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SUMMARY
We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance
matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm—the graphical
lasso—that is remarkably fast: It solves a 1000-node problem (~500 000 parameters) in at most a minute
and is 30-4000 times faster than competing methods. It also provides a conceptual link between the
exact problem and the approximation suggested by Meinshausen and Biihimann (2006). We illustrate the
method on some cell-signaling data from proteomics.
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1. INTRODUCTION

In recent years a number of authors have proposed the estimation of sparse undirected graphical models
through the use of Ly (lasso) regularization. The basic model for continuous data assumes that the ob-
servations have a multivariate Gaussian distribution with mean x and covariance matrix X. If the ijth
component of 1 is zero, then variables i and j are conditionally independent, given the other variables.
Thus, it makes sense to impose an L penalty for the estimation of =~ to increase its sparsity.

Meinshausen and Biihimann (2006) take a simple approach to this problem; they estimate a sparse
graphical model by fitting a lasso model to each variable, using the others as predictors. The component
2i‘jl is then estimated to be nonzero if either the estimated coefficient of variable i on j or the estimated
coefficient of variable j on i is nonzero (alternatively, they use an AND rule). They show that asymptoti-
cally, this consistently estimates the set of nonzero elements of = 1.
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Other authors have proposed algorithms for the exact maximization of the L 1-penalized log-likelihood;
Yuan and Lin (2007), Banerjee and others (2007), and Dahl and others (2007) adapt interior-point
optimization methods for the solution to this problem. Both papers also establish that the simpler ap-
proach of Meinshausen and Bilhimann (2006) can be viewed as an approximation to the exact problem.

We use the blockwise coordinate descent approach in Banerjee and others (2007) as a launching
point and propose a new algorithm for the exact problem. This new procedure is extremely simple and is
substantially faster competing approaches in our tests. It also bridges the “conceptual gap” between the
(Meinshausen and Biihimann, 2006) proposal and the exact problem.

2. THE PROPOSED METHOD

Suppose, we have N multivariate normal observations of dimension p, with mean x and covariance X.
Following Banerjee and others (2007), let ® = £~ and let S be the empirical covariance matrix, the
problem is to maximize the penalized log-likelihood

logdet ® — tr(S®) — p||0||1 (2.2)

over nonnegative definite matrices ®. Here, tr denotes the trace and ||®||1 is the L1 norm—the sum
of the absolute values of the elements of X~1. Expression (2.1) is the Gaussian log-likelihood of the
data, partially maximized with respect to the mean parameter x. Yuan and Lin (2007) solve this problem
using the interior-point method for the “maxdet” problem, proposed by Vandenberghe and others (1998).
Banerjee and others (2007) develop a different framework for the optimization, which was the impetus
for our work.

Banerjee and others (2007) show that the problem (2.1) is convex and consider estimation of X (rather
than = 1) as follows. Let W be the estimate of . They show that one can solve the problem by optimizing
over each row and corresponding column of W in a block coordinate descent fashion. Partitioning W and S

W w S S
W= _T_l 12 5= _T—l 12 ’ 2.2)
W1y W22 Si2 S22
they show that the solution for w1, satisfies

w1z = argminy {y Wity [y = s12lle < p}- (2.3)

This is a box-constrained quadratic program (QP), which they solve using an interior-point procedure.
Permuting the rows and columns so the target column is always the last, they solve a problem like (2.3)
for each column, updating their estimate of W after each stage. This is repeated until convergence. If this
procedure is initialized with a positive definite matrix, they show that the iterates from this procedure
remains positive definite and invertible, even if p > N.

Using convex duality, Banerjee and others (2007) go on to show that solving (2.3) is equivalent to

solving the dual problem
1/2

ming{31IWy; 8 = bl + plIAll1}, (2.4)
where b = Wl_ll/zslzi; if S solves (2.4), then w12 = W11 solves (2.3). Expression (2.4) resembles a
lasso regression and is the basis for our approach.

TWe note that while most authors use this formulation, Yuan and Lin (2007) omit the diagonal elements from the penalty.
*The corresponding expression in Banerjee and others (2007) does not have the leading % and has a factor of % in b. We have

written it in this equivalent form to avoid factors of % later.



Sparse inverse covariance estimation with the graphical lasso 3

First we verify the equivalence between the solutions (2.1) and (2.4) directly. Expanding the relation
W® = | gives an expression that will be useful below:

Wi w12\ (O 612 ( I 0)
= . (2.5)
(U)IZ U)QZ)(Q:LTZ 922) or 1
Now the subgradient equation for maximization of the log-likelihood (2.1) is

W-S—p.-T=0, (2.6)

using the fact that the derivative of logdet® equals ®~1 = W, given in, for example, Boyd and
Vandenberghe (2004, p 641). Here Tjj € sign(®ij); thatis Tjj = sign(®ij) if ©jj # 0, else T'jj € [-1, 1]
if ®j; =0.

Now the upper right block of (2.6) is

w12 —S12 — p - y12 = 0. (2.7)
On the other hand, the subgradient equation from (2.4) works out to be
Wup —si2+p-v =0, (2.8)

where v € sign(p) elementwise. Now suppose (W, I') solves (2.6), and hence, (w12, y12) solves (2.7).
Then g = Wl_llwlz and v = —y12 solves (2.8). The equivalence of the first 2 terms is obvious. For the
sign terms, since W11612 + w1262 = 0 from (2.5), we have that 61, = —ngwl‘llwlz. Since 07 > 0,
it follows that sign(612) = —Sign(Wl_llwlz) = —sign(p). This proves the equivalence. We note that the
solution g to the lasso problem (2.4) gives us (up to a negative constant) the corresponding part of ®:
012 = —0228.

Now to the main point of this paper. Problem (2.4) looks like a lasso (L1-regularized) least-squares
problem. In fact if W11 = Si1, then the solutions 2 are easily seen to equal the lasso estimates for the pth
variable on the others and hence related to the Meinshausen and Bilhimann (2006) proposal. As pointed
out by Banerjee and others (2007), W11 # Sip1 in general, and hence, the Meinshausen and Biihlmann
(2006) approach does not yield the maximum likelihood estimator. They point out that their blockwise
interior point procedure is equivalent to recursively solving and updating the lasso problem (2.4), but do
not pursue this approach. We do, to great advantage, because fast coordinate descent algorithms (Friedman
and others, 2007) make solution of the lasso problem very attractive.

In terms of inner products, the usual lasso estimates for the pth variable on the others take as input
the data S1; and s1». To solve (2.4), we instead use W11 and s12, where W11 is our current estimate of the
upper block of W. We then update w and cycle through all of the variables until convergence.

Note that from (2.6), the solution wjj = sjj + p for all i, since 6;; > 0, and hence, I'jj = 1. For
convenience we call this algorithm the graphical lasso. Here is the algorithm in detail:

Graphical lasso algorithm

1. Start with W = S + pl. The diagonal of W remains unchanged in what follows.

2. Foreach j = 1,2,...p,1,2,...p,..., solve the lasso problem (2.4), which takes as input the
inner products W11 and s12. This gives a p — 1 vector solution ﬁ Fill in the corresponding row and
column of W using w1y = W1 .

3. Continue until convergence.

There is a simple, conceptually appealing way to view this procedure. Given a data matrix X and
outcome vector y, we can think of the linear least-squares regression estimates (X X)~1X Ty as functions
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not of the raw data, but instead the inner products XT X and XTy. Similarly, one can show that the lasso
estimates are functions of these inner products as well. Hence, in the current problem, we can think of the
lasso estimates for the pth variable on the others as having the functional form

laSSO(Sll, 512) P) (29)

But application of the lasso to each variable does not solve problem (2.1); to solve this via the graphical
lasso we instead use the inner products W13 and s12. That is, we replace (2.9) by

lasso(W1, S12, p). (2.10)

The point is that problem (2.1) is not equivalent to p separate regularized regression problems, but to
p coupled lasso problems that share the same W and ® = W1, The use of W11 in place of Sy1 shares
the information between the problems in an appropriate fashion.

Note that each iteration in step (2.2) implies a permutation of the rows and columns to make the target
column the last. The lasso problem in step (2.2) above can be efficiently solved by coordinate descent
(Friedman and others, 2007; Wu and Lange, 2007). Here are the details. Letting V = W11 and u = s32,
then the update has the form

§ (uj = Zisj Vi p)

Bi : 2.11)
Vijj
forj=1,2,...,p,12,...p,..., where S is the soft-threshold operator:
S(x, t) = sign(x)(|x| — t)4. (2.12)

We cycle through the predictors until convergence. In our implementation, the procedure stops when the
average absolute change in W is less than t - ave|S~919|, where S~9128 are the off-diagonal elements of
the empirical covariance matrix S, and t is a fixed threshold, set by default at 0.001.

Note that /4 will typically be sparse, and so the computation w1, = W11/ will be fast; if there are r
nonzero elements, it takes rp operations.

Although our algorithm has estimated £ = W, we can recover @ = W1 relatively cheaply. Note
that from the partitioning in (2.5), we have

Wi1612 + wi2622 =0,
w012 + Wb = 1,
from which we derive the standard partitioned inverse expressions
12 = —W w1202, (2.13)
022 = 1/ (w22 — Wy ' 012). (2.14)
But since f = Wy w12, we have that 2 = 1/(wz2 — wi,f) and b1 = —pl2,. Thus, bi is a simple re-
scaling of ﬁ by —6&5,, which is easily computed. Although these calculations could be included in step 2.2
of the graphical lasso algorithm, they are not needed till thg end; hence, we store all the coefficients g for
each of the p problemsina p x p matrix B and compute ® after convergence.
Interestingly, if W = S, these are just the formulas for obtaining the inverse of a partitioned matrix.

That is, if we set W = S and p = 0 in the above algorithm, then one sweep through the predictors
computes S~1, using a linear regression at each stage.
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REMARK 2.1 In some situations it might make sense to specify different amounts of regularization for
each variable, or even allow each inverse covariance element to be penalized differently. Thus, we maxi-
mize the log-likelihood

logdet ® — tr(S®) — [|© = P||1, (2.15)

where P = {pjk} with pjx = pkj, and = indicates componentwise multiplication. It is easy to show
that (2.15) is maximized by the preceding algorithm, with p replaced by pjx in the soft-thresholding step
(2.11). Typically, one might take pjk = ,/pjpk for some values p1, p2, ... pp, to allow different amounts
of regularization for each variable.

REMARK 2.2 If the diagonal elements are left out of the penalty in (2.1), the solution for wj; is simply
sii, and otherwise the algorithm is the same as before.

3. TIMING COMPARISONS

We simulated Gaussian data from both sparse and dense scenarios, for a range of problem sizes p.
The sparse scenario is the AR(1) model taken from Yuan and Lin (2007): (X 1)ij = 1, (7 Yii—1 =
(27 Yi_1i = 0.5, and zero otherwise. In the dense scenario, (2~ 1)ii = 2, (X7 1)i;» = 1 otherwise. We
chose the penalty parameter so that the solution had about the actual number of honzero elements in the
sparse setting and about half of total number of elements in the dense setting. The graphical lasso proce-
dure was coded in Fortran, linked to an R language function. All timings were carried out on a Intel Xeon
2.80 GHz processor.

We compared the graphical lasso to the COVSEL program provided by Banerjee and others (2007).
This is a Matlab program, with a loop that calls a C language code to do the box-constrained QP for each
column of the solution matrix. To be as fair as possible to COVSEL, we only counted the CPU time spent
in the C program. We set the maximum number of outer iterations to 30 and, following the authors code,
set the the duality gap for convergence to 0.1.

The number of CPU seconds for each trial is shown in Table 1. The algorithm took between 2 and 8
iterations of the outer loop. In the dense scenarios for p = 200 and 400, COVSEL had not converged by
30 iterations. We see that the graphical lasso is 30—4000 times faster than COVSEL and only about 2-10
times slower than the approximate method.

Figure 1 shows the number of CPU seconds required for the graphical lasso procedure, for problem
sizes up to 1000. The computation time is O(p?) for dense problems and considerably less than that
for sparse problems. Even in the dense scenario, it solves a 1000-node problem (~500 000 parameters)
in about a minute. However, the computation time depends strongly on the value of p, as illustrated in
Table 2.

Table 1. Timings (seconds) for graphical lasso, Meinhausen—Buhlmann approximation,

and COVSEL procedures

p Problem (1) Graphical (2) Approximation (3) COVSEL Ratio of

type lasso (3)to (1)
100  Sparse 0.014 0.007 34.7 2476.4
100  Dense 0.053 0.018 2.2 40.9
200  Sparse 0.050 0.027 >205.35 >4107
200  Dense 0.497 0.146 16.9 33.9
400  Sparse 1.23 0.193 >1616.7 >1314.3

400  Dense 6.2 0.752 313.0 50.5
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Fig. 1. Number of CPU seconds required for the graphical lasso procedure.

Table 2. Timing results for dense scenario, p = 400, for different values of the regularization
parameter p. The middle column is the number of nonzero coefficients

P Fraction nonzero CPU time (s)
0.01 0.96 26.7
0.03 0.62 85
0.06 0.36 4.1
0.60 0.00 0.4
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Fig. 2. Directed acylic graph from cell-signaling data, from Sachs and others (2003).
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Fig. 3. Cell-signaling data: Undirected graphs from graphical lasso with different values of the penalty parameter p.
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Fig. 4. Cell-signaling data: Profile of coefficients as the total L1 norm of the coefficient vector increases, that is as p
decreases. Profiles for the largest coefficients are labeled with the corresponding pair of proteins.
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Fig. 5. Cell-signaling data. Left panel shows 10-fold cross-validation using both regression and likelihood approaches
(details in text). Right panel compares the regression sum of squares of the exact graphical lasso approach to the
Meinhausen—-Buhlmann approximation.
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4. ANALYSIS OF CELL-SIGNALLING DATA

For illustration, we analyze a flow cytometry data set on p = 11 proteins and n = 7466 cells, from Sachs
and others (2003). These authors fit a directed acyclic graph (DAG) to the data, producing the network in
Figure 2.

The result of applying the graphical lasso to these data is shown in Figure 3, for 12 different values
of the penalty parameter p. There is moderate agreement between, for example, the graph for L1 norm =
0.00496 and the DAG:The former has about half of the edges and nonedges that appear in the DAG.
Figure 4 shows the lasso coefficients as a function of total L1 norm of the coefficient vector.

In the left panel of Figure 5, we tried 2 different kinds of 10-fold cross-validation for estimation of
the parameter p. In the “regression” approach, we fit the graphical lasso to nine-tenths of the data and
used the penalized regression model for each protein to predict the value of that protein in the validation
set. We then averaged the squared prediction errors over all 11 proteins. In the “likelihood” approach,
we again applied the graphical lasso to nine-tenths of the data and then evaluated the log-likelihood (2.1)
over the validation set. The 2 cross-validation curves indicate that the unregularized model is the best, not
surprising given the large number of observations and relatively small number of parameters. However,
we also see that the likelihood approach is far less variable than the regression method.

The right panel compares the cross-validated sum of squares of the exact graphical lasso approach to
the Meinhausen—Buhlmann approximation. For lightly regularized models, the exact approach has a clear
advantage.

5. DISCUSSION

We have presented a simple and fast algorithm for estimation of a sparse inverse covariance matrix using
an L penalty. It cycles through the variables, fitting a modified lasso regression to each variable in turn.
The individual lasso problems are solved by coordinate descent.

The speed of this new procedure should facilitate the application of sparse inverse covariance proce-
dures to large data sets involving thousands of parameters.

An R language package glasso is available on the third author’s Web site.
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