. Error bars indicate
±1 standard deviation.
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i.i.d. sample of 95 standard normals. Consequently, this comparison involves the
gap between the most extreme order statistics rather than those from within the
sample, and as a resultCp drops to indicate a larger model.

This explanation of the overfitting suggests a simple alternative toCp that leads
to smaller LARS models. The idea is to compare the decreasing residual sum of
squares RSS(q) to what is expected under a model that has fitted some signaland
some noise. Since overfitting seems to have relatively benign effects on LARS, one
does not want to take the hard-thresholding approach; my colleague Dean Foster
suggested that the criterion might do better by assuming that some of the predictors
already in the model are really noise. The criterionSp suggested here adopts
this notion. The form ofSp relies on approximations for normal order statistics
commonly used in variable selection, particularly adaptive methods [Benjamini
and Hochberg (1995) and Foster and Stine (1996)]. These approximate the size
of the j th normal order statistic in a sample ofn with

√
2 log(n/j). To motivate

the form of theSp criterion, I return to the orthogonal situation and consider what
happens when deciding whether to increase the size of the model fromq to q + 1
predictors. If I know thatk of the already includedq predictors represent signal
and the rest of the predictors are noise, thendq = Y 2

(q+1) − Y 2
(q+2) is about

2 log
m − k

q + 1− k
− 2 log

m − k

q + 2− k
.(2)

Since I do not knowk, I will just setk = q/2 (i.e., assume that half of those already
in the model are noise) and approximatedq as

δ(q) = 2 log
q/2+ 2

q/2+ 1
.

[Defineδ(0) = 2 log2 andδ(1) = 2 log3/2.] This approximation suggests choos-
ing the model that minimizes

Sq = RSS(q) + σ̂ 2
q∑

j=1

jδ(j),(3)

where σ̂ 2 represents an “honest” estimate ofσ 2 that avoids selection bias. The
Sp criterion, likeCp, penalizes the residual sum-of-squares, but uses a different
penalty.

The results for LARS with this criterion define the third set of boxplots in
Figure 1. To avoid selection bias in the estimate ofσ 2, I used a two-step procedure.
First, fit a forward stepwise regression using hard thresholding. Second, use the
estimated error variance from this stepwise fit asσ̂ 2 in Sp and proceed with
LARS. Because hard thresholding avoidsoverfitting in the stepwiseregression,
the resulting estimator̂σ 2 is probably conservative—but this is just what is needed
when modeling data with an excess of possible predictors. If the variance estimate
from the largest LARS model is used instead, theSp criterion also overfits (though
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not so much asCp). Returning to Figure 1, the combination of LARS withSp

obtains the smallest typical MSE with bothm = 64 and 134 predictors. In either
case, LARS includes more predictors than the parsimonious stepwise fits obtained
by hard thresholding.

These results lead to more questions. What are the risk properties of the LARS
predictor chosen byCp or Sp? How is it that the number of possible predictorsm

does not appear in either criterion? This definition ofSp simply supposes half
of the included predictors are noise; why half? What is a better way to setk

in (2)? Finally, that the combination of LARS with eitherCp or Sp has less MSE
than stepwise when predicting diabetes is hardly convincing that such a pairing
would do well in other applications. Statistics would be well served by having
a repository of test problems comparable to those held at UC Irvine for judging
machine learning algorithms [Blake and Merz (1998)].
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I would like to begin by congratulating the authors (referred to below as EHJT)
for their interesting paper in which they propose a new variable selection method
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(LARS) for building linear models and show how their new method relates to other
methods that have been proposed recently. I found the paper to be very stimulating
and found the additional insight that it provides about the Lasso technique to be of
particular interest.

My comments center around the question of how we can select linear models
that conform with the marginality principle [Nelder (1977, 1994) and McCullagh
and Nelder (1989)]; that is, the response surface is invariant under scaling and
translation of the explanatory variables in the model. Recently one of my interests
was to explore whether the Lasso technique or the nonnegative garrote [Breiman
(1995)] could be modified such that it incorporates the marginality principle.
However, it does not seem to be a trivial matter to change the criteria that these
techniques minimize in such a way that the marginality principle is incorporated
in a satisfactory manner.

On the other hand, it seems to be straightforward to modify the LARS technique
to incorporate this principle. In their paper, EHJT address this issue somewhat in
passing when they suggest toward the end of Section 3 that one first fit main effects
only and interactions in a second step to control the order in which variables
are allowed to enter the model. However, such a two-step procedure may have
a somewhat less than optimal behavior as the following, admittedly artificial,
example shows.

Assume we have a vector of explanatory variablesX = (X1,X2, . . . ,X10)

where the components are independent of each other andXi , i = 1, . . . ,10, follows
a uniform distribution on[0,1]. Take as model

Y = (X1 − 0.5)2 + X2 + X3 + X4 + X5 + ε,(1)

whereε has mean zero, has standard deviation 0.05 and is independent ofX.
It is not difficult to verify that in this modelX1 and Y are uncorrelated.

Moreover, since theXi ’s are independent,X1 is also uncorrelated with any residual
vector coming from a linear model formed only by explanatory variables selected
from {X2, . . . ,X10}.

Thus, if one fits a main effects only model, one would expect that the LARS
algorithm has problems identifying thatX1 should be part of the model. That this
is indeed the case is shown in Figure 1. The picture presents the result of the
LARS analysis for a typical data set generated from model (1); the sample size
wasn = 500. Note that, unlike Figure 3 in EHJT, Figure 1 (and similar figures
below) has been produced using the standardized explanatory variables and no
back-transformation to the original scale was done.

For this realization, the variables are selected in the sequenceX2, X5, X4, X3,
X6, X10, X7, X8, X9 and, finally,X1. Thus, as expected, the LARS algorithm has
problems identifyingX1 as part of the model. To further verify this, 1000 different
data sets, each of sizen = 500, were simulated from model (1) and a LARS
analysis performed on each of them. For each of the 10 explanatory variables the
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FIG. 1. LARS analysis of simulated data with main terms only: (left) estimates of regression
coefficients β̂j , j = 1, . . . ,10, plotted versus

∑ |β̂j |; (right) absolute current correlations as
functions of LARS step.

step at which it was selected to enter the model was recorded. Figure 2 shows for
each of the variables the (percentage) histogram of these data.

It is clear that the LARS algorithm has no problems identifying thatX2, . . . ,X5
should be in the model. These variables are all selected in the first four steps and,
not surprisingly given the model, with more or less equal probability at any of these

FIG. 2. Percentage histogram of step at which each variable is selected based on 1000replications:
results shown for LARS analysis using main terms only.
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FIG. 3. LARS analysis of simulated data with main terms and interaction terms: (left) estimates of
regression coefficients β̂j , j = 1, . . . ,65,plotted versus

∑ |β̂j |; (right) absolute current correlations
as functions of LARS step.

steps.X1 has a chance of approximately 25% of being selected as the fifth variable,
otherwise it may enter the model at step 6, 7, 8, 9 or 10 (each with probability
roughly 15%). Finally, each of the variablesX6 to X10 seems to be selected with
equal probability anywhere between step 5 and step 10.

This example shows that a main effects first LARS analysis followed by a
check for interaction terms would not work in such cases. In most cases the LARS
analysis would missX1 as fifth variable and even in the cases where it was selected
at step 5 it would probably be deemed to be unimportant and excluded from further
analysis.

How does LARS perform if one uses from the beginning all 10 main effects and
all 55 interaction terms? Figure 3 shows the LARS analysis for the same data used
to produce Figure 1 but this time the design matrix was augmented to contain all
main effects and all interactions. The order in which the variables enter the model
is X2 : 5 = X2 × X5, X2 : 4, X3 : 4, X2 : 3, X3 : 5, X4 : 5, X5 : 5 = X2

5, X4, X3, X2, X5,
X4 : 4, X1 : 1, X1 : 6, X1 : 9, X1, . . . . In this example the last of the six terms that are
actually in model (1) was selected by the LARS algorithm in step 16.

Using the same 1000 samples of sizen = 500 as above and performing a
LARS analysis on them using a design matrix with all main and interaction
terms shows a surprising result. Again, for each replication the step at which a
variable was selected into the model by LARS was recorded and Figure 4 shows
for each variable histograms for these data. To avoid cluttering, the histograms in
Figure 4 were truncated to[1,20]; the complete histograms are shown on the left
in Figure 7.

The most striking feature of these histograms is that the six interaction terms
Xi:j , i, j ∈ {2,3,4,5}, i < j , were always selected first. In no replication was any
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FIG. 4. Percentage histogram of step at which each variable is selected based on 1000replications:
results shown for variables selected in the first 20steps of a LARS analysis using main and interaction
terms.

of these terms selected after step 6 and no other variable was ever selected in the
first six steps. That one of these terms is selected as the first term is not surprising
as these variables have the highest correlation with the response variableY . It
can be shown that the covariance of these interaction terms withY is by a factor√

12/7 ≈ 1.3 larger than the covariance betweenXi andY for i = 2, . . . ,5. But
that these six interaction terms dominate the early variable selection steps in such
a manner came as a bit as a surprise.

After selecting these six interaction terms, the LARS algorithm then seems
to select mostlyX2, X3, X4 andX5, followed soon byX1 : 1 andX1. However,
especially the latter one seems to be selected rather late and other terms may be
selected earlier. Other remarkable features in Figure 4 are the peaks in histograms
of Xi : i for i = 2,3,4,5; each of these terms seems to have a fair chance of being
selected before the corresponding main term and beforeX1 : 1 andX1.

One of the problems seems to be the large number of interaction terms that the
LARS algorithm selects without putting the corresponding main terms into the
model too. This behavior violates the marginality principle. Also, for this model,
one would expect that ensuring that for each higher-order term the corresponding
lower-order terms are in the model too would alleviate the problem that the six
interaction termsXi : j , i, j ∈ {2,3,4,5}, i < j , are always selected first.
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I give an alternative description of the LARS algorithm first before I show how it
can be modified to incorporate the marginality principle. This description is based
on the discussion in EHJT and shown in Algorithm 1.

ALGORITHM 1 (An alternative description of the LARS algorithm).

1. Setµ̂0 = 0 andk = 0.
2. repeat
3. Calculatêc = X′(y − µ̂k) and setĈ = maxj {|ĉj |}.
4. LetA = {j : |ĉj | = Ĉ}.
5. SetXA = (· · ·xj · · ·)j∈A for calculatingȳk+1 = (X′

AXA)−1X′
Ay and a =

X′
A(ȳk+1 − µ̂k).

6. Set

µ̂k+1 = µ̂k + γ̂ (ȳk+1 − µ̂k),

where, ifAc �= ∅,

γ̂ = min
j∈Ac

+
{

Ĉ − ĉj

Ĉ − aj

,
Ĉ + ĉj

Ĉ + aj

}
,

otherwise set̂γ = 1.
7. k ← k + 1.
8. until Ac = ∅.

We start with an estimated responseµ̂0 = 0 and then iterate until all variables
have been selected. In each iteration, we first determine (up to a constant factor)
the correlation between all variables and the current residual vector. All variables
whose absolute correlation with the residual vector equals the maximal achievable
absolute correlation are chosen to be in the model and we calculate the least
squares regression response, sayȳk+1, using these variables. Then we move from
our current estimated responseµ̂k toward ȳk+1 until a new variable would enter
the model.

Using this description of the LARS algorithm, it seems obvious how to modify
the algorithm such that it respects the marginality principle. Assume that for each
columni of the design matrix we setdij = 1 if columnj should be in the model
whenever columni is in the model and zero otherwise; herej �= i takes values in
{1, . . . ,m}, wherem is the number of columns of the design matrix. For example,
abusing this notation slightly, for model (1) we might setd1 : 1,1 = 1 and all other
d1 : 1,j = 0; ord1 : 2,1 = 1, d1 : 2,2 = 1 and all otherd1 : 2,j equal to zero.

Having defined such a dependency structure between the columns of the design
matrix, the obvious modification of the LARS algorithm is that when adding,
say, columni to the selected columns one also adds all those columns for which
dij = 1. This modification is described in Algorithm 2.
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ALGORITHM 2 (The modified LARS algorithm).

1. Setµ̂0 = 0 andk = 0.
2. repeat
3. Calculatêc = X′(y − µ̂k) and setĈ = maxj {|ĉj |}.
4. LetA0 = {j : |ĉj | = Ĉ}, A1 = {j :dij �= 0, i ∈ A0} andA = A0 ∪ A1.
5. SetXA = (· · ·xj · · ·)j∈A for calculatingȳk+1 = (X′

AXA)−1X′
Ay and a =

X′
A(ȳk+1 − µ̂k).

6. Set

µ̂k+1 = µ̂k + γ̂ (ȳk+1 − µ̂k),

where, ifAc �= ∅,

γ̂ = min
j∈Ac

+
{

Ĉ − ĉj

Ĉ − aj

,
Ĉ + ĉj

Ĉ + aj

}
,

otherwise set̂γ = 1.
7. k ← k + 1.
8. until Ac = ∅.

Note that compared with the original Algorithm 1 only the fourth line changes.
Furthermore, for alli ∈ A it is obvious that for 0≤ γ ≤ 1 we have

|ĉi (γ )| = (1− γ )|ĉi|,(2)

whereĉ(γ ) = X′(y − µ̂(γ )) andµ̂(γ ) = µ̂k + γ (ȳk+1 − µ̂k).
Note that, by definition, the value of|ĉj | is the same for allj ∈ A0. Hence, the

functions (2) for those variables are identical, namely(1−γ )Ĉ, and for allj ∈ A1
the corresponding functions|ĉj (γ )| will intersect(1−γ )Ĉ atγ = 1. This explains
why in line 6 we only have to check for the first intersection between(1 − γ )Ĉ

and|ĉj (γ )| for j ∈ Ac.
It also follows from (2) that, for allj ∈ A0, we have

x′
j (ȳk+1 − µ̂k) = sign(ĉj )Ĉ.

Thus, for those variables that are inA0 we move in line 6 of the modified algorithm
in a direction that has a similar geometric interpretation as the direction along
which we move in the original LARS algorithm. Namely that for eachj ∈ A0 the
angle between the direction in which we move and sign(ĉj )xj is the same and this
angle is less than 90◦.

Figure 5 shows the result of the modified LARS analysis for the same data
used above. Putting variables that enter the model simultaneously into brackets,
the order in which the variables enter the model is(X2 : 5, X2, X5), (X3 : 4, X3,
X4), X2 : 5, X2 : 3, (X1 : 1,X1), . . . . That is, the modified LARS algorithm selects
in this case in five steps a model with 10 terms, 6 of which are the terms that are
indeed in model (1).
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FIG. 5. Modified LARS analysis of simulated data with main terms and interaction terms: (left)
estimates of regression coefficients β̂j , j = 1, . . . ,65,plotted versus

∑ |β̂j |; (right) absolute current
correlations as functions of k = #Ac.

Using the same 1000 samples of sizen = 500 as above and performing
a modified LARS analysis on them using a design matrix with all main
and interaction terms also shows markedly improved results. Again, for each
replication the step at which a variable was selected into the model was recorded
and Figure 6 shows for each variable histograms for these data. To avoid cluttering,
the histograms in Figure 6 were truncated to[1,20]; the complete histograms are
shown on the right in Figure 7.

From Figure 6 it can be seen that now the variablesX2, X3, X4 and X5
are all selected within the first three iterations of the modified LARS algorithm.
Also X1 : 1 andX1 are picked up consistently and early. Compared with Figure 4
there are marked differences in the distribution of when the variable is selected
for the interaction termsXi:j , i, j ∈ {2,3,4,5}, i ≤ j , and the main termsXi ,
i = 6, . . . ,10. The latter can be explained by the fact that the algorithm now
enforces the marginality principle. Thus, it seems that this modification does
improve the performance of the LARS algorithm for model (1). Hopefully it would
do so also for other models.

In conclusion, I offer two further remarks and a question. First, note that the
modified LARS algorithm may also be used to incorporate factor variables with
more than two levels. In such a situation, I would suggest that indicator variables
for all levels are included in the initial design matrix; but this would be done mainly
to easily calculate all the correlations. The dependenciesdij would be set up such
that if one indicator variable is selected, then all enter the model. However, to avoid
redundancies one would only put all but one of these columns into the matrixXA.
This would also avoid thatXA would eventually become singular if more than one
explanatory variable is a factor variable.
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FIG. 6. Percentage histogram of step at which each variable is selected based on 1000replications:
results shown for variables selected in the first 20 steps of a modified LARS analysis using main and
interaction terms.

Second, given the insight between the LARS algorithm and the Lasso algorithm
described by EHJT, namely the sign constraint (3.1), it now seems also possible
to modify the Lasso algorithm to incorporate the marginality principle by
incorporating the sign constraint into Algorithm 2. However, whenever a variable

FIG. 7. Percentage histogram of step at which each variable is selected based on 1000replications:
(left) LARS analysis; (right) modified LARS analysis.
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would be dropped from the setA0 due to violating the sign constraint there might
also be variables dropped fromA1. For the latter variables these might introduce
discontinuities in the traces of the corresponding parameter estimates, a feature that
does not seem to be desirable. Perhaps a better modification of the Lasso algorithm
that incorporates the marginality principle can still be found?

Finally, the behavior of the LARS algorithm for model (1) when all main terms
and interaction terms are used surprised me a bit. This behavior seems to raise a
fundamental question, namely, although we try to build a linear model and, as we
teach our students, correlation “measures the direction and strength of the linear
relationship between two quantitative variables” [Moore and McCabe (1999)], one
has to wonder whether selecting variables using correlation as a criterion is a sound
principle? Or should we modify the algorithms to use another criterion?
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DISCUSSION

BY SANFORD WEISBERG1

University of Minnesota

Most of this article concerns the uses of LARS and the two related methods
in the age-old, “somewhat notorious,” problem of “[a]utomatic model-building
algorithms. . .” for linear regression. In the following, I will confine my comments
to this notorious problem and to the use of LARS and its relatives to solve it.

1Supported by NSF Grant DMS-01-03983.
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1. The implicit assumption. Suppose the response isy, and we collect
the m predictors into a vectorx, the realized data into ann × m matrix X

and the response is then-vector Y . If P is the projection onto the column
space of(1,X), then LARS, like ordinary least squares (OLS), assumes that,
for the purposes of model building,Y can be replaced bŷY = PY without loss
of information. In large samples, this is equivalent to the assumption that the
conditional distributionsF(y|x) can be written as

F(y|x) = F(y|x′β)(1)

for some unknown vectorβ. Efron, Hastie, Johnstone and Tibshirani use this
assumption in the definition of the LARS algorithm and in estimating residual
variance byσ̂ 2 = ‖(I − P )Y‖2/(n − m − 1). For LARS to be reasonable, we
need to have some assurance that this particular assumption holds or that it is
relatively benign. If this assumption is not benign, then LARS like OLS is unlikely
to produce useful results.

A more general alternative to (1) is

F(y|x) = F(y|x′B),(2)

where B is an m × d rank d matrix. The smallest value ofd for which (2)
holds is called the structural dimension of the regression problem [Cook (1998)].
An obvious precursor to fitting linear regression is deciding on the structural
dimension, not proceeding as ifd = 1. For the diabetes data used in the article, the
R packagedr [Weisberg (2002)] can be used to estimated using any of several
methods, including sliced inverse regression [Li (1991)]. For these data, fitting
these methods suggests that (1) is appropriate.

Expandingx to include functionally related terms is another way to provide
a large enough model that (1) holds. Efron, Hastie, Johnstone and Tibshirani
illustrate this in the diabetes example in which they expand the 10 predictors to 65
including all quadratics and interactions. This alternative does not include (2) as a
special case, as it includes a few models of various dimensions, and this seems to
be much more complex than (2).

Another consequence of assumption (1) is the reliance of LARS, and of OLS,
on correlations. The correlation measures the degree of linear association between
two variables particularly for normally distributed or at least elliptically contoured
variables. This requires not only linearity in the conditional distributions ofy

given subsets of the predictors, but also linearity in the conditional distributions
of a′x givenb′x for all a andb [see, e.g., Cook and Weisberg (1999a)]. When the
variables are not linearly related, bizarre results can follow; see Cook and Weisberg
(1999b) for examples. Any method that replacesY by PY cannot be sensitive to
nonlinearity in the conditional distributions.

Methods based onPY alone may be strongly influenced by outliers and high
leverage cases. As a simple example of this, consider the formula forCp given by
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Efron, Hastie, Johnstone and Tibshirani:

Cp(µ̂) = ‖Y − µ̂‖2

σ 2 − n + 2
n∑

i=1

cov(µ̂i, yi)

σ 2 .(3)

Estimatingσ 2 by σ̂ 2 = ‖(I − P )Y‖2/(n−m−1), and adapting Weisberg (1981),
(3) can be rewritten as a sum ofn terms, theith term given by

Cpi(µ̂) = (ŷi − µ̂i)
2

σ̂ 2
+ cov(µ̂i , yi)

σ̂ 2
−

(
hi − cov(µ̂i, yi)

σ̂ 2

)
,

whereŷi is theith element ofPY andhi is theith leverage, a diagonal element
of P . From the simulation reported in the article, a reasonable approximation to the
covariance term iŝσ 2ui , whereui is theith diagonal of the projection matrix on
the columns of(1,X) with nonzero coefficients at the current step of the algorithm.
We then get

Cpi(µ̂) = (ŷi − µ̂i)
2

σ̂ 2 + ui − (hi − ui),

which is the same as the formula given in Weisberg (1981) for OLS except that
µ̂i is computed from LARS rather than from a projection. The point here is that
the value ofCpi(µ̂) depends on the agreement betweenµ̂i andŷi , on the leverage
in the subset model and on the difference in the leverage between the full and
subset models. Neither of these latter two terms has much to do with the problem
of interest, which is the study of the conditional distribution ofy givenx, but they
are determined by the predictors only.

2. Selecting variables. Suppose that we can writex = (xa, xu) for some
decomposition ofx into two pieces, in whichxa represents the “active” predictors
andxu the unimportant or inactive predictors. The variable selection problem is to
find the smallest possiblexa so that

F(y|x) = F(y|xa)(4)

thereby identifying the active predictors. Standard subset selection methods attack
this problem by first assuming that (1) holds, and then fitting models with different
choices forxa, possibly all possible choices or a particular subset of them, and
then using some sort of inferential method or criterion to decide if (4) holds, or
more precisely if

F(y|x) = F(y|γ ′xa)

holds for someγ . Efron, Hastie, Johnstone and Tibshirani criticize the standard
methods as being too greedy: once we put a variable, say,x∗ ∈ xa, then any
predictor that is highly correlated withx∗ will never be included. LARS, on the
other hand, permits highly correlated predictors to be used.
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LARS or any other methods based on correlations cannot be much better at
finding xa than are the standard methods. As a simple example of what can go
wrong, I modified the diabetes data in the article by adding nine new predictors,
created by multiplying each of the original predictors excluding the sex indicator
by 2.2, and then rounding to the nearest integer. These rounded predictors are
clearly less relevant than are the original predictors, since they are the original
predictors with noise added by the rounding. We would hope that none of these
would be among the active predictors.

Using the S-PLUS functions kindly provided by Efron, Hastie, Johnstone and
Tibshirani, the LARS procedure applied to the original data selects a seven-
predictor model, including, in order, BMI, S5, BP, S3, SEX, S6 and S1. LARS
applied to the data augmented with the nine inferior predictors selects an eight-
predictor model, including, in order, BMI, S5, rBP, rS3, BP, SEX, S6 and S1,
where the prefix “r” indicates a rounded variable rather than the variable itself.
LARS not only selects two of the inferior rounded variables, but it selects both BP
and its rounded version rBP, effectively claiming that the rounding is informative
with respect to the response.

Inclusion and exclusion of elements inxa depends on the marginal distribution
of x as much as on the conditional distribution ofy|x. For example, suppose
that the diabetes data were a random sample from a population. The variables
S3 and S4 have a large sample correlation, and LARS selects one of them, S3, as
an active variable. Suppose a therapy were available that could modify S4 without
changing the value of S3, so in the future S3 and S4 would be nearly uncorrelated.
Although this would arguably not change the distribution ofy|x, it would certainly
change the marginal distribution ofx, and this could easily change the set of active
predictors selected by LARS or any other method that starts with correlations.

A characteristic that LARS shares with the usual methodology for subset
selection is that the results are invariant under rescaling of any individual predictor,
but not invariant under reparameterization of functionally related predictors. In
the article, the authors create more predictors by first rescaling predictors to have
zero mean and common standard deviation, and then adding all possible cross-
products and quadratics to the existing predictors. For this expanded definition
of the predictors, LARS selects a 15 variable model, including 6 main-effects,
6 two-factor interactions and 3 quadratics. If we add quadratics and interactions
first and then rescale, LARS picks an 8 variable model with 2 main-effects, 6 two-
factor interactions, and only 3 variables in common with the model selected by
scaling first. If we define the quadratics and interactions to be orthogonal to the
main-effects, we again get a different result. The lack of invariance with regard to
definition of functionally related predictors can be partly solved by considering the
functionally related variables simultaneously rather than sequentially. This seems
to be self-defeating, at least for the purpose of subset selection.
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3. Summary. Long-standing problems often gain notoriety because solution
of them is of wide interest and at the same time illusive. Automatic model building
in linear regression is one such problem. My main point is that neither LARS
nor, as near as I can tell, any otherautomatic method has any hope of solving
this problem because automatic procedures by their very nature do not consider
the context of the problem at hand. I cannot see any solution to this problem that
is divorced from context. Most of the ideas in this discussion are not new, but
I think they bear repeating when trying to understand LARS methodology in the
context of linear regression. Similar comments can be found in Efron (2001) and
elsewhere.
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AND ROBERT TIBSHIRANI

The original goal of this project was to explain the striking similarities
between models produced by the Lasso and Forward Stagewise algorithms, as
exemplified by Figure 1. LARS, the Least Angle Regression algorithm, provided
the explanation and proved attractive in its own right, its simple structure
permitting theoretical insight into all three methods. In what follows “LAR”
will refer to the basic, unmodified form of Least Angle Regression developed in
Section 2, while “LARS” is the more general version giving LAR, Lasso, Forward
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Stagewise and other variants as in Section 3.4. Here is a summary of the principal
properties developed in the paper:

1. LAR builds a regression model in piecewise linear forward steps, accruing
explanatory variables one at a time; each step is taken along the equiangular
direction between the current set of explanators. The step size is less greedy
than classical forward stepwise regression, smoothly blending in new variables
rather than adding them discontinuously.

2. Simple modifications of the LAR procedure produce all Lasso and Forward
Stagewise solutions, allowing their efficient computation and showing that
these methods also follow piecewise linear equiangular paths. The Forward
Stagewise connection suggests that LARS-type methods may also be useful
in more general “boosting” applications.

3. The LARS algorithm is computationally efficient; calculating the full set of
LARS models requires the same order of computation as ordinary least squares.

4. A k-step LAR fit uses approximatelyk degrees of freedom, in the sense
of added prediction error (4.5). This approximation is exact in the case of
orthogonal predictors and is generally quite accurate. It permitsCp-type
stopping rules that do not require auxiliary bootstrap or cross-validation
computations.

5. For orthogonal designs, LARS models amount to a succession of soft
thresholding estimates, (4.17).

All of this is rather technical in nature, showing how one might efficiently carry
out a program of automatic model-building (“machine learning”). Such programs
seem increasingly necessary in a scientific world awash in huge data sets having
hundreds or even thousands of available explanatory variables.

What this paper, strikingly, does not do is justify any of the three algorithms
as providing good estimators in some decision-theoretic sense. A few hints
appear, as in the simulation study of Section 3.3, but mainly we are relying on
recentliterature to say that LARS methods are at least reasonable algorithms
and that it is worthwhile understanding their properties. Model selection, the
great underdeveloped region of classical statistics, deserves careful theoretical
examination but that does not happen here. We are not as pessimistic as Sandy
Weisberg about the potential of automatic model selection, but agree that it
requires critical examination as well as (over) enthusiastic algorithm building.

The LARS algorithm in any of its forms produces a one-dimensional path of
prediction vectors going from the origin to the full least-squares solution. (Figures
1 and 3 display the paths for the diabetes data.) In the LAR case we can label the
predictorŝµ(k), wherek is identified with both the number of steps and the degrees
of freedom. What the figures do not show is when to stop the model-building
process and report̂µ back to the investigator. The examples in our paper rather
casually used stopping rules based on minimization of theCp error prediction
formula.
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Robert Stine and Hemant Ishwaran raise some reasonable doubts aboutCp

minimization as an effective stopping rule. For any one value ofk, Cp is an
unbiased estimator of prediction error, so in a crude senseCp minimization is
trying to be an unbiased estimator of the optimal stopping pointkopt. As such it is
bound to overestimatekopt in a large percentage of the cases, perhaps near 100%
if kopt is near zero.

We can try to improveCp by increasing thedf multiplier “2” in (4.5). Suppose
we change 2 to some valuemult. In standard normal-theory model building
situations, for instance choosing between linear, quadratic, cubic,. . . regression
models, themult rule will prefer modelk + 1 to modelk if the relevantt-statistic
exceeds

√
mult in absolute value (here we are assumingσ 2 known); mult = 2

amounts to using a rejection rule withα = 16%. Stine’s interestingSp method
choosesmult closer to 4,α = 5%.

This works fine for Stine’s examples, wherekopt is indeed close to zero. We tried
it on the simulation example of Section 3.3. Increasingmult from 2 to 4 decreased
the average selected step size from 31 to 15.5, but with a small increase in actual
squared estimation error. Perhaps this can be taken as support for Ishwaran’s point
that since LARS estimates have a broad plateau of good behavior, one can often
get by with much smaller models than suggested byCp minimization. Of course
no one example is conclusive in an area as multifaceted as model selection, and
perhaps no 50 examples either. A more powerful theory of model selection is
sorely needed, but until it comes along we will have to make do with simulations,
examples and bits and pieces of theory of the type presented here.

Bayesian analysis of prediction problems tends to favormuch bigger choices
of mult. In particular the Bayesian information criterion (BIC) usesmult =
log(sample size). This choice has favorable consistency properties, selecting the
correct model with probability 1 as the sample size goes to infinity. However, it
can easily select too-small models in nonasymptotic situations.

Jean-Michel Loubes and Pascal Massart provide two interpretations using
penalized estimation criteria in the orthogonal regression setting. The first uses
the link between soft thresholding and�1 penalties to motivate entropy methods
for asymptotic analysis. The second is a striking perspective on the use ofCp

with LARS. Their analysis suggests that our usual intuition aboutCp, derived
from selecting among projection estimates of different ranks, may be misleading in
studying a nonlinear method like LARS that combines thresholding and shrinkage.
They rewrite the LARS-Cp expression (4.5) in terms of a penalized criterion
for selecting among orthogonal projections. Viewed in this unusual way (for the
estimator to be used isnot a projection!), they argue thatmult in fact behaves
like log(n/k) rather than 2 (in the case of ak-dimensional projection). It is
indeed remarkable that this same model-dependent value ofmult, which has
emerged in several recent studies [Foster and Stine (1997), George and Foster
(2000), Abramovich, Benjamini, Donoho and Johnstone (2000) and Birgé and
Massart (2001)], should also appear as relevant for the analysis of LARS. We look
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forward to the further extension of the Birgé–Massart approach to handling these
nondeterministic penalties.

Cross-validation is a nearly unbiased estimator of prediction error and as such
will perform similarly to Cp (with mult = 2). The differences between the two
methods concern generality, efficiency and computational ease. Cross-validation,
and nonparametric bootstrap methods such as the 632+ rule, can be applied to
almost any prediction problem.Cp is more specialized, but when it does apply
it gives more efficient estimates of prediction error [Efron (2004)] at almost no
computational cost. It applies here to LAR, at least whenm < n, as in David
Madigan and Greg Ridgeway’s example.

We agree with Madigan and Ridgeway that our new LARS algorithm may
provide a boost for the Lasso, making it more useful and attractive for data
analysts. Their suggested extension of LARS to generalized linear models is
interesting. In logistic regression, theL1-constrained solution is not piecewise
linear and hence the pathwise optimization is more difficult. Madigan and
Ridgeway also compare LAR and Lasso to least squares boosting for prediction
accuracy on three real examples, with no one method prevailing.

Saharon Rosset and Ji Zhu characterize a class of problems for which
the coefficient paths, like those in this paper, are piecewise linear. This is a
useful advance, as demonstrated with their robust version of the Lasso, and
the �1-regularized Support Vector Machine. The former addresses some of the
robustness concerns of Weisberg. They also report on their work that strengthens
the connections betweenε-boosting and�1-regularized function fitting.

Berwin Turlach’s example with uniform predictors surprised us as well. It turns
out that 10-fold cross-validation selects the model with|β1| ≈ 45 in his Figure 3
(left panel), and by then the correct variables are active and the interactions
have died down. However, the same problem with 10 times the noise variance
does not recover in a similar way. For this example, if theXj are uniform
on [−1

2, 1
2] rather than[0,1], the problem goes away, strongly suggesting that

proper centering of predictors (in this case the interactions, since the original
variables are automatically centered by the algorithm) is important for LARS.

Turlach also suggests an interesting proposal for enforcing marginality, the
hierarchical relationship between the main effects and interactions. In his notation,
marginality says thatβi : j can be nonzero only ifβi and βj are nonzero. An
alternative approach, more in the “continuous spirit” of the Lasso, would be to
include constraints

|βi : j | ≤ min{|βi|, |βj |}.
This implies marginality but is stronger. These constraints are linear and,

according to Rosset and Zhu above, a LARS-type algorithm should be available
for its estimation. Leblanc and Tibshirani (1998) used constraints like these for
shrinking classification and regression trees.
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As Turlach suggests, there are various ways to restate the LAR algorithm,
including the following nonalgebraic purely statistical statement in terms of
repeated fitting of the residual vectorr:

1. Start withr = y andβ̂j = 0 ∀ j .
2. Find the predictorxj most correlated withr.
3. Increaseβ̂j in the direction of the sign of corr(r,xj ) until some other

competitorxk has as much correlation with the current residual as doesxj .
4. Updater, and move(β̂j , β̂k) in the joint least squares direction for the

regression ofr on (xj ,xk) until some other competitorx� has as much
correlation with the current residual.

5. Continue in this way until all predictors have been entered. Stop when
corr(r,xj ) = 0 ∀ j , that is, the OLS solution.

Traditional forward stagewise would have completed the least-squares step at each
stage; here it would go only a fraction of the way, until the next competitor joins in.

Keith Knight asks whether Forward Stagewise and LAR have implicit criteria
that they are optimizing. In unpublished work with Trevor Hastie, Jonathan Taylor
and Guenther Walther, we have made progress on that question. It can be shown
that the Forward Stagewise procedure does a sequential minimization of the
residual sum of squares, subject to∑

j

∣∣∣∣∫ t

0
β ′

j (s) ds

∣∣∣∣≤ t.

This quantity is the totalL1 arc-length of the coefficient curveβ(t). If each
componentβj(t) is monotone nondecreasing or nonincreasing, thenL1 arc-length
equals theL1-norm

∑
j |βj |. Otherwise, they are different andL1 arc-length

discourages sign changes in the derivative. That is why the Forward Stagewise
solutions tend to have long flat plateaus. We are less sure of the criterion for LAR,
but currently believe that it uses a constraint of the form

∑
j | ∫ k

0 βj(s) ds| ≤ A.
Sandy Weisberg, as a ranking expert on the careful analysis of regression prob-

lems, has legitimate grounds for distrusting automatic methods. Only foolhardy
statisticians dare to ignore a problem’s context. (For instance it helps to know
that diabetes progression behaves differently after menopause, implying strong
age–sex interactions.) Nevertheless even for a “small” problem like the diabetes
investigation there is a limit to how much context the investigator can provide. Af-
ter that one is drawn to the use of automatic methods, even if the “automatic” part
is not encapsulated in a single computer package.

In actual practice, or at least in good actual practice, there is a cycle of activity
between the investigator, the statistician and the computer. For a multivariable
prediction problem like the diabetes example, LARS-type programs are a good first
step toward a solution, but hopefully not the last step. The statistician examines the
output critically, as did several of our commentators, discussing the results with
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the investigator, who may at this point suggest adding or removing explanatory
variables, and so on, and so on.

Fully automatic regression algorithms have one notable advantage: they permit
an honest evaluation of estimation error. For instance theCp-selected LAR
quadratic model estimates that a patient one standard deviation above average
on BMI has an increased response expectation of 23.8 points. The bootstrap
analysis (3.16) provided a standard error of 3.48 for this estimate. Bootstrapping,
jackknifing and cross-validation require us to repeat the original estimation
procedure for different data sets, which is easier to do if you know what the original
procedure actually was.

Our thanks go to the discussants for their thoughtful remarks, and to the Editors
for the formidable job of organizing this discussion.
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