Stat 200: February 28th,2001

Summary of preceding lecture:
Efficiency and Cramer-Rao lower bound tell us how much variability we can expect from an
unbiased estimator.

Properties of estimators ; after efficiency and a lower bound on an estimator’s variance ( ﬁ),

I will introduce the notion of sufficiency of an estimator, if an estimator is sufficient for a parameter
© we can compute just that estimate and throw away all the other data.

Definition:
A statistic is that it is sufficient iff the conditional distribution (density or frequency) of the vector
X given T = t, does not depend on O for any value of T = t.
Neither in the fucntion, nor in the domain.

Forr iid samples, as is usually the case, this says:
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does not involve O .

The binomial is the typical example:
X1, ..., Xn a sequence of iid Bernouilli rv’s, with P(X =1) =0 . Then T = } I, X; is sufficient
for © .
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This does not depend on ©. Here is a necessary and sufficient condition for sufficiency:

Theorem 8.1 A necessary and sufficient condition for T(X ) = T(X7,X3,...,Xy,) to be
sufficient for a parameter is that the joint distribution (density or frequency) factors into
two parts, one that depends on 0 and on x only through T(x ) the other that does not depend
on O :

f(x1,X2,...,X0/0 ) =9g[T(x1,%X2,...,%Xn), 0 Jh(x1,X2,...,%Xn)

or
f(x[0)=9g(T(x),0 )h(x)

Proof: the condition is sufficient, i.e. if we have the condition we will have sufficiency.



First partition

Cancellation giving the result.
The other direction, i.e. sufficency implies the condition: T is sufficient for © means we can
write: P(X =x|T =1t) as a function of x , call it h: P(X =x |T =t) = h(x ), we then have:

P(X =x1[0)=PX =x[T=t)P(t=1t0 ) =h(x)g(t,0)

8.7.1 Exponential Families

Probability distributions with sufficient statistics the same dimension as the parameter space,
regardless of sample size. One paarameter families:

f(x[0 ) = explc(0 )K(x) + d(0 ) + S(x)]

Joint density of an iid sample from this distribution will be :

f(x [0 ) = ] [ exple(® )K(x:i) +d(0 ) + S(x:)]

= exple(0) ) K(x:) +nd(8 )expl) S(x:)]
So that T(x ) = > K(x;) is a sufficient statistic.

8.7.2 Bernouilli Example

P(X=x)=0*1—0)"*= exp[xlog(%) +log(1—0 )] K(x) =x,T =) X is the sufficient
statistic.
The form of the density of an m-parameter exponential family:

m

f(x|0 ) = exp[)_ci(0 )Ki(x) +d(0) +S(x)], x€A

i=1

A must not depend on 0 either.



8.7.3 Normal Example
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This is only a function of ) ";x; and ) I',x{, thus they are sufficient statistics. Dimension of
sufficient statistic= 2= dimension of parameter space : exponential family.

Corollary of the factorization theorem:
If T is sufficient for © the mle is a function of T.

Proof:
The mle is built by maximising f(x |0 ) which can be factored as: g(T,0 )h(x ) the dependence
on 0 is only through T. To maximise this we only need to look at g(T, 0 ).

The following quantifies how much better it can be to use a sufficient statistic as a basis for an
estimator, it always provides a method for improving an estimator.

Theorem 8.2 (Rao Blackwell) Let 0 be any finite-varianced estimator of © . Suppose that
we have a sufficient statistic for © we call T. Now taking as a new estimate © =E(0 |T) we
will have a better estimator because it has smaller MSE:

E(06 —0 )2<E0 —0)2

The equality s strict unless 0 =0.

Proof:
Uses the conditional expectation and variance formulas:
E(E(Y[X)) = E(Y)
Var(Y) = Var(E(YX)) + E(Var(Y|X))
E(6) = E(§)
Var(0) = Var(E(© |T)) + E(Var(d |T))
Var(8) = Var(0) +E(Var(d [T))

Example of Rao-Blackwellisation:
X1,X2,...Xn ~N (0, 0%) we want to estimate © , using the silly estimate : g(X ) = X;, and we
know a sufficient statistic: X7 + X3 + - - - X;,. Then the Rao-Blackwellisation would give us :

Xi+Xo+ -+ X,
n

Because E(X|IX+Y) +E(YIX+Y) =2E(XIX+Y)=E(X+YX+Y)=X+Y. So just the one
step of conditionning on a sufficient statistic took us a long way. ~

Extension to other loss functions than the MSE, any convex W(0 ,0 ) is such that Rao-
Blackwellisation makes things better.

Example:
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. and we ant to estimate © . Estimator: first observation: Xy, why is this silly?

But we have a sufficient statistic: X7 + X5 + - - - X,

O Xq+ X X
B n

EXq1X7 + X+ X3+ -+« + X4l

In one step of conditionning we can make things much better.
Extension to other loss functions: Jensens Inequality

E(f(x)) > f(E(x))

Suppose we have a convex loss function W(0 ,0 ).

E[W(8,60 )T > W(E(8|T),0 ) =W(6,0)

E[W(8,0 )] > EW(6,0 )]

15 Decision Theory

Choose an action a from a set A, based on the observation of a random variable X which has a
distribution depending on a parameter (state of nature) © .

The decision d maps the sample space onto the the action space, a = d(X).

Aloss 1(0 ,d(X)) depends on © and d(X). Comparinf different decisions is based on the risk,

or expected loss.
R(0,d) =E[(6,d(X))]
We have just seen, a very detailed account of estimation as a decision, and mostly we used as
our loss functionm the quadratic function, thus the risk is the MSE.
Finding the best d is not trivial, there might be two different states of nature, (parameter

values) that give different orderings for the risks.
Two ways to address this:

e Minimax:
The worst the risk could be is
max[R(0 ,d)]
0 co

Choose the decision function d* that minimizes that worst case.

m&n {rAnax[R(e , d)]}

0 co

e Bayes.



