Estimation of Sparse Binary Markov Networks

Holger Höfling PhD thesis

November 30, 2008
Graphical models

- Model of joint distribution of a set of random variables
- Graph represents dependencies among random variables
- Two main types of graphical models
 - Directed acyclic graph (DAG); known as Bayesian network
 - **Here:** Undirected graph; known as Markov network or Markov random field
- Very useful in many applications
 - Speech recognition
 - Modeling of gene regulatory networks
 - Modeling of genetic variation (e.g. HapMap data)
Example: Voting

A board consists of 4 people that can vote

Several rounds of voting data available

Possible questions:

- Do blocks of voters exist?
- How strongly do the blocks vote together?

<table>
<thead>
<tr>
<th>Allen</th>
<th>Bell</th>
<th>Cox</th>
<th>Dole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Pairwise Binary Markov network

- Underlying graph $G = (V, E)$
- Data are binary random vectors $x = (x_1, \ldots, x_p)^T \in \{0, 1\}^p$
- Parameter matrix $\Theta \in \mathbb{R}^{p \times p}$, symmetric
- $(u, v) \in E$ iff $\theta_{uv} \neq 0$
- Distribution given by

$$\log p(x, \Theta) = \sum_{s \geq t \geq 1}^{p} \theta_{st} x_s x_t - \Psi(\Theta)$$

- $\Psi(\Theta)$ is the log-normalization constant; also known as partition function
Partition function defined as

$$\psi(\Theta) = \log \left(\sum_{x \in \{0,1\}^p} \exp \left(\sum_{s \geq t} \theta_{st} x_s x_t \right) \right)$$

Partition function in general requires to sum over 2^p elements

Inference in general model prohibitively expensive
Faster algorithms that exploit sparse graph structure exist
- Exact: e.g. Junction Tree algorithm
- Approximate: e.g. Loopy Belief Propagation; MCMC

Use L_1 penalized log-likelihood

(Lee, Ganapathi & Koller 2007) proposes using L_1 penalized log-likelihood to get sparse graphs

Also derives an exact procedure to maximize penalized log-likelihood

(Wainwright, Ravikumar & Lafferty 2007) suggest approximate procedure
Goals

- Develop a fast algorithm
- Find approximate procedure that can be extended to give exact results
- Compare accuracy of approximate procedures to exact results
(Wainwright et al. 2007): Estimate row i of Θ by a penalized logistic regression of X_i onto $X_{\setminus i}$, i.e.

$$X_i \sim \text{Bernoulli}(p) \quad \text{with} \quad \text{logit}(p) = \theta_{ii} + \sum_{j \neq i} x_j \theta_{ij}.$$

then symmetrize Θ. We use 2 methods to make Θ symmetric, referred to as Wainwright-min and Wainwright-max.

(Lee et al. 2007): Optimizes the L_1 penalized log-likelihood by optimizing over reduced variable set F, that is being extended by grafting.
Graphical lasso idea works, but is too slow. Have to make too many evaluations of the log-likelihood.
Use pseudo-likelihood function (see (Besag 1975)) instead of likelihood:

\[
\tilde{l}(\Theta|x) = \sum_{s=1}^{p} \log p(x_s, \Theta|x_{\setminus s})
\]

where

\[
\log p(x_s, \Theta|x_{\setminus s}) = x_s(\theta_{ss} + \sum_{s \neq t} x_t \theta_{st}) - \Psi_s(x, \Theta)
\]

with \(\Psi_s(x, \Theta) = \log(1 + \exp(\theta_{ss} + \sum_{t \neq s} x_t \theta_{st}))\), the normalization constant from logistic regression.

Different than (Wainwright et al. 2007) as optimization is jointly over all of \(\Theta\) instead of only one vector at a time.

No need to use min or max rule.
Simulation setup

- Use $p = 50$ random variables
- Draw sparse random $\Theta \in \mathbb{R}^{50 \times 50}$ with
 - Diagonal elements uniformly from $\{-0.5, 0, 0.5\}$
 - Edges at random s.t. on average every node has 4 neighbours
 - Weights -0.5 or 0.5 uniformly on edges
- Using Θ generate $n = 300$ observations using Gibbs sampling
Sparse Pairwise Binary Markov Networks

Introduction
Competing methods
Pseudo-likelihood
Results

Speed comparison

P=50, N=300, Neigh=4

Computation time (s)

Lee et al.
Exact using Pseudo-likelihood

Number of edges

Holger Höfling PhD thesis
Estimation of Sparse Binary Markov Networks
Introduction

Competing methods

Pseudo-likelihood

Results

Speed comparison

P=50, N=300, Neigh=4

Computation time (s)

Number of edges

Wainwright et al.
Pseudo-likelihood

Holger Höfling PhD thesis

Estimation of Sparse Binary Markov Networks
Sparse Pairwise Binary Markov Networks

Introduction
Competing methods
Pseudo-likelihood
Results

ROC curve

P=50, N=300, Neigh=4

False positive rate
True positive rate

Exact
Wainwright-min
Wainwright-max
Pseudo-likelihood

P=20, N=200, Neigh=3

P=60, N=300, Neigh=4
Kullback-Leibler divergence

P = 50, N = 300, Neigh = 4

Number of edges

KL−divergence

0 50 100 150

0.5 0.6 0.7

Exact
Wainwright-min
Wainwright-max
Pseudo-likelihood

Holger Höfling PhD thesis
Estimation of Sparse Binary Markov Networks
Conclusion

- Our algorithm is faster than the competing exact method of (Lee et al. 2007)
- (Wainwright et al. 2007) and pseudo-likelihood methods are **much** faster and only slightly less accurate for sparse graphs
- In small models, use exact method
- If application time sensitive or model larger, use pseudo-likelihood method
Possible Extensions

- Belief Nets (Geoff Hinton)- multi-layer networks with layers of hidden (unobserved) binary units.
Introduction

Competing methods

Pseudo-likelihood

Results

