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Abstract

This paper studies the recovery of a superposition of point sources from noisy bandlimited data.
In the fewest possible words, we only have information about the spectrum of an object in the low-
frequency band [— fio, fio] and seek to obtain a higher resolution estimate by extrapolating the spectrum
up to a frequency fni > fio. We show that as long as the sources are separated by 2/ fi,, solving a
simple convex program produces a stable estimate in the sense that the approximation error between the
higher-resolution reconstruction and the truth is proportional to the noise level times the square of the
super-resolution factor (SRF) fui/ fio-

Keywords. Deconvolution, stable signal recovery, sparsity, line spectra estimation, basis mismatch, super-
resolution factor.

1 Introduction

It is often of great interest to study the fine details of a signal at a scale beyond the resolution provided by
the available measurements. In a general sense, super-resolution techniques seek to recover high-resolution
information from coarse scale measurements. There is a gigantic literature on this subject as researchers,
for instance, always try to find ways of breaking the diffraction limit—a fundamental limit on the possi-
ble resolution—imposed by most imaging systems. Examples of applications include conventional optical
imaging 18|, astronomy [25], medical imaging [10], and microscopy [20]. In electronic imaging, photon shot
noise limits the pixel size, making super-resolution techniques necessary to recover sub-pixel details [21}23].
Among other fields demanding and developing super-resolution techniques, one could cite spectroscopy [11],
radar 22|, non-optical medical imaging [15] and geophysics [16].

In many of these applications, the signal we wish to super-resolve is a superposition of point sources; de-
pending upon the situation, these may be celestial bodies in astronomy [19], molecules in fluorescence
microscopy [19], or line spectra in speech analysis [14]. In the companion article [4], the authors studied
the problem of deconvolving point sources from low-pass measurements. Whereas [4] focused mostly on the
noiseless setting, in which one has perfect low-frequency information, this paper extends previous results by
considering the noisy setting in which data are contaminated with noise, a situation which is unavoidable
in practical situations. In a nutshell, [4] proves that with noiseless data, one can recover a superposition
of point sources exactly, namely, with arbitrary high accuracy, by solving a simple convex program. This
phenomenon holds as long as the spacing between the sources is on the order of the resolution limit. With
noisy data now, it is of course no longer possible to achieve infinite precision. In fact, suppose the noise level
and sensing resolution are fixed. Then one expects that it will become increasingly harder to recover the
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Figure 1: Sketch of the super-resolution factor (SRF). A signal (left) is measured at a low
resolution by a convolution with a kernel (top middle) of width A}, (top right). Super-resolution
aims at approximating the outcome of a convolution with a much narrower kernel (bottom
middle) of width Ap;. Hence, the goal is to recover the bottom right curve.

fine details of the signal as the scale of these features become finer. The goal of this paper is to make this
vague statement mathematically precise; we shall characterize the estimation error as a function of the noise
level and of the resolution we seek to achieve. As we shall see next, increasing resolution essentially means
filling-in parts of the missing spectrum.

1.1 The super-resolution problem

To formalize matters, we have observations about an object x of the form

y(t) = (Qux)(t) + 2(1), (1.1)

where t is a continuous parameter (time, space, and so on) belonging to the d-dimensional cube [0, 1]¢.
Above, z is a noise term which can either be stochastic or deterministic, and @), is a bandlimiting operator
with a frequency cut-off equal to fi, = 1/Aj,. Here, Ay, is a positive parameter representing the finest scale at
which x is observed. To make this more precise, we take Q), to be a low-pass filter of width A}, as illustrated
at the top of Figure [T} that is,

(Quox)(t) = (Ko * 2)(t)

such that in the frequency domain the convolution equation becomes

(Qua)(f) = Ku(f)2(f), fezd,

where #(f) = [ et x(dt) is the usual Fourier transform. The low-pass kernel E(f) vanishes outside
of the cell [~ fio, fio] %

Our goal is to resolve the signal z at a finer scale A\y; < Ajp. In other words, we would like to obtain a
high-resolution estimate xog such that Qui Test &= Qni x, where Qy; is a bandlimiting operator with cut-off
frequency fni = 1/Ani > fio. This is illustrated at the bottom of Figure |1, which shows the convolution
between Ky; and x. A different way to pose the problem is as follows: we have noisy data about the
spectrum of an object of interest in the low-pass band [— fio, fio], and would like to estimate the spectrum



in the possibly much wider band [— fy;, fni]. We introduce the super-resolution factor (SRF) as:

SR — i _ Mo, (1.2)

fio  Ani’
in words, we wish to double the resolution if the SRF is equal to 2, to quadruple it if the SRF equals four, and
so on. Given the notorious ill-posedness of spectral extrapolation, a natural question is how small the error
Kpi(zest — ) between the estimated and the true super-resolved signal at scale Ap; can be? In particular,
how does it scale with both the noise level and the SRF? This paper addresses this important question.

1.2 Models and methods

As mentioned earlier, we are interested in superpositions of point sources modeled as
T = E a;oi;,
J

where {¢;} are points from the interval [0,1], é; is a Dirac measure located at 7, and the amplitudes a; may
be complex valued. Although we focus on the one-dimensional case, our methods extend in a straightforward
manner to the multidimensional case, as we shall make precise later on. We assume the model in which
t € [0,1], which from now on we identify with the unit circle T, and z(¢) is a bandlimited error term obeying

2l = [ J=0lar < (13)

The measurement error z is otherwise arbitrary and can be adversarial. For concreteness, we set Kj, to be

the periodic Dirichlet kernel
fio

Klo(t) — Z ei2mkt _ Sin(ﬂs(ii.}?;t‘)k l)t) (14)
k=~ fio

By definition, for each f € Z, this kernel obeys [/(;(f) = 11if |f| £ fio whereas [/(;(f) = 0if |f] > fio-
We emphasize, however, that our results hold for other low-pass filters. Indeed, our model can be
equivalently written in the frequency domain as §(f) = 2(f) + 2(f), |f| < fio. Hence, if the measurements
are of the form y :/\Glo * x + z for some other low-pass kernel GG},, then the model can be written as
9(f) = 2(f)+ 2(f)/Gro(f), so that we have a very similar formulation. We omit the straightforward details.

To perform recovery, we propose solving

miin [[Z||zy  subject to  [|QZ —yll,, <6. (1.5)
Above, ||z||py is the total-variation norm of a measure (see Chapter 6 of [27] or Appendix A in [4]), which
can be interpreted as the generalization of the ¢; norm to the real line. (If = is a probability measure, then
|||y = 1.) This is not to be confused with the total variation of a function, a popular regularizer in signal
processing and computer vision. Lastly, it is important to observe that the recovery algorithm is completely
agnostic to the target resolution Ap;, so our results hold simultaneously for any value of Ap; > Aj,.

1.3 Main result

Our objective is to approximate the signal up until a certain resolution determined by the width of the
smoothing kernel Ap; > A}, used to compute the error. To fix ideas, we set

1 e . 1 (sin(r(fus + 1))\ 2
Kyi(t) = i1 k_zf (fui +1— [k]) ™ = I < Sin(mD) > (1.6)
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Figure 2: The Fejér kernel (1.6]) (a) with half width about Ay, and its Fourier series coefficients
(b). The kernel is bandlimited since the Fourier coefficients vanish beyond the cut-off frequency

fhi~

to be the Fejér kernel with cut-off frequency fn; = 1/Ap;. Figure [2| shows this kernel together with its
spectrum.

As explained in Section 3.2 of [4], no matter what method is used to achieve super-resolution, it is necessary
to introduce a condition about the support of the signal, which prevents the sources to be close to each other.
Otherwise, the problem is easily shown to be hopelessly ill-posed by leveraging Slepian’s work on prolate
spheroidal sequences [31]. In this paper, we use the notion of minimum separation.

Definition 1.1 (Minimum separation) For a family of points T C T, the minimum separation is defined
as the closest distance between any two elements from T,

A(T) = inf [t — .
(t,t)ET : t#£t

Our model (|1.3]) asserts that we can achieve a low-resolution error obeying
[ Ko * (@est — )|, <6,

but that we cannot do better as well. The main question is: how does this degrade when we substitute the
low-resolution with the high-resolution kernel?

Theorem 1.2 Assume that the support T of © obeys the separation condition
A(T) > 2. (1.7)
Then under the noise model , the solution xes; to problem obeys
|| Kni * (zest — )|, < CoSRF?§,

where Cy is a positive numerical constant.

Thus, minimizing the total-variation norm subject to data constraints yields a stable approximation of any
superposition of Dirac measures obeying the minimum-separation condition. When z = 0, setting 6 = 0 and
letting SRF— oo, this recovers the result in [4] which shows that z.s = , i.e. we achieve infinite precision.
What is interesting here is the quadratic dependence of the estimation error in the super-resolution factor.



It goes without saying that Theorem can also be specialized to a stochastic noise model. Suppose we
observe noisy samples of the spectrum

n(k) :/e_ﬂﬂktx(dt)_'_ekv k= _,f107_f10+15"'af107 (18)
T
where €, is an iid sequence of complex-valued N'(0,02) variables (this means that the real and imaginary

parts are independent A(0, 02) variables). This is equivalent to our model (1.1]) with
fio

z(t) = Z epe 2R,

k=—fio

We have ||z||, < ||2]lL, and ||z]|L, = ||€]le, by Parseval. Further, ||e||§ follows a y2-distribution with 4 fi, + 2
degrees of freedom. As a result, a concentration inequality (see |17, Section 4]) yields

P (el > (14+9) 0T 72) < 2"

for any positive «. This gives the following corollary.

Corollary 1.3 Fiz v > 0. Under the stochastic noise model (1.8), taking 6 = (1 + ) ov/4fio + 2 yields

|| K * (west — )|, < Co (14+7) V4fo +2SRF? 0. (1.9)

with probability at least 1 — e—2f107"

1.4 Extensions

Other high-resolution kernels. We work with the high-resolution Fejér kernel but our results would hold with
just about any other symmetric kernel as long as the kernel obeys the properties (1.10) and (L.11)) below as
the proof only uses these simple estimates. The first reads

/ K (8)] dE < Co, / Kl (0)]dt < Cogh, sup KL (8)] < Codid, (1.10)
T T

where Cj, C7 and Cy are positive constants independent of Ap;. The second is that there exists a nonnegative
and nonincreasing function f : [0,1/2] — R such that

|KL (8 + )| < f(8), 0<t<1/2,
and
1/2
fH)dt < Cs A2 (1.11)
0

This is to make sure that (2.6) holds. (For the Fejér kernel, we can take f to be quadratic in [0,1/2 — Ay;]
and constant in [1/2 — Ay, 1/2].)

Higher dimensions. Our techniques can be applied to establish robustness guarantees for the recovery of
point sources in higher dimensions. The only parts of the proof of Theorem[I.2] that do not generalize directly
are Lemmas [2.4] and 2.7 However, the methods used to prove these lemmas can be extended without
much difficulty to multiple dimensions as described in Section [C] of the Appendix.

Spectral line estimation. Swapping time and frequency, Theorem can be immediately applied to the
estimation of spectral lines in which we observe

y(t) = Zajeﬂ’wft +2z(t), t=0,1,...,n—1,
J



where z is a noise term. Here, our work implies that a nonparametric method based on convex optimization
is capable of approximating the spectrum of a multitone signal with arbitrary frequencies, as long as these
frequencies are sufficiently far apart, and furthermore that the reconstruction is stable. In this setting, the
smoothed error can be interpreted as the recovery error windowed at a certain spectral resolution.

1.5 Related work

Since at least the work of Prony [24], parametric methods based on polynomial rooting have been a popular
approach to the super-resolution of trains of spikes and, equivalently, of line spectra. These techniques are
typically based on the eigendecomposition of a sample covariance matrix of the data [3,/26]. A statistical
analysis of MUSIC |[2}|28], a popular algorithm following this principle, can be found in [32] along with
performance limits for any unbiased estimate based on a Cramér-Rao bound. More precise analysis has been
carried out for models with a reduced number of parameters, yielding, for instance, a characterization of the
trade-off between resolution and signal-to-noise ratio for the detection of two closely-spaced line spectra [30]
or light sources [12)29]. In general, parametric techniques require prior knowledge of the model order and rely
heavily on the assumption that the noise is white or at least has known spectrum (see Chapter 4 of [35]). An
alternative approach that overcomes the latter drawback is to perform nonlinear least squares estimation of
the model parameters [36]. Unfortunately, the resulting optimization problem has an extremely multimodal
cost function, which makes it very sensitive to initialization [34]. Nonparametric methods based on convex
programming do not require knowledge of the model order and are guaranteed to converge to a global
optimum. However, previous theoretical work on the stability of this approach was limited to a discrete and
finite-dimensional setting, where the support of the signal of interest is restricted to a finer uniform grid [4].
Other analyses of the super-resolution problem in the presence of noise also focus on signals supported on a
grid [6,31].

The total-variation norm is the continuous analog of the ¢; norm for finite dimensional vectors so that our
recovery algorithm can be interpreted as finding the shortest linear combination—in an ¢, sense—of elements
taken from a continuous and infinite dictionary. However, except for [4], previous stability results for sparse
recovery in redundant dictionaries do not apply even if we discretize the dictionary; this is due to the high
coherence between the elements. Moreover, working with a discrete dictionary can easily degrade the quality
of the estimate [5] (see [33] for a related discussion concerning grid selection for spectral analysis). This
observation has spurred the appearance of modified compressed-sensing techniques specifically tailored to
the task of spectral estimation |7,[9,[13]. Proving stability guarantees for these methods under conditions on
the support or the dynamic range of the signal is an interesting research direction.

2 Proof of Theorem [1.2|

It is useful to first introduce various objects we shall need in the course of the proof. We let T'= {¢;} be the
support of x and define the disjoint subsets

Snear (7) 7= {t = [t —1;] < 0.16)},
Sy i={t ¢ |t —t;] >0.16), Vt; € T};
here, A € {\lo, Ani}, and j ranges from 1 to |T|. We write the union of the sets Sy, (j) as
T .
Sr)l\ear = Uljzllsr/l\ear (])

and observe that the pair (Sp.,,, Sf,) forms a partition of T. The value of the constant 0.16 is not important
and chosen merely to simplify the argument. We denote the restriction of a measure p with finite total

variation on a set S by Psu (note that in contrast we denote the low-pass projection in the frequency domain



by Q1,). This restriction is well defined for the above sets, as one can take the Lebesgue decomposition of
u with respect to a positive o-finite measure supported on any of them [27]. To keep some expressions in
compact form, we set

1
I ()= 57 [t @),
o J

near

Isn ()= TIsn () (1)

near
t;eT

for any measure p and A € {0, Ap; }. Finally, we reserve the symbol C' to denote a numerical constant whose
value may change at each occurrence.

Set h = x — zes;. The error obeys

||Q10h||L1 S HQlox - y”Ll + ||y - QlomeStHLl S 25a

and has bounded total-variation norm since ||h||py < ||2||py + [|Zest] |y < 2]]2]|py. Our aim is to bound
the L1 norm of the smoothed error e := Ky; * h,

llellz, :A‘AKhi<t—T)h(dT) dt.

We begin with a lemma bounding the total-variation norm of h ‘away’ from T'.

Lemma 2.1 Under the conditions of Theorem[I.3, there exist positive constants C, and Cj, such that

e 0], 1 1
- < 2.
] Py, () ]TV < C, SRF?§

This lemma is proved in Section [2.1|and relies on the existence of a low-frequency dual polynomial constructed
in [4] to guarantee exact recovery in the noiseless setting.

To develop a bound about ||e||1,, we begin by applying the triangle inequality to obtain

le(®)] =

< Ky (t —7)h(d7)

Ahi
Sfar

+ Ky (t —7) h(d7)

At
Sndds

. (2.1)

/ Ky (t—7) h(dr)
T

By a corollary of the Radon-Nykodim Theorem (see Theorem 6.12 in [27]), it is possible to perform the polar

decomposition PS?;;; (h) (dr) = €?70(7) Psfx;rﬁ (h)‘ (dr) such that 6 (7) is a real function and PS?;E‘ (h)] is a
positive measure. Then
/ / K (t —7)h(d7)| dt < // K (¢ = )| [P (h)‘ (dr) dt
T |/ Sphi T Jsphi far
:/A | </|Khi (t—7)dt> [Py ()] (dr)
Sfa];‘ T far

<collPon, H : 2.2
= CO ‘ S::ru (h) TV ( )

where we have applied Fubini’s theorem and (1.10) (note that the total-variation norm of Psﬁal;i (h)‘ is
bounded by 2||z||p, < 00).



In order to control the second term in the right-hand side of ([2.1)), we use a first-order approximation of the
super-resolution kernel provided by the Taylor series expansion of 1 (1) = Ky,; (t — 7) around t;: for any 7
such that |7 —t;| < 0.16Ay;, we have

1
| i (t = 7) — K (t —t;) — Kp; (8 —t5) (t; —7)| < sup §|Kﬁi(u)|(7—ta‘)2-
w:t—t; —u|<0.16An;

Applying this together with the triangle inequality, and setting ¢; = 0 without loss of generality, give

Khi(tf'r)h(d'r) dtﬁ/ / Khi(t)h(d’r) de¢
Sk (5) T |/ 50k (5)
1
+/ / Ki; (t) Th(dr)|dt + 7/ / sup |K}: (u)] 72\h| (dr)|dt. (2.3)
b (5) 2 B () |t—ul <016

(To be clear, we do not lose generality by setting ¢; = 0 since the analysis is invariant by translation; in
particular by a translation placing ¢; at the origin. To keep things as simple as possible, we shall make a
frequent use of this argument.) We then combine Fubini’s theorem with (L.10]) to obtain

/ / Ky (t) h(d7) dtg/\Khi (t)|dt/ h(dr)| < Cy / h(dr) (2.4)
T |/ Snki () T i (4) Sakie (4)
and
C
KL, (1) vh (d7)| dt < / KL, ()] de / h(dr)| < & / h(dn)|.  (25)
S, () T A (5) Ani |52 )
Some Simple calculations show that (1.10) and imply
C
[ s IRl < 5 (2.6
T [t—u|<0.16Ap; A
for a positive constant Cy. This together with Fubini’s theorem yield
KL (w)] 72[h] (d7) dt</|K |dt/ 221 (dr)
Sakix (4) Sakie (4)
< CiSRF* I, 5 (h). (2.7)

In order to make use of these bounds, it is necessary to control the local action of the measure h on a constant
and a linear function. The following two lemmas are proved in Sections [2.2] and [2:3]

Lemma 2.2 Take T as in Theorem and any measure h obeying ||Qioh||,, < 28. Then
S|L, nan
for |/ sk

Lemma 2.3 Take T as in Theorem and any measure h obeying ||Qioh||,, < 2. Then

> /Sm(‘) (1 —t;) h(dr)

tj eT near

<26+HP h)HT +C g, (h).

far Shear

<C (Aloa W

far Shear

Py, (h)HTV + Mo T, (h) + My SRE? o, (h)) :

We may now conclude the proof of our main theorem. Indeed, the inequalities (2.2)), (2.3]), (2.4)), (2.5) and
(2.7) together with I, (h) < Iy, (h) imply

lell, < C (SRF4+ || Pors (1)

s (0)]| 4+ SRE [Py, ()| +SRF? Iy, (h) < € SRE?,

fdr Shear

where the second inequality follows from Lemma



2.1 Proof of Lemma 2.1]

The proof relies on the existence of a certain low-frequency polynomial, and we first recall Proposition 2.1

and Lemma 2.5 from [4].

Lemma 2.4 Suppose T obeys the separation condition (1.7) and take any v € CT! with lv;| = 1. Then

there exists a low-frequency trigonometric polynomial

fio

q(t): Z Ckei27rkt

k=—fio

obeying the following properties:

Co(t—1t,)° .
la@®) < 1- ===, te S (),
lo

lg(t)] < 1—Cy, te Sy,

with 0 < Cp, < 0.162C, < 1.

To prove Lemma [2.1] we work with v = Prh. Since q is low frequency,

[atvan| =] [ awaun @] <l 1Qutl, <2
T T
Next, since ¢ interpolates the sign of Prh on T,
Pl = [atopenan < | [aton ) + | [ awn )
<26+ ) /A q(t)h (dt)| + /A q(t)h (dt)] .
jer |V Sn(D\ {15} Star
Applying (2.10) in Lemma and Holder’s inequality, we obtain
<
/S?al;a a(t)h (db)) < HPS?alfq ‘Loc ‘ P (h)HTV

<(1- ob)] Po, (h)HTV.

far

Set t; = 0 without loss of generality. The triangle inequality and (2.9) in Lemma [2.4] yield

/. alth (@) < | la()] A (@)
Sndge(7)\{0} Snde(5)\{0}

2
</ Q—qf)wmw
Sl2. (7)\ {0} Ao

< Ih| (dt) — Cul o, . (h).
/sﬁggr<j>\{0} Sndg (5)

Combining (2.12)), (2.13) and (2.14) gives

— Cul g, (h).

[Prhl|pry <26 + [|Preh|py — Cb HPSQJ’ (h)HTV near

(2.8)
(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)



Observe that we can substitute A\, with Ap; in (2.12) and (2.14) and obtain

1Prhllpy < 25+ || Prehllpy — 0.16* Co SRE2 || P, (h)HTV — Cal gy (h).

This follows from using (2.9)) instead of (2.10) to bound the magnitude of ¢ on Sf)‘a‘;‘.

These inequalities can be interpreted as a generalization of the strong null-space property used to obtain
stability guarantees for super-resolution on a discrete grid (see Lemma 3.1 in [4]). Combined with the fact
that £ has minimal total-variation norm among all feasible points, they yield
llzllpy = [z + Allpy
2 |[z[|py = I1Prhllpey + [[Preh|lry

> (|| gy — 26 + Cp HPS:IO (h)HTV + Calgn, (h).
As a result, we conclude that

Gy ‘ P, (h)HTV + Cul g, (h) <26,

far near

and by the same argument,

0.16% C, SRF 2 ‘ Py (h)HTV + Cal g, (h) < 26.

far near

This finishes the proof.

2.2 Proof of Lemma [2.2]

The proof also relies upon the low-frequency polynomial from Lemma and the fact that ¢(t) is close to
v; when t is near ¢;. The intermediate result is proved in Section |§| of the Appendix.

Lemma 2.5 There is a polynomial q satisfying the properties from Lemma and, additionally,

C(t—t;)?

2 . forallte SNe (4).
lo

near

lq(t) — ;] <

Consider the polar form

i0;
e,

/ h(dr)
Sabi, (5)

where 0; € [0,27). We set v; = % in Lemma and apply the triangular inequality to obtain

/A, h (dr) :/A. e~ Wik (dr)
Snki (5) Sl (5)

near near

/ h(dr)=
Skl (7)

near

< / q(7T)h(dr)+ / (q(r) — e ) h(dr)|, (2.15)
Sade () Sadie ()
for all t; € T. By another application of the triangle inequality and
| a@n@n<|[a@nan)+| [ amnan) <25+ [P, o (2.16)
Sr/}ghir T Sf)\a};i far TV

10



To bound the remaining term in (2.15)), we combine (2.9 in Lemma and Holder’s inequality. With ¢; =0
(this is no loss of generality),

< / o Jalt) = e | |h (at)
S hi

near (\7)

/A _ (q(t) - efwj) h(dt)
Sndd: (4)

< CC i =1 h
= Jom 2, M0 = atney @)

It follows from this, (2.15]) and (2.16) that

/S ()

near

<25+ || Pgrus ()]|  +ClLgp, ().

far

The proof is complete.

2.3 Proof of Lemma [2.3

We record a simple lemma.

Lemma 2.6 For any measure ji and with t; = 0,

0.16\10
/ T (dr)
0

< 6.25 Ay SRF? I s,
.16)\11;

near

o (1)

Proof Note that in the interval [0.16Ap;, 0.16\10], ¢/0.16 Ay > 1, whence

0.16\10
/ 71 (dr)
0

0.16\10 0.16\10 7_2 )\12
< dr) < _— dr) < —2 7T . .
. <[ Trluan < [ G el ) < T ) 00

16Xn; 0.16An;

We now turn our attention to the proof of Lemma By the triangle inequality,

S|[, -tynn)| <

t]‘GT Sneha]r(j)
> / (r—t;)h(dr)| + / (r—tj)h(dr)|. (2.17)
¢,eT |/ Saddn(d) t,e1 |/ 0-16An<|7—1;|<0.16 A1,

The second term is bounded via Lemma [2.6] For the first, we use an argument very similar to the proof of
Lemma Here, we exploit the existence of a low-frequency polynomial that is almost linear in the vicinity
of the elements of T'. The result below is proved in Section [B] of the Appendix.

Lemma 2.7 Suppose T obeys the separation condition (L.7) and take any v € C!TI with lvj| = 1. Then
there exists a low-frequency trigonometric polynomial

fio

T« (t) — Z ckeiQﬂ-kt

k=—fio

11



obeying

Co (t —t;)° ,
)= v -t < 8L e s ), (218)
lq1(t)] < Cohio, T € Spie, (2.19)

for positive constants C,, Cy.

Consider the polar decomposition of

|, c-tnan=|[ -t)ne)
Sl (7) Sl (7)

where 6; € [0,27), t; € T, and set v; = e in Lemma Again, suppose t; = 0. Then

/ Th (dT) :/ e~Wirh (dr)
Snlge () CRENE)

near

elej ,

<

< /A ‘ (q1 (r) — e*ij) h(dr)| + /A q1 (7)h(dr). (2.20)
52d2: (4) Shdd

near (j)

The inequality (2.18) and Holder’s inequality allow to bound the first term in the right-hand side of (2.20)),

/ () —ei7) h(ar)
S lo

near (.7)

<[l - e e al an
Snde. (5

near (])

Caq
< 7% |h| (d7)
Ao s, )
< Cy o Isﬁéar(j) (h). (2.21)
Another application of the triangular inequality yields
/SM q1 () h(dr) < /ql (7) h(dT) +/SM g1 (7) h(dT). (2.22)
near T far

We employ Hélder’s inequality, (2.11)), (2.18) and (2.19) to bound each of the terms in the right-hand side.
First,

/q1 (T) h(dr)| < llallp [|@wohllL, < C Ao d. (2.23)
T
Second,

L, a@nan <[P @], _[[Po @, < e [l oof],, - @20

Combining (2.17) with these estimates gives

>

t; €T

<C (Aloa + o

far near

/S (7=t h(dr) Pose ]|+ Mo Tgny, () + M SRE? Ln ()

near (7)

as desired.

12



3 Discussion

We have shown that we could extrapolate the spectrum of a superposition of point sources by convex
programming and that the extrapolation error scales quadratically with the super-resolution factor. This is
a worst case analysis since the noise has bounded norm but is otherwise arbitrary. Natural extensions would
include stability studies using other error metrics and noise models. For instance, an analysis tailored to a
stochastic model might be able to sharpen Corollary and be more precise in its findings. In a different
direction, our techniques may be directly applicable to related problems. An example concerns the use of the
total-variation norm for denoising line spectra [1]. Here, it would be interesting to see whether our methods
allow to prove better denoising performance under a minimum-separation condition. Another example
concerns the recovery of sparse signals from a random subset of their low-pass Fourier coeflicients [37]. Here,
it is likely that our work would yield stability guarantees from noisy low-frequency data.

On the algorithmic side, suppose we use the Ly norm to constrain the feasible set,

min [|#]py  subject to Qi — |z, < 4. (3.1)

Then the dual problem takes the form

max Re [(Floy)" u] — & |lull, subject to |[Full, <1,
uec‘n oo

where n = 2f}, + 1 and Fj, denotes the linear operator that maps a function to its first n := 2 fj, + 1 Fourier
coefficients as in ((1.8)) so that Q1o = F} Fio. The dual can be recast as the semidefinite program (SDP)

) . Q u
max Re [(Fioy)" u] —d]lul], subject to [u* 1 =0,

<

1, =0,
Gidi = 3.2
1Q’“ {0, i=1,2,...,n—1, (32)

where @ is an n x n Hermitian matrix, leveraging a corollary to Theorem 4.24 in [8] (see also [1,/4L37]). In
most cases, this allows to solve the primal problem with high accuracy.

K2

Lemma 3.1 Let (Test, Uest) be a primal-dual pair of solutions to (3.1))—(3.2). For anyt € T with zest (t) # 0,

(Fo Uest) () = sign (zest (t)) -

Proof First, we can assume that y is low pass in the sense that Q;,y = y. Since ey is feasible, ||Fio(y —
Zest )|y = ||y — QroTest||L, < d. Second, strong duality holds here. Hence, the Cauchy-Schwarz inequality
gives

||xcst”Tv - Re [(F‘lo y)* 7-’@s‘c] - 6 ||ucst‘|2 = <Eo$csta ucst> + <Floy - ﬂoxcst7 ucst> - 5 ||ucst‘|2 S <xcst7 Ezucst> .

By Holder’s inequality and the constraint on Fy{ test, ||Test ||y = (Test, FloUest) S0 that equality holds. This

is only possible if F}fues equals the sign of z. at every point where x.s is nonzero. |

This result implies that it is usually possible to determine the support of the primal solution by locating those
points where the polynomial ¢(t) = (F}Suest)(t) has modulus equal to one. Once the support is estimated
accurately, a solution to the primal problem can be found by solving a discrete problem. Figure [3]shows the
result of applying this scheme to a simple example. We omit further details and defer the analysis of this
approach to future work.
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Figure 3: @ Original support of a signal obeying the minimum-separation condition (black)
along with its low-pass projection before (blue) and after adding noise (red). The low-pass
projection is obtained by truncating the spectrum of the signal to its first 101 Fourier coeffi-
cients. The noise added to the noiseless Fourier coefficients is i.i.d. Gaussian with amplitude
giving a signal-to-noise ratio of 31.5 dB. @ Original signal (blue) and estimate obtained by
solving the SDP (3.2)) (red).

14



Acknowledgements

E. C. is partially supported by AFOSR under grant FA9550-09-1-0643, by ONR under grant N00014-09-
1-0258 and by a gift from the Broadcom Foundation. C. F. is supported by a Fundacién Caja Madrid
Fellowship. We thank Carlos Sing-Long for useful feedback about an earlier version of the manuscript.

References

[1] B. N. Bhaskar, G. Tang, and B. Recht. Atomic norm denoising with applications to line spectral
estimation. Preprint.

[2] G. Bienvenu. Influence of the spatial coherence of the background noise on high resolution passive
methods. In Acoustics, Speech, and Signal Processing, IEEFE International Conference on ICASSP ’79.,
volume 4, pages 306 — 309, 1979.

[3] T. Blu, P. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot. Sparse sampling of signal innovations.
Signal Processing Magazine, IEEE, 25(2):31-40, 2008.

[4] E. J. Candes and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Commu-
nications on Pure and Applied Mathematics. To appear.

[5] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank. Sensitivity to basis mismatch in compressed
sensing. IEEE Transactions on Signal Processing, 59(5):2182-2195, 2011.

[6] D. L. Donoho. Superresolution via sparsity constraints. SIAM J. Math. Anal., 23(5):1309-1331, 1992.

[7] M. F. Duarte and R. G. Baraniuk. Spectral compressive sensing. Preprint.

[8] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applications. Springer, 2007.

[9] A. Fannjiang and W. Liao. Coherence-pattern guided compressive sensing with unresolved grids. STAM
J. Imaging Sci., 5:179, 2012.

[10] H. Greenspan. Super-resolution in medical imaging. Comput. J., 52:43-63, 2009.

[11] T. D. Harris, R. D. Grober, J. K. Trautman, and E. Betzig. Super-resolution imaging spectroscopy.
Appl. Spectrosc., 48(1):14A-21A, 1994.

[12] C. Helstrom. The detection and resolution of optical signals. Information Theory, IEEE Transactions
on, 10(4):275 — 287, 1964.

[13] L. Hu, Z. Shi, J. Zhou, and Q. Fu. Compressed sensing of complex sinusoids: An approach based on
dictionary refinement. Signal Processing, IEEE Transactions on, 60(7):3809 —3822, 2012.

[14] F. Itakura. Line spectrum representation of linear predictor coefficients of speech signals. The Journal
of the Acoustical Society of America, 57(51):S35-S35, 1975.

[15] J. Kennedy, O. Israel, A. Frenkel, R. Bar-Shalom, and H. Azhari. Super-resolution in PET imaging.
Medical Imaging, IEEE Transactions on, 25(2):137 —147, 2006.

[16] V. Khaidukov, E. Landa, and T. J. Moser. Diffraction imaging by focusing-defocusing: An outlook on
seismic superresolution. Geophysics, 69(6):1478-1490, 2004.

[17] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Annals

of Statistics, 28(5):1302-1053, 1992.

15



[18]
[19]

[20]

[21]
[22]

[23]

[24]
[25]

[26]

[27]
[28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

J. Lindberg. Mathematical concepts of optical superresolution. Journal of Optics, 14(8):083001, 2012.

D. Makovoz and F. R. Marleau. Point source extraction with MOPEX. Publications of the Astronomical
Society of the Pacific, 117(836):1113-1128, 2005.

C. W. McCutchen. Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am.,
57(10):1190-1190, 1967.

P. Milanfar, editor. Super-Resolution Imaging. Series: Digital Imaging and Computer Vision, 2010.

J. Odendaal, E. Barnard, and C. Pistorius. Two-dimensional superresolution radar imaging using the
MUSIC algorithm. Antennas and Propagation, IEEE Transactions on, 42(10):1386 —1391, 1994.

S. C. Park, M. K. Park, and M. G. Kang. Super-resolution image reconstruction: a technical overview.
Signal Processing Magazine, IEEE, 20(3):21 — 36, 2003.

R. Prony. Essai expérimental et analytique. J. de {’Ecole Polytechnique (Paris), 1(2):24-76, 1795.

K. G. Puschmann and F. Kneer. On super-resolution in astronomical imaging. Astronomy and Astro-

physics, 436:373-378, 2005.

R. Roy and T. Kailath. Esprit-estimation of signal parameters via rotational invariance techniques.
Acoustics, Speech and Signal Processing, IEEE Transactions on, 37(7):984 —995, 1989.

W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, 3rd edition, 1987.

R. Schmidt. Multiple emitter location and signal parameter estimation. Antennas and Propagation,
IEEE Transactions on, 34(3):276 — 280, 1986.

M. Shahram and P. Milanfar. Imaging below the diffraction limit: a statistical analysis. Image Process-
ing, IEEE Transactions on, 13(5):677 —689, 2004.

M. Shahram and P. Milanfar. On the resolvability of sinusoids with nearby frequencies in the presence
of noise. Signal Processing, IEEE Transactions on, 53(7):2579 — 2588, 2005.

D. Slepian. Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V - The discrete case.
Bell System Technical Journal, 57:1371-1430, 1978.

P. Stoica and N. Arye. MUSIC, maximum likelihood, and Cramer-Rao bound. Acoustics, Speech and
Signal Processing, IEEE Transactions on, 37(5):720 =741, 1989.

P. Stoica and P. Babu. Sparse estimation of spectral lines: Grid selection problems and their solutions.
Signal Processing, IEEE Transactions on, 60(2):962 —967, 2012.

P. Stoica, R. Moses, B. Friedlander, and T. Soderstrom. Maximum likelihood estimation of the param-
eters of multiple sinusoids from noisy measurements. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 37(3):378-392, 1989.

P. Stoica and R. L. Moses. Spectral Analysis of Signals. Prentice Hall, 2005.

P. Stoica and A. Nehorai. Statistical analysis of two nonlinear least-squares estimators of sine-wave
parameters in the colored-noise case. Clircuits, Systems, and Signal Processing, 8(1):3-15, 1989.

G. Tang, B. N. Bhaskar, P. Shah, and B. Recht. Compressed sensing off the grid. Preprint.

16



A Proof of Lemma [2.5]

We use the construction described in Section 2 of [4]. In more detail,

)= arG(t—ty) + G (t — ty),

treT

where a, 3 € ClT| are coefficient vectors,

M lo 4
o) = on (% 1)) . teT\{o}, (A1)
(% + 1) sin (rt)

and G(0) = 1; here, G is the ¢th derivative of G. If fi, is even, G(t) is the square of the Fejér kernel. By
construction, the coefficients o and 3 are selected such that for all ¢; € T,

q(t;) = v,
q'(t;) = 0.

Without loss of generality we consider ¢; = 0 and bound ¢ (t) —v, in the interval [0, 0.16A;,]. To ease notation,
we define w(t) = ¢ (t) — v; = wgr(t) + twr(t), where wg is the real part of w and w; the imaginary part.
Leveraging different results from Section 2 in |4] (in particular equations (2.23) and (2.25) and Lemmas 2.2
and 2.7), we have

|w Z Re ak G(2 t—tk Z Re ﬁk 3) t—tk)
treT treT
<llallp. D2 |6 @ =00 + 118l 3 |6 (¢ -t
tr €T tr €T

<c, ‘G@) (t)‘+ 3 ‘G@) (t—tk)’ + o ‘G(B) (t)‘+ 3 (G<3> (t — tr)
£ €T\ {0} £ €7\ (0)
<Cf.

The same bound holds for w;. Since wg(0), wx(0), wr(0) and w;(0) are all equal to zero, this implies
lwr(t)| < C'f2t? and |w;(t)] < C’f2t* in the interval of interest, which allows the conclusion

lw(t)] < C fizt®.

B Proof of Lemma 2.7

The proof is similar to that of Lemma[2.4] (see Section 2 of [4]), where a low-frequency kernel and its derivative
are used to interpolate an arbitrary sign pattern on a support satisfying the minimum-distance condition.
More precisely, we set

)= arG(t—ty) + BGO(t — 1), (B.1)

treT

where a, 8 € CIT| are coefficient vectors, G is defined by (A.1]). Note that G, G!) and, consequently, ¢; are
trigonometric polynomials of degree at most fy. By Lemma 2.7 in [4], it holds that for any tg € T and t € T
obeying |t — to| < 0.16\,,

\G“) (t— tk)\ < Cufie, (B.2)
t€T\{to}

17



where Cy is a positive constant for £ = 0,1, 2,3; in particular, Cy < 0.007, C; < 0.08 and Cy < 1.06. In
addition, there exist other positive constants C{j and C7, such that for all ¢y € T and ¢t € T with |t — to] < A/2,

> 60| = cift, (B:3)
treT\{to}
for £ = 0,1. We refer to Section 2.3 in [4] for a detailed description of how to compute these bounds.
In order to satisfy and , we constrain ¢ as follows: for each ¢; € T,
@ (t;) =0,
¢, (t;) = vj.

Intuitively, this forces ¢; to approximate the linear function v; (¢ —¢;) around t;. These constraints can be

expressed in matrix form,
Do D1 af 0
Dy Dof 8] |v]’

(Do)jy, =G (tj —te), (D1 =GW (t; —tr), (D2)yy, =GP (t; —ta),

and j and k range from 1 to |T|. It is shown in Section 2.3.1 of [4] that under the minimum-separation
condition this system is invertible, so that a and g are well defined. These coefficient vectors can consequently
be expressed as

where

_n-1
[g} - [ DOI Dl] S~'v, S:=Dy— DiD;'Dy,

where S is the Schur complement. Inequality (B.2)) implies

11 = Dol < Co, (B.4)
[[D1]|oe < C1 fios (B.5)
|1 = Ds||, < Cofi, 6

where & = |G@(0)| = 72 fio(fio +4)/3.

Let ||M|/s denote the usual infinity norm of a matrix M defined as ||[M|lo = max|,| -1 [|[Mz|o =
max; »; |a;j|. Then, if |[I — M|, < 1, the series Mt=I-I-M)"= dokso = M)" is conver-

gent and we have
1

<—

R e Ve S

This, together with (B.4]), (B.5) and implies
1

1
-1
167l = == <

17|

k1= S| < |IkI = Dal|o, + 1Dull | Do ] 1Dall < <02 " 1—100> fio

S\ 1 2\ L\ )
— < — < — <
(J ‘W—MFQ@‘C€<@+L%OﬁJ < o

for a certain positive constant C,. Note that due to the numeric upper bounds on the constants in (B.2)) Cj
is indeed a positive constant as long as fi, > 1. Finally, we obtain a bound on the magnitude of the entries
of a

—1H _ -1
157 ] = #

lallo = ||Dg D15 || < ||Dg ' DiS™| . < 11Do | [1P1llse 1157, < Caios (B.7)
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where C,, = C,C1/ (1 — Cy), and on the entries of
18l = [IS7"0l[ o < 187 < CoAis (B.8)

for a positive constant Cg = (. Combining these inequalities with (B.3]) and the fact that the absolute
values of G(t) and G™)(t) are bounded by one and 7 f;, respectively (see the proof of Lemma C.5 in [4]), we
have that for any ¢

()] =D arGE—ts)+ Y G (1 —ty)

treT treT

<l 216G (=t + 118l D |6D (¢ = ta)]

treT treT

<Cado [1IGOI+ Y (G-t | +Cd 60w+ Y [e®@-w)
t€T\{t;} t€T\{t;}
< Cp, (B.9)

where t; denotes the element in 7" nearest to ¢ (note that all other elements are at least A/2 away). Thus,

(2.19) holds.
The proof is completed by the following lemma, which proves (2.18)).

Lemma B.1 For any t; € T and t € T obeying |t —t;| < 0.16A;,, we have

2

)~y (= 1)) < SLZBE
lo

Proof We assume without loss of generality that t; = 0. By symmetry, it suffices to show the claim for
t € (0,0.16 Ai,). To ease notation, we define w(t) = v;t — ¢1(t) = wr(t) + iw;(t), where wg is the real part
of w and w; the imaginary part. Leveraging , and together with the fact that G(®(¢) and
G®)(t) are bounded by 4f2 and 67 respectively if [t| < 0.16)), (see the proof of Lemma 2.3 in [4]), we
obtain

jwi ()] =D Re(ax) G (t—tx) + > Re(Br) GP (t — 1)
treT treT
<llofle 32 [6® (6= )| + 18ll0 3 |6 ¢~ 1)
treT treT

< Caio ‘G(Q)(t)‘+ 3 ‘G(Q)(tftk)’ + O ‘G(?’)(t)’Jr 3 ’G(?’)(tftk)
t,€T\{0} t€T\{0}

S C(flo~

The same bound applies to w;. Since wg(0), wi(0), wr(0) and w}(0) are all equal to zero, this implies
lwr(t)] < C fiot>—and similarly for |w;(¢)|—in the interval of interest. Whence, |w(t)| < C fiot>. [ |
C Extension to multiple dimensions

Lemmas (together with Lemmal2.5)) and construct bounded low-frequency polynomials which interpo-
late a sign pattern on a well-separated set of points S and have bounded second derivatives in a neighborhood
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of S. In order to extend our results all we need is to prove their multidimensional analogs (in this case,
instead of bounding the second derivative, we must bound the eigenvalues of the Hessian matrix). One can
proceed in a way similar to the proof of Lemmas [2:4) and 2.7} namely, by using a low-frequency kernel con-
structed by tensorizing several squared Fejér kernels to interpolate the sign pattern, while constraining the
first-order derivatives to either vanish or have a fixed value. To do this, we can set up a system of equations
and prove that it is well conditioned using the rapid decay of the interpolation kernel away from the origin.
Finally, one can verify that the construction satisfies the required conditions by exploiting the fact that the
interpolation kernel and its derivatives are locally quadratic and rapidly decaying. This is spelled out in the
proof of Proposition C.1 in [4] to prove a version of Lemma in two dimensions.
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