Publications

Jump to Years

2021, 2020
2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010,
2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000,
1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,
1989, 1988, 1987, 1986, 1985, 1984, 1983, 1982, 1981, 1980,
1979, 1978, 1977, 1976

2021

  1. Chung, F., Diaconis, P. & Graham, R.L. Permanental Generating Functions and Sequential Importance Sampling. Adv Appl Math 126:101916. [DOI] [PDF]
  2. Diaconis, P. & Simper, M. Statistical enumeration of groups by double cosets. To appear J Algebra. [PDF]
  3. Diaconis, P., Houston-Edwards, K. & Saloff-Coste, L. Gambler's Ruin Estimates on Finite Inner Uniform Domains. Ann Appl Probab 31(2):865–895. [DOI] [PDF] [arXiv]
  4.  

2020

  1. Diaconis, P. & Zhong, C. Hahn polynomials and the Burnside process. To appear Ramanujan J Math. [PDF]
  2. Diaconis, P., Graham, R. & Spiro, S. Guessing about Guessing: Practical Strategies for Card Guessing with Feedback. To appear Amer Math Mon. [PDF]
  3. Diaconis, P., Houston-Edwards, K. & Saloff-Coste, L. Analytic-Geometric Methods for Finite Markov Chains with Applications to Quasi-stationarity. ALEA 17(2):901-991. [DOI] [arXiv] [PDF]
  4. Diaconis, P., Graham, R., He, X. & Spiro, S. Card Guessing with Partial Feedback. To appear Combinat Probab Comput. [PDF]
  5. Diaconis, P. & Ethier, S. Gambler's Ruin and the ICM. To appear Statist Sci. [PDF]
  6. Chatterjee, S., Diaconis, P., Sly, A. & Zhang, L. A Phase Transition for Repeated Averages. [PDF]
  7. Diaconis, P. & Kolesnik, B. Randomized Sequential Importance Sampling for Estimating the Number of Perfect Matchings in Bipartite Graphs. To appear Adv Appl Math. [arXiv] [PDF]
  8. Chatterjee, S. & Diaconis, P. Speeding Up Markov Chains with Deterministic Jumps. Probab Theory Relat Fields 178:1193-1214. [PDF]
  9. Diaconis, P., He, J. & Isaacs, M. The Square and Add Markov Chain. To appear Math Intell. Springer. [PDF]
  10. Benkart, G., Diaconis, P., Liebeck, P., & Tiep, P.H. Tensor Product Markov Chains. J Algebra 561:17-83. [DOI] [arXiv] [PDF]
  11.  

2019

  1. Sequential Importance Sampling for Estimating the Number of Perfect Matchings in Bipartite Graphs: An Ongoing Conversation with Laci. In Building Bridges II: Mathematics of László Lovász, 223-233. Bolyai Society Mathematical Studies 28. [DOI] [PDF]
  2. Diaconis, P. & Graham, R.L. The Magic of Charles Sanders Peirce. In The Mathematics of Various Entertaining Subjects, 161-203. Princeton University Press. [DOI] [PDF]
  3. Chatterjee, S. & Diaconis, P. Note on Repeated Random Averages. [PDF]
  4. Diaconis, P. & Griffiths, R.C. Reproducing Kernel Orthogonal Polynomials on the Multinomial Distribution. J Approx Theory 242:1-30. [DOI] [PDF]
  5.  

2018

  1. Diaconis, P. & Wang, G. Bayesian Goodness-of-Fit Tests: A Conversation for David Mumford. Ann Amer Math Sci Appl 3(1):297-308. [PDF]
  2. Chatterjee, S. & Diaconis, P. A Central Limit Theorem for a New Statistic on Permutations. Indian J Pure Appl Math Special Issue in honor of Professor B.V. Rao 48:561-573. [PDF]
  3. Probabilizing Fibonacci Numbers. In Connections in Discrete Mathematics: A Celebration of the Work of Ron Graham (Butler, S., Cooper, J., Hurlbert, G., ed.), 1-12. Cambridge University Press. [DOI] [PDF]
  4. top

2017

  1. Diaconis, P. & Forrester, P.J. Hurwitz and the Origins of Random Matrix Theory in Mathematics. Random Matrices: Theory Appl 06:1730001. [DOI] [PDF]
  2. Bump, D., Diaconis, P., Hicks, A., Miclo, L., & Widom, H. An Exercise (?) in Fourier Analysis on the Heisenberg Group. Ann Fac Sci Toulouse Math Sér 6 26(2):263-288. [arXiv] [DOI]
  3. Diaconis, P. & Hicks, A. Probabilizing Parking Functions. Adv Appl Math 89:125-155. [DOI] [PDF]
  4. Diaconis, P. & Pal, S. Shuffling Cards by Spatial Motion. [arXiv] [PDF]
  5. Diaconis, P. & R. Hough. Random Walk on Unipotent Matrix Group. [arXiv] [PDF]
  6. Diaconis, P. & Skyrms, B. Ten Great Ideas About Chance. Princeton University Press. [PUP]
  7. Bhattacharya, B., Diaconis, P. & Mukherjee, S. Universal Limit Theorems in Graph Coloring Problems with Connections to Extremal Combinatorics. Ann Appl Probab 27(1):337-394. [PDF]
  8. Bump, D., Diaconis, P., Hicks, A., Miclo, L. & Widom, H. Useful Bounds on the Extreme Eigenvalues and Vectors of Matrices for Harper's Operators. In Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics: The Albrecht Böttcher Anniversary Volume 259:235-265. [DOI] [PDF]
  9. top

2016

  1. Miclo, L. & Diaconis, P. Estimates on the Amplitude of the First Dirichlet Eigenvector in Discrete Frameworks. Sci China Math 59(2):205-226. [DOI] [PDF]
  2. Butler, S., Diaconis, P. & Graham, R.L. The Mathematics of the Flip and Horseshoe Shuffles. Amer Math Monthly 123(6):542-573(32). [PDF]
  3. Five Stories for Richard. In The Mathematical Legacy of Richard P. Stanley (P. Hersh, et al., ed.), 131-146. American Mathematical Society. [PDF]
  4. top

2015

  1. Chern,B., Diaconis, P., Kane, D. & Rhoades, R.C. Central Limit Theorems for Some Set Partition Statistics. Adv Appl Math 70:92-105. [DOI] [PDF]
  2. Bacallado, S., Diaconis, P. & Holmes, S. De Finetti Priors Using Markov Chain Monte Carlo Computations. Stat Comput 25 4:797-808. [DOI] [PDF]
  3. Chatterjee, S. & Diaconis, P. The Sample Size Required in Importance Sampling. Ann Appl Probab 28(2):1099-1135. [PDF]
  4. Bailey, R.A., Diaconis, P., Rockmore, D. & Rowley, C. A Spectral Analysis Approach for Experimental Designs. In Excursions in Harmonic Analysis, Volume 4: The February Fourier Talks at the Norbert Wiener Center (R. Balan, M. Begue, J.J. Benedetto, W. Czaja, K.A. Okoudjou, ed.), 367-395. Springer International Publishing. [DOI] [PDF]
  5. Diaconis, P. & Miclo, L. On Quantitative Convergence to Quasi-stationarity. Ann Fac Sci Toulouse Math Sér 6 24(4):973-1016. [DOI] [PDF]
  6. top

2014

  1. Diaconis, P., Shao, X. & Soundararajan, K. Carries, Group Theory and Additive Combinatorics. Amer Math Monthly 121(8):674-688. [DOI] [PDF]
  2. Chern, B., Diaconis, P., Kane, D. & Rhoades, R.Closed Expressions for Averages of Set Partition Statistics. Res Mathemat Sci 1:2 [DOI] [PDF]
  3. Diaconis, P. & Fulman, J. Combinatorics of Balanced Carries. Adv Appl Math 59:8-25. [DOI] [PDF]
  4. Diaconis, P. & Saloff-Coste, L. Convolution Powers of Complex Functions on Z. Math Nach 287(10):1106-1130. [DOI] [PDF]
  5. Chatterjee, S. & Diaconis, P. Fluctuations of the Bose-Einstein Condensate. J Phys A Math Theoret 47(8):085201. [DOI] [PDF]
  6. Diaconis, P., Pang, A. & Ram, A. Hopf Algebras and Markov Chains: Two Examples and a Theory. J Alg Combin 39:(3)527-585. [arXiv] [PDF]
  7. Diaconis, P. & Griffiths, R.C. An Introduction to Multivariate Krawtchouck Polynomials and Their Applications. J Statist Plann Inf 154:39-53. [DOI] [PDF]
  8. Diaconis, P., Evans, S. & Graham, R.L. Unseparated Pairs and Fixed Points in Random Permutations. Adv Appl Math 61:102-124. [DOI] [PDF]
  9. top

2013

  1. Diaconis, P., Fulman, J. & Holmes, S. Analysis of Casino Shelf Shuffling Machines. Ann Appl Probab 23(4):1692-1720. [DOI] [PDF]
  2. Diaconis, P. & Chatterjee, S. Estimating and Understanding Exponential Random Graph Models. Ann Statist 41(5):2428-2461. [PDF]
  3. Diaconis, P., Holmes, S. & Janson, S. Interval Graph Limits. Ann Combinat 17(1):27-52. [PDF]
  4. Diaconis, P., Janson, S. & Rhoades, R. Note on a Partition Limit Theorem for Rank and Crank. Bull London Math Soc 45(3):551-553. [DOI] [arXiv]
  5. Diaconis, P. & Miclo, L. On the Spectral Analysis of Second-order Markov Chains. Ann Fac Sci Toulouse Math Sér. 6 22(3):573-621. [DOI] [PDF]
  6. Some Things We've Learned (About Markov Chain Monte Carlo). Bernoulli 19(4):1294-1305. [DOI] [PDF]
  7. top

2012

  1. Diaconis, P. & Griffiths, R.C. Exchangeable Pairs of Bernoulli Random Variables, Krawtchouck Polynomials, and Ehrenfest Urns. Australian/New Zealand J Stat 54(1):81-101. [DOI] [PDF]
  2. Diaconis, P. & Fulman, J. Foulkes Characters, Eulerian Idempotents, and An Amazing Matrix. J Alg Combin 36(3):425-440. [DOI] [PDF]
  3. Champagnat, N., Diaconis, P. & Miclo, L. On Dirichlet Eigenvectors for Neutral Two-dimensional Markov Chains. Electron J Probab 17(63):1–41. [DOI] [PDF]
  4. Diaconis, P. & Ram, A. A Probabilistic Interpretation of the Macdonald Polynomials. Ann Appl Probab 40(5):1861-1896. [DOI] [PDF]
  5. Assaf, S., Diaconis, P. & Soundararajan, K. Riffle Shuffles with Biased Cuts. In DMTCS Proc FPSAC 2012, Nagoya, Japan. [PDF]
  6. Diaconis, P. & Wood, P. Random Doubly Stochastic Tridiagonal Matrices. Random Struct Algor 42(4):403-437. [DOI] [PDF]
  7. Aguiar, M., Diaconis, P., Isaacs, M., et al. Supercharacters, Symmetric Functions in Noncommuting Variables, and Related Hopf Algebras. Advan Math 229(4):2310-2337. [DOI] [PDF]
  8. top

2011

  1. Diaconis, P. & Graham, R.L. Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks. Princeton University Press. [PUP]
  2. Diaconis, P., Lebeau, G. & Michel, L. Gibbs/Metropolis Algorithm on a Convex Polytope. Math Zeit [DOI] [PDF]
  3. The Mathematics of Mixing Things Up. J Statist Phys 144(3):445-459. [PDF]
  4. Diaconis, P. & Miclo, L. On Barycentric Subdivision. Combinat Probab Comput 20(2):213-237. [DOI] [PDF]
  5. Diaconis, P., Chatterjee, S. & Sly, A. Random Graphs with a Given Degree Sequence. Ann Appl Probab 21(4):1400-1435. [PDF]
  6. Diaconis, P., Holmes, S. & Shahshahani, M. Sampling from a Manifold. In Advances in Modern Statistical Theory and Applications: A Festschrift in Honor of Morris L. Eaton 10:102-125. [DOI] [PDF]
  7. Diaconis, P. & Blitzstein, J. A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees. J Internet Math 6(4):489-522. [PDF]
  8. top

2010

  1. Diaconis, P. & Athanasiadis, C.A. Functions of Random Walks on Hyperplane Arrangements. Adv Appl Math 45(3):410-437. [DOI] [arXiv]
  2. Diaconis, P., Chatterjee, S. & Sly, A. Properties of Uniform Doubly Stochastic Matrices. [arXiv] [PDF]
  3. Ajout de nombres, melange de cartes et fontions symetriques. [PDF]
  4. Diaconis, P., Borodin, A. & Fulman, J. On Adding a List of Numbers (and Other One-dependent Determinantal Processes). Bull Amer Math Soc 47(4):639-670. [DOI] [PDF]
  5. Diaconis, P., Khare, K. & Saloff-Coste, L. Gibbs Sampling, Conjugate Priors and Coupling. Sankhya 72-A part 1:136-169. [PDF]
  6. Diaconis, P., Lebeau, G. & Michel, L. Geometric Analysis for the Metropolis Algorithm on Lipschitz Domains. Invent Math 185(2):239-281. [DOI] [PDF]
  7. Diaconis, P., Khare, K. & Saloff-Coste, L. Stochastic Alternating Projections. Illinois J Math 54(3):963-979. [DOI] [PDF]
  8. top

2009

  1. Diaconis, P. & Miclo, L. On Characterizations of Metropolis-type Algorithms in Continuous Time. Alea 6:199-238. [PDF]
  2. Book Review: Probabilistic Symmetries and Invariance Principles by Olav Kallenberg. Bull Amer Math Soc 46:691-696. [DOI] [PDF]
  3. Diaconis, P. & Fulman, J. Carries, Shuffling and an Amazing Matrix. Amer Math Monthly 116(9):788-803. [DOI] [PDF]
  4. Diaconis, P., Assaf, S. & Soundararajan, K. Riffle Shuffles of a Deck with Repeated Cards. In DMTCS Proc 21st Int Conf Formal Power Series and Algebraic Combinatorics (FPSAC 2009), 89-102. [PDF]
  5. Diaconis, P. & Fulman, J. Carries, Shuffling and Symmetric Functions. Adv Appl Math 43(2):176-196. [DOI] [PDF]
  6. Diaconis, P., Boyd, S., Parrilo, P. & Xiao, L. Fastest Mixing Markov Chains on Graphs with Symmetries. SIAM J Optimiz 20(2):792-819. [DOI] [PDF]
  7. Diaconis, P. & Lebeau, G. Micro-local Analysis for the Metropolis Algorithm. Math Zeit 262(2):441-447. [PDF]
  8. Diaconis, P. & Miclo, L. On Times to Quasi-Stationary for Birth and Death Processes. J Theoret Probab 22(3):558-586. [PDF]
  9. Diaconis, P. & Thiem, N. Supercharacter Formulas for Pattern Groups. Trans Amer Math Soc 361:3501-3533. [PDF]
  10. Threads Through Group Theory. Proceedings of Character Theory of Finite Groups: A conference in honor of I. Martin Isaacs held at the University of Valencia, Spain, June 3-5, 2009. Contemp Math 524:33-45. [PDF]
  11. Diaconis, P., Holmes, S. & Janson, S. Threshold Graph Limits and Random Threshold Graphs. J Internet Math 5(3):267-320. [arXiv] [PDF]
  12. The Markov Chain Monte Carlo Revolution. Bull Amer Math Soc 46(2):179-205. [DOI] [PDF]
  13. top

2008

  1. Diaconis, P., Assaf, S. & Soundararajan, K. A Rule of Thumb for Riffle Shuffling. Ann Appl Probab 21(3):843-875. [arXiv] [PDF]
  2. Diaconis, P., Khare, K., & Saloff-Coste, L. Gibbs Sampling, Exponential Families and Orthogonal Polynomials. Statist Sci 23(2):151-178. [DOI] [PDF]
    • Berti, P., Consonni, G., Pratelli, L., & Rigo, P. Comment: Gibbs Sampling, Exponential Families and Orthogonal Polynomials Statist Sci 23(2):179-182. [DOI]
    • Jones, G.L. & Johnson, A.A. Comment: Gibbs Sampling, Exponential Families and Orthogonal Polynomials Statist Sci 23(2):183-186. [DOI]
    • Letac, G. Comment: Lancaster Probabilities and Gibbs Sampling. Statist Sci 23(2):187-191. [DOI]
    • Levine, R.A. & Casella, G. Comment: On Random Scan Gibbs Samplers. Statist Sci 23(2):192-195. [DOI]
    • Diaconis, P., Khare, K. & Saloff-Coste, L. Rejoinder: Gibbs Sampling, Exponential Families and Orthogonal Polynomials. Statist Sci 23(2):196-200. [DOI]
  3. Diaconis, P. & Lehmann, E. Comment: On Student's 1908 Article "The Probable Error of a Mean". JASA 103(481):16-19. JSTOR PDF
  4. Diaconis, P. & Janson, S. Graph Limits and Exchangeable Random Graphs. Rendiconti di Matematica Serie VII 28:33-61. [PDF]
  5. Diaconis, P. & Graham, R.L. Products of Universal Cycles. In A Lifetime of Puzzles: A Collection of Puzzles in Honor of Martin Gardner's 90th Birthday (Gardner, M., Demaine, E.D., Demaine, M.L. & Rodgers, T., ed.), 35-55. [PDF]
  6. Diaconis, P. & Salzman, J. Projection Pursuit for Discrete Data. In Probability and Statistics: Essays in Honor of David A. Freedman, 265-288. Institute of Mathematical Statistics. [DOI] [PDF]
  7. Diaconis, P. & Isaacs, I.M. Supercharacters and Superclasses for Algebra Groups. Trans Amer Math Soc 360(5):2359-2392. [PDF]
  8. top

2007

  1. Diaconis, P., Fulman, J. & Guralnick, R. On Fixed Points of Permutation. J Alg Combin 28:189-218. [PDF]
  2. Diaconis, P., Goel, S. & Holmes, S. Horseshoes in Multidimensional Scaling and Kernel Methods. Ann Appl Stat 2(3):777-807. [PDF]
  3. Diaconis, P. & Andersen, H. Hit and Run as a Unifying Device. J Soc Fr Stat & Rev Stat Appl 148(4):5-28. [PDF]
  4. Diaconis, P., Holmes, S. & Montgomery, R. Dynamical Bias in the Coin Toss. SIAM Review 49(2):211-235. [DOI] [PDF]
  5. Diaconis, P. & Graham, R.L. The Solutions to Elmsley's Problem. Math Horizons 14: 22-27. [PDF]
  6. top

2006

  1. Diaconis, P. & Rolles, S. Bayesian Analysis for Reversible Markov Chains. Ann Statist 34(3):1270-1292. [PDF]
  2. Diaconis, P. & Bassetti, F. Examples Comparing Importance Sampling and the Metropolis Algorithm. Illinois J Math 50(1-4):67-91. [DOI] [PDF]
  3. Diaconis, P. & Saloff-Coste, L. Separation Cut-Offs for Birth and Death Chains. Ann Appl Probab 16(4):2098-2122. [PDF]
  4. Diaconis, P., Sun, J., Boyd, S. & Xiao, L. Fastest Mixing of Markov Chain on a Graph and a Connection to a Maximum Variance Unfolding Problem. SIAM Review 48(4):681-699. [PDF]
  5. Diaconis, P., Sun, J., Boyd, S. & Xiao, L. Fastest Mixing Markov Chain on a Path. Amer Math Monthly 113(1):70-74. [PDF]
  6. Diaconis, P. & Eriksson, N. Markov Bases for Non-commutative Fourier Analysis of Ranked Data. J Symbolic Computat 41(2):182-195. [PDF]
  7. Mathematical Statistics. In Princeton Companion for Mathematics (Gowers, T., ed.), 916-920. Princeton University Press.
  8. top

2005

  1. Analysis of a Bose-Einstein Markov Chain. Annales de l'Institut Henri Poincare, Probab Stat 41(3):409-418. [PDF]
  2. Diaconis, P., Chatterjee, S. & Meckes, E. Exchangeable Pairs and Poisson Approximation. Probab Surv 2(1):64-106. [PDF]
  3. Diaconis, P., Chen, Y., Holmes, S. & Liu, J.S. Sequential Monte Carlo Methods for Statistical Analysis of Tables. JASA 100:109-120. [PDF]
  4. Diaconis, P., Yan, X., Rusmeuichientong, P. & van Roy, B. Solitaire: Man versus Machine. Management Science and Engineering Technical Report, Stanford University. [PDF]
  5. Diaconis, P., Boyd, S., Parrilo, P. & Xiao, L. Symmetry Analysis of Reversible Markov Chains. J Internet Math 2(1):31-71. [PDF]
  6. What is... a Random Matrix? Notices of the AMS 52(11):1348-1349. [PDF]
  7. top

2004

  1. Diaconis, P., Boyd, S. & Xiao, L. Fastest Mixing Markov Chain on a Graph.. SIAM Review 46(4):667-689. [PDF]
  2. Diaconis, P. & Gamburd, A. Random Matrices, Magic Squares and Matching Polynomials. Electron J Combinat 11(2). [PDF]
  3. Diaconis, P., Arias-Castro, E. & Stanley, R. A Super-Class Walk on Upper-Triangular Matrices. J Algebra 278(2):739-765. [PDF]
  4. Diaconis, P., Mayer-Wolf, E., Zeitouni, O. & Zerner, M. The Poisson-Dirichlet Law is the Unique Invariant Distribution for Uniform Split-Merge Transformations. Ann Probab 32(1B):915-938. [DOI] [PDF]
  5. Diaconis, P. & Neuberger, J. Numerical Results for the Metropolis Algorithm. Experimental Math 13(2):207-214. [PDF]
  6. Diaconis, P. & Erdös, P. On the Distribution of the Greatest Common Divisor. In A Festschrift for Herman Rubin (Dasgupta, A., ed.) 45:56-61. Institute of Mathematical Statistics.
  7. Stein's Method for Markov Chains: First Examples. In Stein's Method: Expository Lectures and Applications (Diaconis, P. and Holmes, S., ed.) 46:27-43. Institute of Mathematical Statistics.
  8. Diaconis, P., Stein, C, Holmes, S. & Reinert, G. Uses of Exchangeable Pairs in Monte Carlo Markov Chains In Stein's Method: Expository Lectures and Applications (Diaconis, P. and Holmes, S., ed.) 46:1-26. Institute of Mathematical Statistics.
  9. Diaconis, P. & Freedman, D. The Markov Moment Problem and de Finetti's Theorem Part I. Math Zeit 247(1):183-199. [PDF]
  10. Diaconis, P. & Freedman, D. The Markov Moment Problem and de Finetti's Theorem Part II. Math Zeit 247(1):201-212. [PDF]
  11. top

2003

  1. D'Aristotile, A., Diaconis, P. & Newman, C. Brownian Motion and the Classical Groups. Probability, Statistics and Their Applications: Papers in Honor of Rabii Bhattacharaya, 97-116. Institute of Mathematical Statistics.
  2. Mathematical Developments from the Analysis of Riffle-Shuffling. In Groups, Combinatorics and Geometry (Fuanou, A. & Liebeck, M., ed.), 73-97. World Scientific. [PDF]
  3. The Problem of Thinking Too Much. Bull Amer Acad Sci, Spring, 26-38. Presentation given at the 1865th Stated Meeting at the House of the Academy on December 11, 2002. [PDF]
  4. Random Walk on Groups: Characters and Geometry. In Groups St. Andrews 2001 in Oxford (Campbell, C.M., et al., ed.) 1:120-142. Cambridge University Press. [DOI] [PDF]
  5. Patterns in Eigenvalues: The 70th Josiah Gibbs Lecture. Bull Amer Math Soc 40(2):155-178. [PDF]
  6. top

2002

  1. Diaconis, P. & Evans, S. A Different Construction of Gaussian Fields from Markov Chains: Dirichlet Covariances. Ann Inst Henri Poincare; Probab Stat 38(6):863-878. [DOI] [PDF] [MS]
  2. G.H. Hardy and Probability??? Bull London Math Soc 34(4):385-402 part 4. [DOI] [PDF]
  3. Diaconis, P. & Holmes, S. Random Walk on Trees and Matchings. Electron J Probab 7, Paper 6, 1-17. [PDF]
  4. Diaconis, P., Bump, D. & Keller, J. Unitary Correlations and the Fejér Kernel.. Mathemat Phys Anal Geomet 5(2):101-123. [DOI] [PDF]
  5. Diaconis, P. & Aldous, D. The Asymmetric One-Dimensional Constrained Ising Model: Rigorous Results. J Statist Phys 107(5-6):945-975. [DOI] [PDF]
  6. Two Probabilistic Essays: 1. The Problem of Thinking Too Much; 2. Mysteries of Cardano, the Probabilist. Stanford Statistics Techical Report. [PDF]
  7. Diaconis, P. & Bump, D. Toeplitz Minors. J Combin Th (A) 97(2):252-271. [PDF]
  8. top

2001

  1. Diaconis, P., Graham, R.L. & Holmes, S. Statistical problems involving permutations with restricted positions. In State of the Art in Probability and Statistics: Festschrift for Willem R. van Zwet (de Gunst, M., Klaassen, C. & van der Vaart, A., ed.), papers from the symposium held at the University of Leiden, The Netherlands, March 23-26, 1999. Institute of Mathematical Statistics. [PDF]
  2. Diaconis, P. & Billera, L. A Geometric Interpretation of the Metropolis-Hastings Algorithm. Statist Sci 16(4):335-339.[PDF]
  3. Diaconis, P. & Evans, S. Linear Functionals of Eigenvalues of Random Matrices. Trans Amer Math Soc 353(7):2615-33. [PDF]
  4. Diaconis, P., Graham, R.L. & Chung, F. Combinatorics for the East Model. Adv Appl Math 27(1):192-206. [PDF]
  5. Diaconis, P. & R. Durret. Chutes and Ladders in Markov Chains. J Th Probab 14(3):899-926. [PDF]
  6. top

2000

  1. Diaconis, P. & Saloff-Coste, L. Bounds for Kac's Master Equation. Comm Math Phys 209(3):729-55. [PDF]
  2. Diaconis, P., Holmes, S. & Neal, R. Analysis of a Nonreversible Markov Chain Sampler.. Ann Appl Probab 10(3):726-52. [PDF]
  3. Diaconis, P. & Evans, S. Immanants and Finite Point Processes.. J Combin Th Ser A 91(1-2):305-321. [PDF]
  4. Diaconis, P. & Holmes, S. A Bayesian Peek into Feller Volume I. (2002). Sankhya A, 64(3):820-841. [PDF]
  5. Diaconis, P. & Ram, A. Analysis of Systematic Scan Metropolis Algorithms Using Iwahori-Hecke Algebra Techniques. Michigan J Math 48(1):157-190. [PDF]
  6. top

1999

  1. Diaconis, P., Billera, L, & Brown, K. Random Walks and Plane Arrangements in Three Dimensions. Amer Math Monthly 106(6):502-24. [PDF]
  2. Diaconis, P. & Aldous, D. Longest Increasing Subsequences: From Patience Sorting to the Baik-Dieft-Johansson Theorem. Bull Amer Math Soc 36:413-32. [PDF]
  3. Diaconis, P. & Freedman, D. Iterated Random Functions. SIAM Review 41(1):45-76. [PDF]
  4. Diaconis, P. & Coram, M. New Tests of the Correspondence Between Unitary Eigenvalues and the Zeros of Riemann's Zeta Functions. J Physics A 36(12):2883-2906. [PDF]
  5. Diaconis, P. & Graham, R.L. The Graph of Generating Sets of an Abelian Group. Colloq Math, 31-38. [PDF]
  6. top

1998

  1. Diaconis, P. & Brown, K. Random Walks and Hyperplane Arrangements. Ann Probab 26(4):1813-54. [PDF]
  2. Diaconis, P. & Sturmfels, B. Algebraic Algorithms for Sampling from Conditional Distributions. Ann Statist 26(1):363-97. [PDF]
  3. Diaconis, P., Eisenbud, D. & Sturmfels, B. Lattice Walks and Primary Decomposition. Mathematical Essays in Honor of Gian-Carlo Rota (B. Sagan, R.P. Stanley, ed.), 173-94.
  4. Diaconis, P. & Freedman, D. Consistency of Bayes Estimates for Nonparametric Regression: Normal Theory. Bernoulli 4(4):411-444. [PDF]
  5. Diaconis, P. & Saloff-Coste, L. What Do We Know About the Metropolis Algorithm? J Comput System Sci 57(1):20-36. [PDF]
  6. Diaconis, P. & Saloff-Coste, L. Walks on Generating Sets of Groups. Inventiones Math 134(2):251-300. [PDF]
  7. A Place for Philosophy? The Rise of Modeling in Statistics. Quar J Appl Math 56(4):797-805.
  8. From Shuffling Cards to Walking Around the Building: An Introduction to Markov Chain Theory. Proc Int Congress, Berlin, Volume I Plenary Lectures, 187-204. [PDF]
  9. Magic. In Routledge Encyclopedia of Philosophy (Craig, E. ed.). Routledge.
  10. Diaconis, P. & Holmes, S. Matchings and Phylogenetic Trees. Proc Nat Acad Sci USA 95(25):14600-14602. [PDF]
  11. top

1997

  1. Diaconis, P. & Holmes, S. Are There Still Things to Do in Bayesian Statistics? Erkenntnis: Probability, Dynamics and Causality 45(2-3):145-58.
  2. Diaconis, P. & Blackwell, D. A Non-Measurable Tail Set. In Statistics, Probability and Game Theory: Papers in Honor of David Blackwell (T. Ferguson, et al., ed.), 1-5. IMS.
  3. Diaconis, P. & Freedman, D. Consistency of Bayes Estimates for Non-Parametric Regression: A Review. In Festschrift for Lucien LeCam (D. Pollard, et al., ed.), 157-66. Springer.
  4. top

1996

  1. Diaconis, P. & Saloff-Coste, L. Random Walks on Finite Groups: A Survey of Analytic Techniques. Probability Measures on Groups XI (H. Heyer, ed.) 11, 44-75. World Scientific Singapore.
  2. The Cutoff Phenomenon in Finite Markov Chains. Proc Nat Acad Sci USA 93(4):1659-1664. [PDF]
  3. Diaconis, P., Graham, R.L. & Sturmfels, B.Primitive Partition Identities. Combinatorics: Paul Erdös is Eighty 2:173-192. Bolyai Society Mathematical Studies. [PDF]
  4. Diaconis, P. & Saloff-Coste, L. Nash Inequalities for Finite Markov Chains.. J Theoret Probab 9:459-510. [PDF]
  5. Diaconis, P. & Saloff-Coste, L. Walks on Generating Sets of Abelian Groups. Probab Theor Related Fields 105:393-421. [PDF]
  6. Diaconis, P. & Saloff-Coste, L. Logarithmic Sobolev Inequalities for Finite Markov Chains. Ann Appl Probab 6:695-750. [PDF]
  7. Diaconis, P., Holmes, S., Janson, S., Lalley, S.P. & Pemantle, R. Metrics on Compositions and Coincidences Among Renewal Sequences. In Random Discrete Structures (D. Aldous, R. Pemantle, ed.), 81-102. Springer Verlag.
  8. Some New Tools for Dirichlet Priors. Bayesian Statistics 5: Proc Fifth Valencia Internat Meeting, June 5-9, 1994 (J. Bernardo, J. Berger, A. Dawid, F. Smith, ed.), 97-106. Oxford University Press. [PDF] [OUP]
  9. top

1995

  1. Diaconis, P. & Saloff-Coste, L. An Application of Harnack Inequalities to Random Walk on Nilpotent Quotients. J Fourier Anal Appl Kahane Special Issue, 189-207. [PDF]
  2. Diaconis, P., McGrath, M. & Pitman, J. Riffle Shuffles, Cycles and Descents. Combinatorica 15(1):11-29. [PDF]
  3. Diaconis, P. & Saloff-Coste, L. What Do We Know About the Metropolis Algorithm? Proc 27th Annual ACM Symposium on the Theory of Computing (STOC'95) (Las Vegas, NV), 112-129.
  4. Diaconis, P. & Gangolli, A. Rectangular Arrays with Fixed Margins. Discrete Probability and Algorithms (Aldous, D., et al., ed.), 15-42. Springer-Verlag. [PDF]
  5. Diaconis, P. & Aldous, D. Hammersley's Interacting Particle Process and Longest Increasing Subsequences. Probab Theory Related Fields 103:199-213. [PDF]
  6. Diaconis, P. & Freedman, D. Nonparametric Binary Regression with Random Covariates. Probab Math Stat 15:243-273. [PDF]
  7. top

1994

  1. Diaconis, P. & Beckett, L. Spectral Analysis for Discrete Longitudinal Data. Adv Appl Math 103:107-128. [PDF]
  2. Diaconis, P. & Shahshahani, M. On the Eigenvalues of Random Matrices. J Appl Probab Special 31A:49-62. [PDF]
  3. Diaconis, P. & Holmes, S. Gray Codes for Randomization Procedures. Statistics and Computing 4:287-302. [PDF]
  4. Diaconis, P. & Holmes, S. Three Examples of the Markov Chain Monte Carlo Method: At the Interface Between Statistical Computing, Computer Science, and Statistical Mechanics. Discrete Probability and Algorithms (Aldous, D., et al., ed.), 43-56. Springer-Verlag. [PDF]
  5. Diaconis, P. & Saloff-Coste, L. Moderate Growth and Random Walk on Finite Groups. Geom Func Anal 4(1):1-36. [PDF]
  6. top

1993

  1. Diaconis, P. & Freedman, D. Non-Parametric Binary Regression: A Bayesian Approach. Ann Statist 21:2108-2137. [PDF]
  2. Forward, Probability Models and Statistical Analyses For Ranking Data (Fligner, M., Verducci, J., ed.) 80, xvii-xxiii. Springer Lecture Notes in Statistics.
  3. Diaconis, P. & Saloff-Coste, L. Comparison Techniques for Random Walk on Finite Groups. Ann Probab 21(4):2131-2156. [PDF]
  4. Diaconis, P. & Saloff-Coste, L. Comparison Theorems for Reversible Markov Chains. Ann Appl Probab 3(3):696-730. [PDF]
  5. Diaconis, P., & Rockmore, D. Efficient Computation of Isotypic Projections for the Symmetric Group. In Groups and Computation, DIMACS Series in Disc Math Theor Comp Sci 11:87-104. [PDF]
  6. top

1992

  1. Diaconis, P. & Bayer, D. Trailing the dovetail shuffle to its lair. Ann Appl Probab 2(2):294-313. [PDF]
  2. Sufficiency as Statistical Symmetry. Mathematics into the Twenty-First Century: Proc 100th Anniversary Amer Math Soc (F. Browder, ed.), 15-26. American Mathematical Society.
  3. Diaconis, P. & Freedman, D. Non-Parametric Binary Bayesian Regression. Festschrift for Raj Bahaduhr. Indian Statistical Institute.
  4. Diaconis, P., Chung, F. & Graham, R.L. Universal Cycles for Combinatorial Structures. Discrete Math 110(1-3):43-59. [PDF]
  5. Diaconis, P., Eaton, M.L. & Lauritzan, S. Finite de Finetti Theorems in Linear Modules and Multivariate Analysis. Scand J Stat 19:289-315.
  6. Diaconis, P. & Graham, R.L. An Affine Walk on the Hypercube. Quat J Anal 41(1-2):215-235. [PDF]
  7. Diaconis, P., & Graham, R.L. Binomial Coefficient Codes Over GF(2). Discrete Math 106-107:181-188. [PDF]
  8. Diaconis, P., Fill, J. & Pitman, J. Analysis of Top to Random Shuffles. Combinatorics, Probability Computing 1:135-155. [PDF]
  9. Diaconis, P. & Hanlon, P. Eigen-Analysis for Some Examples of the Metropolis Algorithm. Contemp Math 138:99-117. [PDF]
  10. top

1991

  1. Diaconis, P. & Stroock, D. Geometric Bounds for Eigenvalues of Markov Chains. Ann Appl Probab 1(1):36-61. [PDF]
  2. Diaconis, P. & Fulton, W. A Growth Model, A Game, An Algebra, Lagrange Inversion and Characteristic Classes. Recondita Math 49:95-119. [PDF]
  3. Diaconis, P. & Zabell, S. Closed Form Summation for Classical Distributions: Variations on a Theme of De Moivre. Statist Sci 61(3):284-302. [PDF]
  4. top

1990

  1. Diaconis, P. & Perlman, M. Bounds for Tail Probabilities of Weighted Sums of Independent Gamma Random Variables. In Topics in Statistical Dependence (H.W. Block, et al., ed.), 147-166. Institute of Mathematical Statistics.
  2. Diaconis, P., Graham, R.L. & Morrison, J.A. Asymptotic Analysis of a Random Walk on a Hypercube with Many Dimensions. Random Structures and Algorithms 1:51-72. [PDF]
  3. Patterned Matrices. Matrix Theory and Applications: Proc Sympos Appl Math, Amer Math Soc 40:37-58.
  4. Diaconis, P. & Freedman, D. On the Uniform Consistency of Bayes Estimates for Multinomial Probabilities. Ann Statist 18(3):1317-1327. [PDF]
  5. Diaconis, P. & Rockmore, D. Efficient Computation of the Fourier Transform on Finite Groups. J Amer Math Soc 3(2):297-332. [DOI]
  6. Diaconis, P. & Fill, J. Examples for the Theory of Strong Stationary Duality with Countable State Spaces. Prob Eng Info Sci 4:157-180.
  7. Diaconis, P. & Fill, J. Strong Stationary Times Via a New Form of Duality. Ann Probab 18(4):1483-1522. [PDF]
  8. Applications of Groups Representations to Statistical Problems. Proc Int Congress Mathemat, Kyoto II, 1037-1048. Springer.
  9. Finite Fourier Methods: Access to Tools. In Probabilistic Combinatorics, Proc Symp Appl Math (B. Bollabos, ed.) 44, 171-194. American Mathematical Society.
  10. Diaconis, P. & Freedman, D. Cauchy's Equation and de Finetti's Theorem. J Stat 17(3):235-250.
  11. top

1989

  1. A Generalization of Spectral Analysis with Application to Ranked Data. 1987 Wald Memorial Lecture. Ann Statist 17(3):949-979. [PDF]
  2. Diaconis, P. & Greene, C. Applications of Murphy's Elements. Stanford Statistics Technical Report. [PDF]
  3. Diaconis, P. & Keller, J. Fair Dice. Amer Math Monthly 96:337-339. [PDF]
  4. Diaconis, P. & Mosteller, F. Methods for Studying Coincidences. J Amer Statist Assoc 84(408):853-861. [PDF]
  5. Bounds for Tail Probabilities of Weighted Sums of Indepedent Gamma Random Variables. In Symposium on Dependence in Statistics and Probability. IMS Lecture Notes-Monograph Series 16, 147-166.
  6. top

1988

  1. Bayesian Numerical Analysis. Statistical Decision Theory and Related Topics IV (J. Berger, S. Gupta, ed.) 1:163-175. Springer-Verlag. [PDF]
  2. Application of the Method of Moments in Probability and Statistics. In Moments in Mathematics: Proc Symp Appl Math, Amer Math Soc 37:125-142
  3. Group Representations in Probability and Statistics. IMS Lecture Notes-Monograph Series 11. Institute of Mathematical Statistics. [Project Euclid]
  4. Diaconis, P. & Freedman, D. Conditional Limit Theorems for Exponential Families with Uniform Asymptotic Estimates and applications to de Finetti's Theorem. J Theoret Probab 1:381-410.
  5. Diaconis, P. & Smith, L. Honest Bernoulli Excursions. J Appl Probab 25(3):464-477. [PDF]
  6. Diaconis, P., D'Aristotile, A. & Freedman, D. On Merging of Probabilities. Sankhya Series A 50(3):363-380. [PDF]
  7. Recent Progress on de Finetti's Notions of Exchangeability Bayesian Statistics 3: Proc Third Valencia Internat Meeting, June 1-5, 1987 (J. Bernardo, et al. ed.), 111-125. Clarendon Press; Oxford University Press. [PDF]
  8. top

1987

  1. Diaconis, P. & Shahshahani, M. Time to Reach Stationarity in the Bernoulli-Laplace Diffusion Model. SIAM J Math Anal 18(1):208-218. [PDF]
  2. Diaconis, P. & Efron, B. Probabilistic-Geometric Theorems Arising from the Analysis of Contingency Tables. Contributions to the Theory and Application of Statistics, A Volume in Honor of Herbert Solomon, 103-125. Academic Press. [PDF]
  3. Diaconis, P. & Lehmann, E. Fred Mosteller as a Mathematical Statistician. A Statistical Model (S. Fienberg, D. Hoaglin, W. Kruskal, J. Tanur, ed.), 59-80. Springer-Verlag.
  4. Projection Pursuit for Discrete Data. Scand J Stat.
  5. Diaconis, P., Chung, F. & Graham, R.L. Random Walks Arising in Random Number Generation. Ann Probab 15(3):1148-1165. [PDF]
  6. Diaconis, P. & Aldous, D. Strong Uniform Times and Finite Random Walks. Adv Appl Math 8(1):69-97. [PDF]
  7. Diaconis, P. & Shahshahani, M. The Subgroup Algorithm for Generating Uniform Random Variables. Prob Eng Info Sci 1:15-32. [PDF]
  8. Diaconis, P. & Freedman, D. A Dozen de Finetti-style Results in Search of a Theory. Ann Inst Henri Poincaré, Probab Statist 23(Sup 2):397-423.
  9. Diaconis, P., Bock, M.E. & Huffer, F. Inequalities for Linear Combinations of Gamma Random Variables. Can J Stat 15:387-395.
  10. top

1986

  1. Diaconis, P. & Freedman, D. On Inconsistent Bayes Estimates of Location. Ann Statist 14(1):68-87. [PDF]
  2. Diaconis, P. & Shahshahani, M. Products of Random Matrices and Computer Image Generation. Contemporary Math 50:173-182.
  3. Diaconis, P. & Shahshahani, M. Products of Random Matrices as They Arise in the Study of Random Walks on Groups. Contemporary Math 50:183-195.
  4. Diaconis, P. & Freedman, D. On the Consistency of Bayes Estimates. Discussion with a rejoinder by the authors. Ann Statist 14(1):1-26. [PDF] [REJ]
  5. Diaconis, P. & Freedman, D. An Elementary Proof of Stirling's Formula. Amer Math Monthly 93:123-125.
  6. Diaconis, P. & Aldous, D. Shuffling Cards and Stopping Times. Amer Math Monthly 93(5):333-348. [PDF]
  7. Diaconis, P., et al. Applications of Noncommutative Fourier Analysis to Probability Problems. Ecolé d' Été de Probabilites de St. Flours, XV-XVII, Springer Lecture Notes in Mathematics 1362:51-100. Springer-Verlag.
  8. Diaconis, P. & Engel, E. A Subjective Guide to Objective Chance Statist Sci 1:171-174.
  9. Diaconis, P. & Shahshahani, M. On Square Roots of the Uniform Distribution on Compact Groups. Proc Amer Math Society 98:341-348. [PDF]
  10. top

1985

  1. Diaconis, P. & Ylvisaker, D. Quantifying Prior Opinion. Bayesian Statistics 2. Proc 2nd Valencia Internat Meet(Bernardo, J.M., Degroot, M.H., Lindley, D.V., Smith, A.F.M., ed.), 9-83. North-Holland Publishing.
  2. Diaconis, P. & Zabell, S. Some Alternatives to Bayes' Rule. In Information and Group Decision Making, Proc Second UC Irvine Conf Political Economy (B. Grofman, G. Owen, ed.), 25-38. Jai Press. [PDF]
  3. Theories of Data Analysis: From Magical Thinking Through Classical Statistics. Exploring Data Tables, Trends and Shapes (Hoaglin, D., Mosteller, F., Tukey, J., ed.), 1-36. Wiley. [PDF]
  4. Bayesian Statistics as Honest Work. Proc. Berkeley Conf. in Honor of Jerzey Neyman and Jack Kiefer Volume I (LeCam, L., Olshen, R., ed.), 53-64. Wadsworth Publishing.
  5. Diaconis, P. & Efron, B. Testing for Independence in a Two-Way Table: New Interpretations of the Chi-Square Statistic. Ann Statist 13(3):845-913. [PDF]
  6. Diaconis, P. & Graham, R.L. The Radon Transform on Z^k_2. Pacific J Math 118:323-345. [PDF]
  7. top

1984

  1. Diaconis, P. & Shahshahani, M. On Nonlinear Functions of Linear Combinations. SIAM J Scientif Comput 5(1):175-191. [PDF]
  2. Diaconis, P. & Freedman, D. Asymptotics of Graphical Projection Pursuit. Ann Statist 12(3):793-815. [PDF]
  3. top

1983

  1. Diaconis, P., Graham, R.L. & Kantor, W.M. The Mathematics of Perfect Shuffles. Adv Appl Math 4(2):175-196. [PDF]
  2. Diaconis, P. & J.H. Friedman, J.H. M and N plots. Recent Advances in Statistics (H. Rizvi, J. Rustagi, D. Siegmund, ed.), 425-447. Academic Press. [PDF]
  3. Diaconis, P. & Efron, B. Computer Intensive Methods in Statistics. Scientific American 248:116-130.
  4. Diaconis, P. & Freedman, D. On Inconsistent Bayes Estimates in the Discrete Case. Ann Statist 11(4):1109-1118. [PDF]
  5. Diaconis, P. & Freedman, D. Frequency Properties of Bayes Rules. In Scientific Inference, Data Analysis, and Robustness (G. Box, T. Leonard, C.F. Wu, ed.), 105-115. Academic Press.
  6. top

1982

  1. Diaconis, P. & Freedman, D. On the Maximum Difference Between the Empirical and Expected Histograms for Sums. Pacific J Math 100(2):287-327. [PDF]
  2. Diaconis, P. & Freedman, D. On the Difference Between the Empirical Histogram and the Normal Curve for Sums, Part II. Pacific J Math 100(2):359-371. [PDF]
  3. Diaconis, P. & Freedman, D. On the Mode of an Empirical Histogram for Sums. Pacific J Math 100(2):373-385. [PDF]
  4. Diaconis, P. & Freedman, D. De Finetti's Theorem for Symmetric Location Families. Ann Statist 10(1):84-189. [PDF]
  5. Diaconis, P. & Freedman, D. On Inconsistent M-Estimators. Ann Statist 10(2):454-461. [PDF]
  6. Diaconis, P. & Freedman, D. Bayes Rules for Location Problems. Statistical Decision Theory and Related Topics III (S. Gupta and J. Berger, ed.), 315-327.
  7. Diaconis, P., Cleveland, W.S. & McGill, R. Variables on Scatterplots Look More Highly Correlated When the Scales are Increased. Science 216(4550):1138-1141. [PDF]
  8. Diaconis, P. & Zabell, S. Updating Subjective Probability. JASA 77(380):822-830. [PDF]
  9. top

1981

  1. Diaconis, P., Freedman, D. Partial Exchangeability and Sufficiency. Proc Indian Statist Inst Golden Jubilee Int Conf Stat: Applications and New Directions (Ghosh, J.K., Roy, J., eds.), 205-236. [PDF]
  2. Diaconis, P., Graham, R.L. The Analysis of Sequential Experiments with Feedback to Subjects. Ann Statist 9(1):3-23. [PDF]
  3. Magical Thinking in the Analysis of Scientific Data. Ann New York Acad Sci 364:236-244.
  4. Diaconis, P., Chung,F., Graham, R.L., Mallows, C.W. On the Permanents of Complements of the Direct Sum of Identity Matrices. Adv Appl Math 2:121-137. [PDF]
  5. Diaconis, P., Freedman, D. On the Statistics of Vision: The Julesz Conjecture. J Math Psychol 24(2):112-138. [PDF]
  6. Diaconis, P. & Shahshahani, M. Generating a Random Permutation with Random Transpositions Z Wahr verw Gebiete 57(2):159-179.
  7. Diaconis, P. & Freedman, D. On the Histogram as a Density Estimator: L_2 Theory Z Wahr verw Gebiete 57:453-476.
  8. Diaconis, P. & Freedman, D. On the Maximum Deviation Between the Histogram and the Underlying Density. Z Wahr verw Gebiete 58:139-167.
  9. Diaconis, P. & Freedman, D. The Persistence of Cognitive Illusions: A Rejoinder to L.J. Cohen. Behavioral and Brain Sci 4:333-334.
  10. How Fast is the Fastest Fourier Transform? In Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface (W.F. Eddy, ed.), 43-44. Springer-Verlag, New York.
  11. top

1980

  1. Diaconis, P. & Freedman, D. Finite Exchangeable Sequences. Ann Probab 8(4):745-764. [PDF]
  2. Diaconis, P. & Freedman, D. De Finetti's Theorem for Markov Chains. Ann Probab 8:115-130. [PDF]
  3. Average Running Time of the Fast Fourier Transform. J Algor 1(2):187-208. [PDF]
  4. Diaconis, P., Freedman, D. De Finetti's Generalizations of Exchangeability. Studies in Inductive Logic and Probability, Volume II (R. Jeffrey, ed.).
  5. top

1979

  1. Diaconis, P., Ylvisaker, D. Conjugate Priors for Exponential Families. Ann Statist 7(2):269-281. [PDF]
  2. Diaconis, P., Freedman, D. On Rounding Percentages. JASA 74(366):359-364. [PDF]
  3. top

1978

  1. Diaconis, P. & Stein, C. Some Tauberian Theorems Related to Coin Tossing. Ann Probab 6(3):483-90. [PDF]
  2. Response to Letter by Puthoff and Targ, “ESP Research”. Science 202(4373):1145-6. [PDF].
  3. Tart, C.T., Puthoff, H.E, Targ, R., & Diaconis, P. Statistical Problems in ESP Research. Science 201(4351):131-136. [PDF]
  4. top

1977

  1. Diaconis, P., Mosteller, F. & Onishi, H. Second-order Terms for the Variances and Covariances of the Number of Prime Factors, Including the Square Free Case. J Number Theory 9(2):187-202. [PDF]
  2. Finite Forms of de Finetti's Theorem on Exchangeability. Synthese 36(2):271-81.
  3. The Distribution of Leading Digits and Uniform Distribution Mod 1. Ann Probab 5(1):72-81. [PDF]
  4. Examples for the Theory of Infinite Iteration of Summability Methods. Can J Math 29(3):489-97. [DOI] [PDF]
  5. Diaconis, P., Graham, R.L. Spearman's Footrule as a Measure of Disarray. J Roy Statist Soc Ser B 39(2):262-8. [PDF]
  6. top

1976

  1. Buffon's Problem with a Long Needle. J Appl Prob 13(3):614-618. [PDF]
  2. Protocol Issues in Randomized Clinical Trials of Surgical Treatment of Duodenal Ulcer. In Costs, Risks and Benefits of Surgery (Barnes, Bunker, Mosteller, eds.), Oxford University Press. Joint with faculty group on ulcer surgery.
  3. top