Statistics 116 - Fall 2004

Theory of Probability

Final Exam, December 10th, 2004

Solutions

Instructions: Answer Q. 1-6. All questions have equal weight. The exam is open book. In addition, you are allowed a maximum of 3 pages of handwritten notes.

Q. 1) Let \(X \) be a continuous random variable with density function

\[
f_X(x) = \frac{4}{3} \left(\frac{x}{3} \right)^3 \exp \left(-\left(\frac{x}{3} \right)^4 \right), \quad x \geq 0
\]

for constants \(\alpha, \beta > 0 \).

(a) Compute \(h_X(x) \), the hazard rate function of \(X \).

(b) Compute \(P(X > 4 | X > 3) \).

Solution:

(a) By definition

\[
h_X(x) = \frac{f_X(x)}{1 - F_X(x)}
\]

and

\[
1 - F_X(x) = \int_x^\infty f_X(t) \, dt
\]

\[
= \int_x^\infty \frac{4}{3} \left(\frac{t}{3} \right)^3 \exp \left(-\left(\frac{t}{3} \right)^4 \right) \, dt
\]

\[
= - \exp \left(-\left(\frac{t}{3} \right)^4 \right) \bigg|_x^\infty
\]

\[
= \exp \left(-\left(\frac{x}{3} \right)^4 \right)
\]

Therefore,

\[
h_X(x) = \frac{\frac{4}{3} \left(\frac{x}{3} \right)^3 \exp \left(-\left(\frac{x}{3} \right)^4 \right)}{\exp \left(-\left(\frac{x}{3} \right)^4 \right)} = \frac{4}{3} \left(\frac{x}{3} \right)^3.
\]
Q. 2) Let $X \sim \text{Geometric}(p)$ be a Geometric random variable.

(a) Show that $P(X > n) = (1 - p)^n$.

HINT: USE THE FACT THAT $\sum_{j=0}^{\infty} p(1 - p)^{j-1} = 1$.

(b) Show that X has the following memoryless property:
 For any integers n and m, with $n > m$

 $$P(X > n | X > m) = P(X > n - m).$$

Solution:

(a)

$$P(X > n) = P(\text{first } n \text{ trials were failures}) = (1 - p)^n.$$

(b) For $n > m$

$$P(X > n | X > m) = \frac{P(X > n, X > m)}{P(X > m)}$$

$$= \frac{P(X > n)}{P(X > m)}$$

$$= \frac{(1 - p)^n}{(1 - p)^m}$$

$$= (1 - p)^{n-m}$$

$$= P(X > n - m).$$
Q. 3) A fair die is rolled \(n \) times with the results denoted by \((R_i)_{i \geq 1}\).

(a) For \(n \) fixed, show that the expected value of the sum of the first \(n \) rolls

\[E \left(\sum_{i=1}^{n} R_i \right) = n \frac{7}{2} \]

(b) For \(n \) fixed, show that the variance of the sum of the first \(n \) rolls

\[E \left(\sum_{i=1}^{n} R_i \right) = n \frac{35}{12} \]

(c) Suppose that instead of fixing \(n \), the die is continually rolled until the total sum of all rolls exceeds 300. Approximate the probability that at least 80 rolls are needed.

(a)

\[E(\sum_{i=1}^{n} R_i) = \sum_{i=1}^{n} E(R_i) = \sum_{i=1}^{n} \frac{1}{6}(1 + 2 + 3 + 4 + 5 + 6) = \sum_{i=1}^{n} \frac{7}{2} = n \frac{7}{2}. \]

(b)

By independence,

\[\text{Var}(\sum_{i=1}^{n} R_i) = \sum_{i=1}^{n} \text{Var}(R_i) = n \text{Var}(R_1). \]

\[\text{Var}(R_1) = \frac{1}{6}(1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2) - \frac{49}{4} = \frac{35}{12} \]

3
Q. 4) The joint density function of X and Y is given by

$$f(x, y) = \frac{e^{-yx^2/2}}{\sqrt{2\pi/y}} \cdot ye^{-y}, \quad -\infty < x < \infty, y > 0.$$

(a) Find the conditional density $f_{X|Y}(x|y)$ of X given $Y = y$.
(b) Compute $E(X|Y)$.
(c) Compute $\text{Var}(X|Y)$.
(d) Compute $\text{Var}(X)$.

Solution:

(a) By inspection, it is not hard to see that

$$f_Y(y) = ye^{-y}, \quad y \geq 0$$

and

$$f_{X|Y}(x|y) = \frac{e^{-yx^2/2}}{\sqrt{2\pi/y}}$$

is a Normal density with mean 0 and variance $1/y$. Or,

$$X|Y = y \sim N(0, 1/y).$$

(b) As the conditional distribution is $N(0, 1/Y)$

$$\text{Var}(X|Y) = 1/Y.$$

(c) As the conditional distribution is $N(0, 1/Y)$

$$E(X|Y) = 0.$$

(d) Similarly,

$$\text{Var}(X|Y) = 1/Y.$$

(e)

$$\text{Var}(X) = E(\text{Var}(X|Y)) + \text{Var}(E(X|Y))$$

$$= E(1/Y) + \text{Var}(0)$$

$$= \int_0^\infty \frac{1}{y} ye^{-y} \, dy$$

$$= \int_0^\infty e^{-y} \, dy$$

$$= \int_0^\infty e^{-y} \, dy$$

$$= 1.$$
Q. 5) Suppose that X and Y are independent $\text{Exp}(\lambda)$ random variables and let

$$Z = \frac{X}{X+Y}.$$

Show that, for $0 < z < 1$

$$F_Z(z) = P(Z \leq z) = z,$$

i.e. the random variable Z is uniformly distributed over $(0, 1)$.

Hint: express $F_Z(z)$ as a double integral.

Solution:

For $0 < z < 1$

\[
P(Z \leq z) = P(X/(X + Y) \leq z) = P(X \leq Xz + Yz) = P(X(1 - z)/z \leq Y) = P((X,Y) \in \{(x,y) : x(1 - z)/z \leq y\}) = \int_{0}^{\infty} \left(\int_{x(1-z)/z}^{\infty} \lambda e^{-\lambda y} \, dy \right) \lambda e^{-\lambda x} \, dx
\]

\[
= \int_{0}^{\infty} e^{-\lambda x(1-z)/z} \lambda e^{-\lambda x} \, dx = \int_{0}^{\infty} \lambda e^{-\lambda x/z} \, dx = z.
\]
Q. 6) A coin having probability p of coming up heads is continually flipped until both heads and tails have appeared. Let X denote the total number of flips necessary.

(a) What is the probability that the last flip lands heads?

(b) Argue that conditional on the first flip being a head, $X - 1$ has a $\text{Geometric}(1 - p)$ distribution. That is, if

$$H = \{\text{first flip results in heads}\}$$

then

$$X - 1 | H \sim \text{Geometric}(1 - p).$$

(c) Argue that conditional on the first flip being a tail

$$X - 1 | T \sim \text{Geometric}(p),$$

with

$$T = \{\text{first flip results in tails}\}.$$

(d) Show that

$$E(X) = E(X | H) P(H) + E(X | H^c) P(H^c)$$

$$= E(X | H) P(H) + E(X | T) P(T)$$

$$= \left(1 + \frac{1}{1 - p}\right) p + \left(1 + \frac{1}{p}\right) (1 - p)$$

$$= 1 + \frac{p}{1 - p} + \frac{1 - p}{p}. $$

Solution:

(a) Let

$$E = \{\text{last flip is heads}\}.$$

Then

$$E = \{\text{first flip is tails}\}.$$

Therefore,

$$P(E) = 1 - p.$$

(b) If the first flip is heads, then 1 flip has been completed and what remains to occur is for a tail to occur. Therefore, the remaining amount, minus the first 1 flip, is Geometric with parameter $1 - p$.

(c) Similar to (b).

(d) Show that

$$E(X) = E(X | H) P(H) + E(X | H^c) P(H^c)$$

$$= E(X | H) P(H) + E(X | T) P(T)$$

$$= \left(1 + \frac{1}{1 - p}\right) p + \left(1 + \frac{1}{p}\right) (1 - p)$$

$$= 1 + \frac{p}{1 - p} + \frac{1 - p}{p}. $$