
Stat 200 : February 28th,2001

Summary of preceding lecture:
E�ciency and Cramer-Rao lower bound tell us how much variability we can expect from an
unbiased estimator.

Properties of estimators ; after e�ciency and a lower bound on an estimator's variance ( 1

nI(θ )
),

I will introduce the notion of su�ciency of an estimator, if an estimator is su�cient for a parameter
θ we can compute just that estimate and throw away all the other data.

De�nition:
A statistic is that it is su�cient i� the conditional distribution (density or frequency) of the vector
X given T = t, does not depend on θ for any value of T = t.
Neither in the fucntion, nor in the domain.

Forr iid samples, as is usually the case, this says:

f(x1|t)f(x2|t) . . . f(xn|t)

fT(t)

does not involve θ .
The binomial is the typical example:

X1, . . . , Xn a sequence of iid Bernouilli rv's, with P(X = 1) = θ . Then T =
∑n
i=1Xi is su�cient

for θ .

P(X1 = x1, X2 = x2, . . . , Xn = xn|T = t) =
P(X1 = x1, X2 = x2, . . . , Xn = xn, T = t))

P(T = t)

P(X1 = x1, X2 = x2, . . . , Xn = xn, T = t) =

{
0 if

∑n
i=1xi 6= t∏n

i=1 θ
xi(1− θ )1−xi otherwise

So

θ t(1− θ )n−t

P(T = t)
=

θ t(1− θ )n−t(
n

k

)
θ t(1− θ )n−t

=
1(
n

k

) =
t!(n− t)!

n!

This does not depend on θ. Here is a necessary and su�cient condition for su�ciency:

Theorem 8.1 A necessary and su�cient condition for T(X ) ≡ T(X1, X2, . . . , Xn) to be
su�cient for a parameter is that the joint distribution (density or frequency) factors into
two parts, one that depends on θ̂ and on x only through T(x ) the other that does not depend
on θ :

f(x1, x2, . . . , xn|θ ) = g[T(x1, x2, . . . , xn), θ ]h(x1, x2, . . . , xn)

or
f(x |θ ) = g(T(x ), θ )h(x )

Proof: the condition is su�cient, i.e. if we have the condition we will have su�ciency.

1



First partition

P(T = t) =
∑

T(x )=t

P(X = x )

= g(t, θ )
∑

T(x )=t

h(x ) = g(t, θ )H(x )

P(X = x |T = t) =
P(X = x , T = t)

P(T = t)

=
h(x )g(t, θ )

H(x )g(t, θ )

Cancellation giving the result.
The other direction, i.e. su�cency implies the condition: T is su�cient for θ means we can

write: P(X = x |T = t) as a function of x , call it h: P(X = x |T = t) = h(x ), we then have:

P(X = x |θ ) = P(X = x |T = t)P(t = t|θ ) = h(x )g(t, θ )

8.7.1 Exponential Families

Probability distributions with su�cient statistics the same dimension as the parameter space,
regardless of sample size. One paarameter families:

f(x|θ ) = exp[c(θ )K(x) + d(θ ) + S(x)]

Joint density of an iid sample from this distribution will be :

f(x |θ ) =
∏
exp[c(θ )K(xi) + d(θ ) + S(xi)]

= exp[c(θ )
∑
K(xi) + nd(θ )]exp[

∑
S(xi)]

So that T(x ) =
∑
K(xi) is a su�cient statistic.

8.7.2 Bernouilli Example

P(X = x) = θ x(1−θ )1−x = exp[xlog( θ
1−θ

)+log(1−θ )] K(x) = x, T =
∑
Xi is the su�cient

statistic.
The form of the density of an m-parameter exponential family:

f(x|θ ) = exp[

m∑
i=1

ci(θ )Ki(x) + d(θ ) + S(x)], x ∈ A

A must not depend on θ̂ either.
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8.7.3 Normal Example

f(x|µ, σ) =
∏ 1

σ
√
2π
exp[−

1

2σ2
(xi − µ)2]

=
1

σn2π
n
2

exp[−
1

2σ2
(
∑n
i=1x

2
i − 2µ

∑n
i=1xi + nµ2)]

This is only a function of
∑n
i=1xi and

∑n
i=1x

2
i , thus they are su�cient statistics. Dimension of

su�cient statistic= 2= dimension of parameter space : exponential family.
Corollary of the factorization theorem:

If T is su�cient for θ the mle is a function of T .
Proof:

The mle is built by maximising f(x |θ ) which can be factored as: g(T, θ )h(x ) the dependence
on θ is only through T. To maximise this we only need to look at g(T, θ ).

The following quanti�es how much better it can be to use a su�cient statistic as a basis for an
estimator, it always provides a method for improving an estimator.

Theorem 8.2 (Rao Blackwell) Let θ̂ be any �nite-varianced estimator of θ . Suppose that
we have a su�cient statistic for θ we call T . Now taking as a new estimate θ̃ = E(θ̂ |T) we
will have a better estimator because it has smaller MSE:

E(θ̃ − θ )2 ≤ E(θ̂ − θ )2

The equality is strict unless θ̂ = θ̃ .

Proof:
Uses the conditional expectation and variance formulas:

E(E(Y |X)) = E(Y)

Var(Y) = Var(E(Y |X)) + E(Var(Y |X))

E(θ̃ ) = E(θ̂ )

Var(θ̂ ) = Var(E(θ̂ |T)) + E(Var(θ̂ |T))

Var(θ̂ ) = Var(θ̃ ) + E(Var(θ̂ |T))

Example of Rao-Blackwellisation:
X1, X2, . . . Xn ∼ N (θ , σ2) we want to estimate θ , using the silly estimate :g(X ) = X1, and we
know a su�cient statistic: X1 + X2 + · · ·Xn. Then the Rao-Blackwellisation would give us :

E[X1|X1 + X2 + · · ·+ Xn] =
X1 + X2 + · · ·+ Xn

n

Because E(X|X+ Y) + E(Y |X+ Y) = 2E(X|X+ Y) = E(X+ Y |X+ Y) = X+ Y . So just the one
step of conditionning on a su�cient statistic took us a long way.

Extension to other loss functions than the MSE, any convex W(θ̃ , θ ) is such that Rao-
Blackwellisation makes things better.

Example:

X1, X2, . . . , Xn ∼ N (0, σ2)

3



. and we ant to estimate θ . Estimator: �rst observation:X1, why is this silly?

ĝ(X ) = X1.

But we have a su�cient statistic:X1 + X2 + · · ·Xn.

E[X1|X1 + X2 + X3 + · · ·+ Xn] =
X1 + X2 · · ·Xn

n

In one step of conditionning we can make things much better.
Extension to other loss functions: Jensens Inequality

E(f(x)) ≥ f(E(x))

Suppose we have a convex loss function W(θ̃ , θ ).

E[W(θ̂ , θ )|T ] ≥W(E(θ̂ |T), θ ) = W(θ̃ , θ )

E[W(θ̂ , θ )] ≥ E[W(θ̃ , θ )]

15 Decision Theory

Choose an action a from a set A, based on the observation of a random variable X which has a
distribution depending on a parameter (state of nature) θ .

The decision d maps the sample space onto the the action space, a = d(X).
A loss l(θ , d(X)) depends on θ and d(X). Comparinf di�erent decisions is based on the risk,

or expected loss.
R(θ , d) = E[l(θ , d(X))]

We have just seen, a very detailed account of estimation as a decision, and mostly we used as
our loss functionm the quadratic function, thus the risk is the MSE.

Finding the best d is not trivial, there might be two di�erent states of nature, (parameter
values) that give di�erent orderings for the risks.

Two ways to address this:

� Minimax:
The worst the risk could be is

max
θ̂ ∈Θ

[R(θ , d)]

Choose the decision function d∗ that minimizes that worst case.

min
d

{
max
θ̂ ∈Θ

[R(θ , d)]

}

� Bayes.
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