18. High-Dimensional Problems: $p \gg N$

FIGURE 18.9. Cross-validated ROC curves for protein example using the string kernel. The numbers next to each method in the legend give the area under the curve, an overall measure of accuracy. The SVM achieves better sensitivities than the other two, which achieve better specificities.

18.5.2 Classification and Other Models Using Inner-Product Kernels and Pairwise Distances

There are a number of other classifiers, besides the support-vector machine, that can be implemented using only inner-product matrices. This also implies they can be “kernelized” like the SVM.

An obvious example is nearest-neighbor classification, since we can transform pairwise inner-products to pairwise distances:

$$||x_i - x_{i'}||^2 = \langle x_i, x_i \rangle + \langle x_{i'}, x_{i'} \rangle - 2 \langle x_i, x_{i'} \rangle.$$ \hfill (18.27)

A variation of 1-NN classification is used in Figure 18.9, which produces a continuous discriminant score needed to construct a ROC curve. This distance-weighted 1-NN makes use of the distance of a test points to the closest member of each class; see Exercise 18.14.

Nearest-centroid classification follows easily as well. For training pairs $(x_i, g_i), i = 1, \ldots, N$, a test point x_0, and class centroids $\bar{x}_k, k = 1, \ldots, K$ we can write

$$||x_0 - \bar{x}_k||^2 = \langle x_0, x_0 \rangle - \frac{2}{N_k} \sum_{g_i = k} \langle x_0, x_i \rangle + \frac{1}{N_k^2} \sum_{g_i = k} \sum_{g_{i'} = k} \langle x_i, x_{i'} \rangle.$$ \hfill (18.28)
Hence we can compute the distance of the test point to each of the centroids, and perform nearest centroid classification. This also implies that methods like K-means clustering can also be implemented, using only the inner products of the data points.

Logistic and multinomial regression with quadratic regularization can also be implemented with inner-product kernels; see Section 12.3.3 and Exercise 18.13. Exercise 12.10 derives linear discriminant analysis using an inner-product kernel.

Principal components can be computed using inner-product kernels as well; since this is frequently useful, we give some details. Suppose first that we have a centered data matrix X, and let $X = UDV^T$ be its SVD (18.12). Then $Z = UD$ is the matrix of principal component variables (see Section 14.5.1). But if $K = XX^T$, then it follows that $K = UD^2U^T$, and hence we can compute Z from the eigen decomposition of K. If X is not centered, then we can center it using $\tilde{X} = (I - M)X$, where $M = \frac{1}{N}11^T$ is the mean operator. Thus we compute the eigenvectors of the double-centered kernel $(I - M)K(I - M)$ for the principal components from an uncentered inner-product matrix. Exercise 18.15 explores this further, and Section 14.5.4 discusses in more detail kernel PCA for general kernels, such as the radial kernel used in SVMs.

If instead we had available only the pairwise (squared) Euclidean distances between observations,

$$\Delta_{ii'}^2 = ||x_i - x_{i'}||^2,$$ \hspace{1cm} (18.29)

it turns out we can do all of the above as well. The trick is to convert the pairwise distances to centered inner-products, and then proceed as before. We write

$$\Delta_{ii'}^2 = ||x_i - \bar{x}||^2 + ||x_{i'} - \bar{x}||^2 - 2\langle x_i - \bar{x}, x_{i'} - \bar{x} \rangle.$$ \hspace{1cm} (18.30)

Defining $B = \{-\Delta_{ii'}^2/2\}$, we double center B:

$$\tilde{K} = (I - M)B(I - M);$$ \hspace{1cm} (18.31)

it is easy to check that $\tilde{K}_{ii'} = \langle x_i - \bar{x}, x_{i'} - \bar{x} \rangle$, the centered inner-product matrix.

Distances and inner-products also allow us to compute the medoid in each class—the observation with smallest average distance to other observations in that class. This can be used for classification (closest medoids), as well as to drive k-medoids clustering (Section 14.3.10). With abstract data objects like proteins, medoids have a practical advantage over means. The medoid is one of the training examples, and can be displayed. We tried closest medoids in the example in the next section (see Table 18.3), and its performance is disappointing.

It is useful to consider what we cannot do with inner-product kernels and distances: