
VOLUME 79, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 8 DECEMBER1997

e
ot

o

4522
Absence of Correlation between the Solar Neutrino Flux and the Sunspot Number
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Department of Statistics, Stanford University, Stanford, California 94305

(Received 23 July 1997)

There exists a considerable amount of research claiming a puzzling anticorrelation between th
neutrino detection rate at the Homestake experiment and indicators of solar activity such as the sunsp
number, giving rise to explanations involving the hypothesis of a neutrino magnetic moment. It is
argued here that the claimed significant anticorrelation is due to a statistical fallacy. A proper test
based on certain optimality criteria fails to detect a significant time variation of the neutrino flux
in concert with the sunspot number, providing evidence that the observations are consistent with n
correlation between the two series. [S0031-9007(97)04718-2]

PACS numbers: 26.65.+ t, 02.50.Sk
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Solar neutrinos are the only known particles to rea
Earth directly from the solar core and thus allow o
to test directly the theories of stellar evolution an
nuclear energy generation [1]. A perceived anticorrelat
between the neutrino detection rate at the Homest
experiment [2] and indicators of solar activity such
the sunspot number has been the object of a consider
amount of research [2–12], yielding claims of statistica
highly significant results. Such time variations of th
solar neutrino flux are not possible in minimal standa
electroweak theory and have motivated proposals
solutions of the solar neutrino problem based upon
hypothesis of a large neutrino magnetic moment [13–1

However, the standard tests for correlation used
the research cited above require assumptions that
usually not met in a time-series context, where the
tests may readily produce erroneous, highly signific
results. Figure 1 illustrates one aspect of this falla
which is often ignored by statistics text books an
therefore easily goes unrecognized in scientific wo
The top scatterplot shows the first 100 of 109 typic
independent observationssX1, Y1d, . . . , sX109, Y109d from
a standard bivariate normal distribution. The botto
scatterplot shows the 100 running means of length
s 1

10

Pk19
i­k Xi ,

1
10

Pk19
i­k Yid, k ­ 1, . . . , 100. The correlation

is visibly larger in the bottom plot. Indeed, Pearson
correlation coefficientr is 0.12 for the top plot, and0.30
for the bottom plot. However, the probability of obtainin
values of jrj of at least the observed size islarger for
the situation of the bottom plot (27%) than for that
the top plot (24%), as can be verified by simulation
This example illustrates the fact that common tests
correlation between two series tend to give erroneo
highly significant results when there is dependence wit
each of the two series, e.g., when the series exh
periodic behavior or are smoothed, a commonly employ
procedure either implicitly in the data collection proce
or afterwards.

The sunspot numbers clearly have a strong dep
dence structure due to the 11 year period of the suns
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cycle. Table I shows how easily one is led to an erroneou
claim of a significant correlation between the sunspot num
bers and an independent random series, this time usi
Spearman’s rank correlation coefficientrs, another popu-
lar measure of correlation:X is taken to be the series of
the 100 monthly sunspot numbers starting January 197
Y is a random walk with independent Gaussian incre
ments in row 1, and a 2-point and 4-point running mean o

FIG. 1. Top: Typical scatterplot of 100 independent standar
bivariate normal observations. Bottom: Running means o
length 10. Pearson’s correlation coefficient is 0.12 for the to
plot and 0.30 for the bottom plot.
© 1997 The American Physical Society
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TABLE I. Relative frequencies of rejection of the null hy-
pothesis of independence at various nominal significance lev
in a Monte Carlo study using the nominal null distribution o
Spearman’s correlation coefficient.X is the series of the 100
monthly sunspot numbers starting in January 1970. TheZi are
independent standard normal random variables.Ti is the sum
of the first i terms of a sequence of independent exponent
random variables with mean 10 months.

Relative frequency of
rejection at nominal
significance level

Time series 5% 1% 0.1%

X ­ sunspot numbers
1

Yk ­
Pk

i­1 Zi , k ­ 1, . . . , 100
82.7% 77.3% 70.7%

X ­ sunspot numbers
2

Yk ­
Pk11

i­k Zi , k ­ 1, . . . , 100
15.3% 6.1% 1.7%

X ­ sunspot numbers
3

Yk ­
Pk13

i­k Zi , k ­ 1, . . . , 100
30.0% 17.5% 8.4%

X ­ sunspot numbers
Yk ­ 1 1 Zk if T2i , k # T2i11,4
Yk ­ 3 1 Zk else; k ­ 1, . . . , 100

35.7% 22.4% 11.7%

independent standard Gaussian random variables in ro
2 and 3, respectively.Y was simulated105 times for each
case, and the columns give the relative frequency of r
jection of the null hypothesis of independence at nomin
significance levels5%, 1%, and0.1%, using the null dis-
tribution of rs given in [17]. For example, at the1% sig-
nificance level one is led to the conclusion that there is
correlation with the random walk about 77% of the time
A comparison of rows 2 and 3 shows that a larger degr
of smoothing applied to one series makes the correlati
seemingly more significant, a fact that will be of impor
tance below. The effect described above is relevant qu
generally for many tests of association or correlation, su
as thex2 statistic for contingency tables, or Kendall’s tau
statistic. It applies directly to those published results on
perceived correlation between the sunspot number and
neutrino flux that employ a smoothing of the neutrino flux

Furthermore, the assumptions of these tests can a
be violated in other important ways. For example, tes
for correlation usingrs or Kendall’s tau require that the
distribution of the components of at least one of th
two series is invariant under permutations, which implie
equal means and variances of the measurements in
series. Row 4 of Table I provides an important examp
that violates this requirement: The neutrino flux is take
to be constant equal to 1 for a random time which
distributed exponentially with mean 10 months, then th
flux equals 3 for a random time with the same distributio
then it is set back to 1, etc. The flux is measure
independently each month with a standard Gaussi
measurement error. Incidentally, a typical simulation o
this model looks even similar to the real neutrino dat
Simulations of the flux from this model are uncorrelate
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with the sunspot number and have no connection to
solar cycle whatsoever. (There is nothing special abo
the exponential distribution chosen: Virtually any rando
or deterministic time will produce similar results to th
ones quoted in the following.) Still, row 4 shows tha
rs erroneously reports a correlation at the 1% level f
22.4% of the simulations. Clearly, this test misinterpre
a change in the neutrino flux that is unrelated to t
solar cycle as a correlation with the solar cycle. On
can reproduce this effect with all the tests employed
[2–12]. This example makes clear that in this time-seri
context it is not correct to interpret significant results
these tests as significant evidence for a correlation w
the solar cycle, even if no smoothing of the neutrino da
is employed.

One may ask whether these tests are at least provid
evidence for a time variation, not necessarily in conce
with the solar cycle. However, due to the unequal unc
tainties in the neutrino measurements, these tests are
not valid for testing whether the flux is constant: For a
illustration, letx ­ s3, 2, 1, 5d be a vector of four observa-
tions, andY1, . . . , Y4 be four independent Gaussian rando
variables with mean 0 and standard deviations1, 1, 1, and
4. The Y ’s represent observations of a constant quant
with measurement error. In 7.0% of105 simulations of
theY ’s, the correlationrs betweenx andY was equal to 1,
whereas the table for the exact null distribution ofrs gives
a value of 4.17% (see, e.g., Table VIII in [18]). Simila
results obtain when the significance of thex2 andF sta-
tistics is evaluated by randomly shuffling the data [3,5],
the distributions of these statistics are not invariant und
those permutations: The best correlation (smallest va
of x2, respectively, largest value ofF) is obtained by ex-
actly one of the4! ­ 24 permutations of the data, yield-
ing a significance level of1y24 ­ 4.17%. However, this
best correlation was obtained in 10.3% of the simulation
While this effect seems to become less severe with m
data or more equal uncertainties, the example shows
these tests lack proper justification and can produce
valid results. More importantly, when a modified test
used that accounts for the uncertainties in a proper w
then the highly significant results reported for the neutri
data disappear:

The neutrino data that shall first be examined a
the 108 estimatesNi of the neutrino flux provided
by the Homestake experiment [2] up to run No. 13
so that Ni ­ flux stid 1 siei, i ­ 1, . . . , 108. Here
flux(t) denotes the neutrino flux at timet, which is pos-
sibly time varying. The uncertaintiessi given by the
Homestake experiment have recently been reanalyzed
the Homestake team, resulting in improved uncertaint
that have generously been made available by Dr. Kenn
Lande (private communication). The standardized me
surement errorsei for the various runs are independen
by the design of the experiment. A test for correla
tion can now be developed by examining how line
4523
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functions a 1 bsi of the monthly sunspots numbers
si explain flux(ti), i.e., using regression techniques
Under the null hypothesis of a constant neutrino flux
fluxstd ­ a, the distribution of the scaled differences
di ­ sNi 2 adysi , i ­ 1, . . . , 108, is invariant under
permutations, which justifies the validity of a permutatio
test for the statisticT ­

P108
i­1 sidi . This statistic is sen-

sitive to trends in flux(t) that vary in concert with thesi ,
and possesses certain optimality properties for this type
problem [19]. a was estimated by the standard estima
s
P108

i­1 Niys
2
i dy

P108
i­1 s

22
i . The (improved) uncertainties

provided by the Homestake experiment were used in t
same way as in [3], i.e., the test was done using bo
“average errors” and “upper errors” for thesi . Using
104 random permutations, the test resulted in a two-taile
significance probability of 16.3% for average errors, an
10.4% for upper errors.

As pointed out by a referee, it is informative to evaluat
T for earlier stretches of the data, where highly significan
correlations have been reported: One obtains only ma
ginally significant results (significance around 2%) for th
data up to run No. 108. The same significance obtains f
the stretch from run No. 49 to run No. 104, after the resu
is adjusted by a factor of 10 due to favorable “fishing” fo
a significant stretch as suggested in [4].

A summary of these results also allows one to pu
together a coherent picture of the sometimes conflictin
evidence reported in [2–12]: The data up to run No. 13
are clearly consistent with a constant neutrino flux whe
tested against the alternative of a time variation in conce
with the solar cycle, according to a test with certai
optimality properties for this problem. The previously
reported highly significant results in earlier stretches o
the data cannot be reproduced when the uncertaint
and the permutation argument are employed correct
Only marginal evidence for a time variation is found
in these stretches. In any case, it would not be corre
to interpret these results as evidence for a correlati
with the solar cycle. This allows one to reconcile thes
findings with the periodogram analysis in [4], which
shows no significant 11 yr component in the data. Th
reported improved correlation with smoother functions o
4524
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the sunspot numbers [4,7,10,12] is not surprising in ligh
of the artifact exhibited in the third paragraph.

I wish to thank Raymond Davis and Kenneth Land
for kindly making the Homestake data available, an
Peter Sturrock for valuable discussions. This work wa
supported by the Air Force Office of Scientific Researc
and by NASA.
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