Warning: These notes may contain factual and/or typographic errors. They are based on Emmanuel Candès’s course from 2021.

Agenda: E-values

1. E-values and corresponding tests
2. Bayes factors
3. Optional continuation problem
4. Example applications
5. FDR control with e-values (e-BH)

References: Material for this lecture was based on [1] and [2].

15.1 Motivation

In this lecture, we study a replacement to the p-value called the e-value. The primary motivation for e-values is to address the optional continuation problem: deciding whether or not to collect new data and do further testing based on previous test outcomes. For example, suppose a research group A tests a new type of medication and obtains a "promising but inconclusive" result. Another research group B might see these results, and decide to conduct their own test with new data. Yet another group C might observe group B’s outcome, and collect data for further testing. To perform hypothesis testing in this setting, we would need to combine results from several tests in a statistically valid fashion. Attempting to use p-value based methods for this is unsatisfactory, because the experiments are not independent - each subsequent group decides to collect data and perform testing only after seeing the results of previous groups. Combining the data and re-calculating the p-value as if all the data were fixed in advance gives very wrong results [3], and can be considered p-hacking.

E-values give rise to safe tests: methods that are valid in the optional continuation setting. This allows researchers to monitor results and stop whenever they want, and still have statistically valid results, meaning that Type I error guarantees are preserved.

In this first section, we define e-values and show how to construct them using Bayes factors. Then, we discuss how to use them to construct safe tests.
15.2 E-values and corresponding tests

Suppose we have data \(X \) generated from probability distribution \(P \), and a hypothesis \(\mathcal{H}_0 \) (a set of probability measures).

Definition 1. A non-negative random variable \(E \) is called an **e-variable** for testing \(\mathcal{H}_0 \) if

\[
\sup_{P_0 \in \mathcal{H}_0} \mathbb{E}_{P_0} E(X) \leq 1.
\]

Realized values of e-variables are called **e-values**. For simple hypotheses, e-variables are simply non-negative \(E \) with mean at most 1. To emphasize the difference between e-values and p-values, we can define p-variables as well.

Definition 2. A random variable \(P \) is called a **p-variable** for testing \(\mathcal{H}_0 \) if

\[
\sup_{P_0 \in \mathcal{H}_0} P_{P_0}(P(X) \leq \alpha) \leq \alpha \quad \text{for all} \quad \alpha \in (0, 1).
\]

Realized values of p-variables are p-values. From these definitions, we see a key difference between p-values and e-values: e-values control the expectation while p-values control the cdf.

We can relate e-values to p-values via the following transformation.

Claim: Let \(E \) be an e-value. Then \(E^{-1} \) is a conservative p-value. In other words, if \(P = E^{-1} \), then \(P(P \leq \alpha) \leq \alpha \).

Proof: Fix \(P_0 \in \mathcal{H}_0 \). By Markov’s inequality,

\[
P_{P_0}(1/E(X) \leq \alpha) = P_{P_0}(E \geq 1/\alpha) \leq \mathbb{E}_{P_0} \left[\frac{E}{1/\alpha} \right] \leq \alpha.
\]

The p-value obtained from this transformation is conservative, because \(P(E \geq 1/\alpha) \) can be much smaller than \(\alpha \), as Markov’s inequality may not be tight. From this correspondence, we can use e-variables to test against \(\mathcal{H}_0 \) at level \(\alpha \), rejecting \(\mathcal{H}_0 \) if \(E(X) \geq \frac{1}{\alpha} \). For instance, the test that rejects \(\mathcal{H}_0 \) if and only if \(E(X) \geq 20 \), or if \(E^{-1}(X) \leq 0.05 \), has Type-I error bound 0.05. This is the **safe test** based on e-variable \(E \).

Next, we construct e-values using Bayes factor hypothesis testing.

15.2.1 Constructing e-values with Bayes factors

In Bayes factor hypothesis testing (Jeffreys ’39), we have two hypotheses

\[
\mathcal{H}_0 = \{ p_\theta \mid \theta \in \Theta_0 \} \text{ vs } \mathcal{H}_1 = \{ p_\theta \mid \theta \in \Theta_1 \}.
\]

Evidence in favor of \(\mathcal{H}_1 \) is measured by the **Bayes factor**

\[
\frac{p_{W_1}(X)}{p_{W_0}(X)}.
\]
where
\[
p_{W_1}(X) := \int_{\theta \in \Theta_1} p_\theta(X) dW_1(\theta) \\
p_{W_0}(X) := \int_{\theta \in \Theta_0} p_\theta(X) dW_0(\theta).
\]

We reject the null if this ratio is large enough. The Bayes factor is in general not an e-value. In some simpler cases, however, we can obtain e-values. Suppose we have a simple null hypothesis \(H_0 = \{p_0\}\) and \(H_1 = \{p_\theta \mid \theta \in \Theta_1\}\). The Bayes factor simplifies to
\[
M(X) := \frac{p_{W_1}(X)}{p_0(X)}
\]
No matter what prior \(W_1\) we choose, we have
\[
\mathbb{E}_{X \sim p_0} [M(X)] = 1.
\]
This shows that for simple nulls, the Bayes factor is an e-value. In the even simpler case where both \(H_0\) and \(H_1\) are point hypotheses,
\[
E(X) = \frac{p_1(X)}{p_0(X)}
\]
is an e-value. Thus, Bayes factors can be used to obtain e-values for safe testing.

Note that safe testing is not Neyman-Pearson (NP) testing. The safe test rejects if \(E(X) \geq 1/\alpha\). Compared to the NP test, which rejects if \(E(X) \geq 1/B\), with \(B\) chosen such that \(P_{X \sim p_0} (E(X) \geq B) = \alpha\), the safe test is more conservative and typically results in a loss of power.

Example 1. Suppose we have \(X = (X_1, X_2, \ldots, X_n)\) with \(X_i\) iid \(N(\mu, 1)\). We consider simple hypotheses
\[
H_0 : \mu = 0, H_1 : \mu = \mu_1.
\]
The e-variable is
\[
E = \prod_{i=1}^{n} \exp \left(\mu_1 X_i - \frac{\mu_1^2}{2} \right)
\]
which corresponds to a rejection region for the safe test of
\[
\sum_{i=1}^{n} \mu_1 X_i - \frac{\mu_1^2}{2} > \log 20 \approx 3,
\]
much more conservative than the rejection region \(X \geq \frac{1.64}{\sqrt{n}}\) given by the Neyman-Pearson test.
Example 2 (Gaussian location family). Suppose we have $X = (X_1, X_2, \ldots, X_n)$ with X_i iid $\mathcal{N}(\mu, 1)$ and the hypotheses

$$H_0 : \mu = 0, H_1 : \mu \in \Theta_1.$$

Assume a prior on the alternative $w(\mu) \propto \exp (-\mu^2/2)$. The Bayes factor is given by

$$E := \frac{p_W(X)}{p_0(X)} = \frac{\int_{\mu \in \mathbb{R}} p_\mu(X) w(\mu) d\mu}{p_0(X)}$$

This is an e-value. After some calculation we get

$$\log E = -\frac{1}{2} \log(n + 1) + \frac{1}{2} (n + 1) \hat{\mu}_n^2$$

where $\hat{\mu}_n = \frac{n}{n + 1} \bar{X}$ is the Bayes MAP estimator. The safe test thus rejects the null when $E \geq 20$, or when

$$|\hat{\mu}_n| \geq \sqrt{\frac{5.99 + \log(n + 1)}{n + 1}}$$

where we used $2 \log 20 \approx 5.99$. Again, this is more conservative and less powerful than NP, which rejects when $|\hat{\mu}_n| \geq \frac{1.96}{\sqrt{n}}$.

While safe testing is more conservative relative to NP, it offers a host of other advantages.

15.2.2 Advantages of e-values

There are various statistical advantages of e-values:

1. We know how to construct e-values for high-dimensional problems, whereas it can be hard to do the same with p-values (e.g. high-dimensional logistic regression)

2. They allow us to perform sequential inference and gradual appraisal of information and evidence

3. P-values, when small (e.g. on order of 10^{-10}), rely heavily on the tail distribution of the model. E-values are more robust to model misspecification

4. E-values concern expectations, which are robust to data dependence, whereas tail bounds are not.

5. Non-asymptotic and often model-free

Moreover, the theory of martingales gives e-values validity for optional stopping times. In the next section, we will see that e-values are easy to combine and give us flexibility to stop/continue in data collection (online testing; unfixed sample size), allowing for safe tests for optional continuation.
15.3 Safety under optional continuation

Suppose we have data \((X_1, Z_1), (X_2, Z_2), \ldots\) coming in batches of size \(n_1, n_2\) and so on. We can view \(Z_i\) as side information, such as how much money we have to continue data collection. Define \(N_t := \sum_{i=1}^t n_i\) as the amount of data collected after the \(t\)-th batch.

The safe test will run as follows. We first evaluate some e-value \(E_1\) on the first batch \((X_1, \ldots, X_{n_1})\). If the outcome is in a certain range (e.g. promising but not conclusive) and \(Z_{n_1}\) has certain values (e.g. 'boss has money to collect more data') then we move to evaluate some e-value \(E_2\) on the next batch \((X_{n_1+1}, \ldots, X_{N_2})\). Otherwise, we stop. Let \(T\) be the number of data batches collected when we do stop. We report as the final result

\[
E := \prod_{i=1}^T E_i
\]

Claim: \(E\) is itself an e-value, irrespective of the stop/continue rule used.

To formalize this, define filtration \(\mathcal{F}_t, t = 0, 1, 2, \ldots\) Define a conditional e-variable \(E_t\) as a non-negative RV which is \(\mathcal{F}_t\) measurable, such that for all \(P_0 \in \mathcal{H}_0\),

\[
\mathbb{E}_{P_0}[E_t | \mathcal{F}_{t-1}] \leq 1.
\]

Proposition 1. With \(E_1, E_2, \ldots\) as above, the process

\[
V_t = \prod_{i \leq t} E_i
\]

is a non-negative supermartingale (under the null).

Proof: Computing the conditional expectation of \(V_t\), we get

\[
\mathbb{E}[V_t | F_{t-1}] = \mathbb{E}[E_t V_{t-1} | F_{t-1}]
= V_{t-1} \mathbb{E}[E_t | F_{t-1}]
\leq V_{t-1}.
\]

Now suppose \(\tau\) is a stopping time. By Doob's optional stopping theorem,

\[
\mathbb{E}(V_\tau) \leq 1.
\]

In particular, \(V_\tau\) is an e-value, and thus we can use it for testing.

As a consequence of this, we have the following result.

Claim (Ville's Inequality): Under any \(P_0 \in \mathcal{H}_0\),

\[
\mathbb{P}_{P_0}\left(\sup_t V_t \geq 1/\alpha \right) \leq \alpha
\]

Proof: Define the stopping time \(\tau = \inf\{t | V_t \geq 1/\alpha\}\). By Doob's optional stopping theorem, \(P(\tau < \infty) \leq \alpha\).

In summary, under any stopping time \(\tau\), the end-product \(V_\tau\) of all employed e-values is itself an e-value even if \(E_i\) depends on the past. Thus, Type-I error is guaranteed to be preserved under optional continuation. Combining e-values with arbitrary stop/continue strategy and rejecting \(\mathcal{H}_0\) when final \(V_\tau\) has \(V_\tau \geq 20\) is safe, since Type-I error at most 0.05.
15.4 Examples in testing multiple hypotheses

Detecting trading skills. There are \(K \) traders who each manage a fund. For each fund \(k \), we observe the monthly returns \(X_{k,j}, j = 1, \ldots, n_k \). Null hypothesis \(k \) is that trader \(k \) is not skillful, i.e. that

\[
\mathbb{E} [X_{k,j} \mid \mathcal{F}_{j-1}] \leq 1
\]

for \(j = 1, \ldots, n_k \).

The problem is the test statistics (performance of funds) have complicated serial and cross dependence, making it hard to construct p-values and perform classical testing. However, we can easily construct e-values as

\[
E_k = \prod_{j=1}^{n_k} X_{k,j}.
\]

Multi-armed bandit problems. In this setting, there are \(K \) arms, with null hypothesis \(k \) being that arm \(k \) has mean reward at most 1. We employ strategy \((k_t) \), which at time \(t \geq 1 \) pulls arm \(k_t \), obtaining an iid reward \(X_{k_t,t} \geq 0 \). The goal is to quickly detect arms with mean greater than 1 (or maximize profit, minimize regret, etc). The running reward for arm \(k \) at time \(j \) is

\[
M_{k,t} = \prod_{1 \leq j \leq t \atop k_j = k} X_{k,j}
\]

There is complicated dependence due to exploration/exploitation, but we can construct e-values \(M_{1,\tau}, \ldots, M_{K,\tau} \) for any stopping time \(\tau \).

15.5 Composite nulls and Bayes factors

Suppose we now have composite nulls. The Bayes factor is given by

\[
M(X) := \frac{p_{W_1}(X)}{p_{W_0}(X)}
\]

For this ratio to be an e-value, we require that for \(P_0 \in \mathcal{H}_0 \), \(\mathbb{E}_{X \sim P_0} [M(X)] \leq 1 \), i.e. that for every null the expectation is less than 1. But we can only guarantee that \(\mathbb{E}_{X \sim P_{W_0}} [M(X)] \leq 1 \). Bayes factors with composite nulls are therefore not e-values in general.

However, even if we have a composiite null, we can sometimes create e-values using Bayes factors. Suppose we are given a prior \(W_1 \) on \(\Theta_1 \). We solve the convex optimization problem

\[
W_0^* := \arg\min_{W_0 \text{ distr on } \Theta_0} D (P_{W_1} \| P_{W_0})
\]

where \(D \) is the Kullback-Leibler divergence

\[
D (P \| Q) := \mathbb{E}_{X \sim P} \left[\log \frac{p(X)}{q(X)} \right]
\]
This finds the prior on Θ_0 that is closest to P_{W_1}, provided it exists. P_{W_0} is called the reverse information projection of P_{W_1} on the set $\overline{H}_0 = \{P_W \mid W \text{ is distribution on } \Theta_0\}$.

We define the notion of GROW, a measure of the ”best” e-value. A GROW e-variable relative to P_{W_1} is defined to achieve

$$\sup_E \mathbb{E}_{X \sim P_{W_1}}[\log E]$$

where the supremum is over all e-values relative to H_0. The result below says that $P_{W_0^*}$ gives us a GROW e-variable.

Theorem 1 (Li ’99, Barron & Li ’00, Grünwald et al. ’19). If W_0^* exists, then

$$\frac{p_{W_1}(X)}{p_{W_0^*}(X)}$$

is an e-variable. Moreover, it is the Bayes GROW e-variable relative to W_1, achieving

$$\max_{E\text{-var for } H_0} \mathbb{E}_{X \sim P_{W_1}}[\log E].$$

We want our e-variable to be large under the alternative, since we want to reject the null. This theorem says that W_0^* gives us the best e-value in the sense that it maximizes $\log E$ under W_1, while being small under H_0, as $\mathbb{E}[E] \leq 1$. It is important to make $\log E$ large rather than E, because we want to avoid E taking on 0 values, since we will multiply these Es together for safe testing.

15.6 FDR control with e-values

E-values can also be used for FDR control. Suppose we have n hypothesis, realized e-values e_1, \ldots, e_n associated with H_1, \ldots, H_n, and FDR level $\alpha \in (0, 1)$. We order them $e_{(1)} \geq \cdots \geq e_{(n)}$ The e-BH procedure rejects hypotheses with the largest \hat{k} e-values, where

$$\hat{k} = \max \left\{ i : \frac{i e_{(i)}}{n} \geq \frac{1}{\alpha} \right\}$$

This procedure has parallels to BH: writing $1/e_{(i)} := p(i)$ gives us the thresholds $\frac{i}{n} \frac{1}{p(i)} \geq \frac{1}{\alpha}$, which rearranges to $p(i) \leq \frac{\alpha i}{n}$. It controls FDR without any assumption on dependence of e-values.

Theorem 2 (Wang & Ramdas ’20 [4]). The e-BH procedure has FDR at most $n_0\alpha/n$.

15-7
References

[1] Peter Grünwald. E is the New P: Tests that are safe under optional stopping, with an application to time-to-event data. International Seminar on Selective Inference, November 2020

