On the concentration of Haar measures

Sourav Chatterjee
Motivational example

- Let M be an $n \times n$ hermitian matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$.
- Let $F_M(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{\lambda_i \leq x\}$ denote the empirical distribution function of M.
- Let ρ_M denote the uniform distribution on the set of all hermitian matrices having the same spectrum as M.
Let M and N be two hermitian matrices of order n. Let $A \sim \rho_M$ and $B \sim \rho_N$ be independent random matrices. Let $H = A + B$.

Results of Gromov, Milman, Szarek give concentration bounds for $\frac{1}{n} \sum_i f(\lambda_i^H)$ when f is smooth.

What about the concentration of $F_H(x)$?
Theorem
Let M and N be two $n \times n$ hermitian matrices. Suppose $A \sim \rho_M$ and $B \sim \rho_N$ are independent, and $H = A + B$. Then, for every $x \in \mathbb{R}$, $\text{Var}(F_H(x)) \leq \kappa n^{-1} \log n$, and

$$
P\{|F_H(x) - \mathbb{E}(F_H(x))| \geq t\} \leq 2 \exp\left(-\frac{nt^2}{2\kappa \log n}\right).$$

Here κ is a numerical constant independent of everything else.

(Recall: ρ_M is the uniform distribution on all $n \times n$ hermitian matrices having the same spectrum as M.)
Gromov-Milman-Szarek give concentration under Hilbert-Schmidt distance.

$H \mapsto F_H(x)$ is not Lipschitz under that metric.

Idea # 1: Change the metric to make the map Lipschitz. New metric: $d(M, N) = \text{rank}(M - N)$.

Fact:

$$\|F_M - F_N\|_\infty \leq n^{-1} \text{rank}(M - N).$$

Need: A measure concentration technique that can be adapted to arbitrary metrics.
Ideas contd.

- **Idea # 2:** Concentration inequalities from rates of convergence of Markov chains that take “small steps” w.r.t. a given metric.
 - For rank distance, we have the “random reflection walk” on hermitian matrices.
 - At step i, let
 \[
 U = I - (1 - e^{i\varphi})uu^*,
 \]
 where
 - u is chosen from the uniform distribution on the unit sphere in \mathbb{C}^n,
 - φ has density proportional to $(\sin(\varphi/2))^{n-1}$ on $[0, 2\pi)$.
 - Let $M_{i+1} = UM_i U^*$.
 - **Easy:** $\text{rank}(M_{i+1} - M_i) \leq 3$.
 - **Difficult:** Convergence to stationary measure ρ_{M_1} in $Cn \log n$ steps (Porod '96).
Let G be a compact topological group.

Let X be a Haar-distributed random variable on G.

Let Y be another G-valued r.v. having the following properties:
1. Y^{-1} has the same distribution as Y.
2. For any $x \in G$, xYx^{-1} has the same distribution as Y.

Let Y_1, Y_2, \ldots, be i.i.d. copies of Y. Suppose a and b are two positive constants such that

$$d_{TV}(Y_1 Y_2 \cdots Y_k, X) \leq ae^{-bk}$$

for every k, where d_{TV} is the total variation distance.

(Think of X as a Haar-distributed unitary matrix and Y as a random reflection. Porod '96 gives $a \sim n$ and $b \sim 1/n$.)
Theorem

Suppose $f : G \to \mathbb{R}$ is bounded and measurable. Let
\[\|f\|_\infty = \sup_{x \in G} |f(x)| \quad \text{and} \]
\[\|f\|_Y := \sup_{x \in G} \left[\mathbb{E}(f(x) - f(Yx))^2 \right]^{1/2}. \]

Let A and B be two numbers such that $\|f\|_\infty \leq A$ and $\|f\|_Y \leq B$, and a, b as above. Let
\[C = \frac{B^2}{b} \left[\left(\log \frac{4aA}{B} \right)^+ + \frac{b(2 - e^{-b})}{1 - e^{-b}} \right]. \]

Then $\text{Var}(f(X)) \leq C/2$, and for any $t \geq 0$,
\[\mathbb{P}\{|f(X) - \mathbb{E}f(X)| \geq t\} \leq 2e^{-t^2/C}. \]
In our example, X is a Haar-distributed unitary matrix, and $f(X) = F_H(x)$, where $x \in \mathbb{R}$ is fixed, and

$$H = XMX^* + N,$$

M and N being fixed hermitian matrices.

We have $A = 1$, $B \sim 1/n$, $a \sim n$, and $b \sim 1/n$. Plugging in, we get our result.

Also applicable to products of random matrices.

Applies to other groups, e.g. symmetric groups.

Can go beyond Haar measures and groups. Will not discuss today.
Idea of proof

- Let $X_0 = X, \ X_0' = XY_0$. Construct

 $$X_0 \to X_1 \to X_2 \to \cdots \text{ and } X_0' \to X_1' \to X_2' \to \cdots$$

 as $X_{i+1} = X_i Y_{i+1}$ and $X'_{i+1} = X_i' Y'_{i+1}$, where $Y_{i+1} = Y_0^{-1} Y_{i+1} Y_0$.

- Key step:

 $$\text{Cov}(g(X) f(X)) = \frac{1}{2} \sum_{i=0}^{\infty} \mathbb{E}[(g(X_0) - g(X_0'))(f(X_i) - f(X_i'))]$$

 for any g and f.

- Note that $X_i' = X_i Y_0$ for all i. Thus, $|\mathbb{E}(g(X) f(X))| \leq O(B^2 \tau)$, where $B \geq$ the “size” of $g(X) - g(XY)$ and $f(X) - f(XY)$, and $\tau = \text{mixing time of the chain}$.

- For variance bound, take $g = f$. For concentration, take $g = e^{\theta f}$.
Proof of the key step

- By the symmetry between the X and X' chains we have

$$\mathbb{E}[g(X_0)(f(X_i) - f(X'_i))] = \mathbb{E}[g(X'_0)(f(X'_i) - f(X_i))]$$

- Thus,

$$\mathbb{E}[(g(X_0) - g(X'_0))(f(X_i) - f(X'_i))] = 2\mathbb{E}[g(X_0)(f(X_i) - f(X'_i))].$$

- Again, $\mathbb{E}(f(X'_i)|X_0) = \mathbb{E}(f(X_{i+1})|X_0)$, since $X'_i = X_i Y_0$ and $X_{i+1} = X_i Y_{i+1}$.

- Thus,

$$\frac{1}{2} \sum_{i=0}^{\infty} \mathbb{E}[(g(X_0) - g(X'_0))(f(X_i) - f(X'_i))]$$

$$= \sum_{i=0}^{\infty} \mathbb{E}[g(X_0)(f(X_i) - f(X_{i+1}))] = \text{Cov}(g(X), f(X)).$$
Given a random variable X on some space, and a function f, we want to get tail bounds for $f(X)$.

- **Step 1:** Choose a metric d so that f is Lipschitz w.r.t. d.
- **Step 2:** Find a Markov chain whose stationary distribution is the law of X, and which takes small steps w.r.t. d.
- **Step 3:** Under some further conditions, compute concentration inequalities for $f(X)$ using the rate of convergence of the Markov chain.

- For Haar measures, take random walks that are “constant on conjugacy classes”, like the random reflections walk.
- Applications to random matrices, random permutations, etc.