Superconcentration

Sourav Chatterjee

(UC Berkeley)
This talk is about three properties of Gaussian fields:

1. Multiple valleys
2. Chaos
3. Superconcentration

Based on two papers:

1. "Chaos, concentration, and multiple valleys." arXiv:0810.4221v2 [The three properties are defined here, and shown to be equivalent, along with a number of examples.]
2. "Disorder chaos and multiple valleys in spin glasses." arXiv:0907.3381v1 [We show that the Sherrington-Kirkpatrick model has all three properties.]

Examples: directed polymers, last passage percolation, spin glasses, the discrete Gaussian free field, random matrix eigenvectors, fitness models of evolutionary biology, etc.

We will illustrate the theory through a single example in this talk: the Sherrington-Kirkpatrick model of spin glasses.

Sourav Chatterjee
Introduction

This talk is about three properties of Gaussian fields:

1. Multiple valleys

Based on two papers:

1. Chaos, concentration, and multiple valleys. arXiv:0810.4221v2 [The three properties are defined here, and shown to be equivalent, along with a number of examples.]

2. Disorder chaos and multiple valleys in spin glasses. arXiv:0907.3381v1 [We show that the Sherrington-Kirkpatrick model has all three properties.]

Examples: directed polymers, last passage percolation, spin glasses, the discrete Gaussian free field, random matrix eigenvectors, fitness models of evolutionary biology, etc.

We will illustrate the theory through a single example in this talk: the Sherrington-Kirkpatrick model of spin glasses.
This talk is about three properties of Gaussian fields:

1. Multiple valleys
2. Chaos

Based on two papers:

1. Chaos, concentration, and multiple valleys. arXiv:0810.4221v2 [The three properties are defined here, and shown to be equivalent, along with a number of examples.]
2. Disorder chaos and multiple valleys in spin glasses. arXiv:0907.3381v1 [We show that the Sherrington-Kirkpatrick model has all three properties.]

Examples: directed polymers, last passage percolation, spin glasses, the discrete Gaussian free field, random matrix eigenvectors, fitness models of evolutionary biology, etc.

We will illustrate the theory through a single example in this talk: the Sherrington-Kirkpatrick model of spin glasses.
This talk is about three properties of Gaussian fields:

1. Multiple valleys
2. Chaos
3. Superconcentration
This talk is about three properties of Gaussian fields:

1. Multiple valleys
2. Chaos
3. Superconcentration

Based on two papers:

1. Chaos, concentration, and multiple valleys. arXiv:0810.4221v2 [The three properties are defined here, and shown to be equivalent, along with a number of examples.]
2. Disorder chaos and multiple valleys in spin glasses. arXiv:0907.3381v1 [We show that the Sherrington-Kirkpatrick model has all three properties.]

Examples: directed polymers, last passage percolation, spin glasses, the discrete Gaussian free field, random matrix eigenvectors, fitness models of evolutionary biology, etc.

We will illustrate the theory through a single example in this talk: the Sherrington-Kirkpatrick model of spin glasses.
This talk is about three properties of Gaussian fields:

1. Multiple valleys
2. Chaos
3. Superconcentration

Based on two papers:

1. **Chaos, concentration, and multiple valleys.**
 arXiv:0810.4221v2 [The three properties are defined here, and shown to be equivalent, along with a number of examples.]

2. **Disorder chaos and multiple valleys in spin glasses.**
 arXiv:0907.3381v1 [We show that the Sherrington-Kirkpatrick model has all three properties.]

Examples: directed polymers, last passage percolation, spin glasses, the discrete Gaussian free field, random matrix eigenvectors, fitness models of evolutionary biology, etc.

We will illustrate the theory through a single example in this talk: the Sherrington-Kirkpatrick model of spin glasses.
This talk is about three properties of Gaussian fields:

1. Multiple valleys
2. Chaos
3. Superconcentration

Based on two papers:

1. **Chaos, concentration, and multiple valleys.**
 arXiv:0810.4221v2 [The three properties are defined here, and shown to be equivalent, along with a number of examples.]

2. **Disorder chaos and multiple valleys in spin glasses.**
 arXiv:0907.3381v1 [We show that the Sherrington-Kirkpatrick model has all three properties.]
Introduction

- This talk is about three properties of Gaussian fields:
 1. Multiple valleys
 2. Chaos
 3. Superconcentration

- Based on two papers:
 1. **Chaos, concentration, and multiple valleys.**
 arXiv:0810.4221v2 [The three properties are defined here, and shown to be equivalent, along with a number of examples.]
 2. **Disorder chaos and multiple valleys in spin glasses.**
 arXiv:0907.3381v1 [We show that the Sherrington-Kirkpatrick model has all three properties.]

- Examples: directed polymers, last passage percolation, spin glasses, the discrete Gaussian free field, random matrix eigenvectors, fitness models of evolutionary biology, etc.
Introduction

- This talk is about three properties of Gaussian fields:
 1. Multiple valleys
 2. Chaos
 3. Superconcentration

- Based on two papers:
 1. **Chaos, concentration, and multiple valleys.**
 arXiv:0810.4221v2 [The three properties are defined here, and shown to be equivalent, along with a number of examples.]
 2. **Disorder chaos and multiple valleys in spin glasses.**
 arXiv:0907.3381v1 [We show that the Sherrington-Kirkpatrick model has all three properties.]

- Examples: directed polymers, last passage percolation, spin glasses, the discrete Gaussian free field, random matrix eigenvectors, fitness models of evolutionary biology, etc.

- We will illustrate the theory through a single example in this talk: the **Sherrington-Kirkpatrick model** of spin glasses.
The Sherrington-Kirkpatrick model

- System of N particles, each with spin $+1$ or -1. State space: $\{-1, 1\}^N$.

Spin glass: particles have magnetic interactions with each other; both ferromagnetic and anti-ferromagnetic interactions present in the same material.

Let $(g_{ij})_{1 \leq i, j \leq N}$ be i.i.d. standard Gaussian random variables.

Sherrington-Kirkpatrick model: For each state $\sigma \in \{-1, 1\}^N$, define the energy of σ as

$$H_N(\sigma) := -\frac{1}{\sqrt{N}} \sum_{1 \leq i < j \leq N} g_{ij} \sigma_i \sigma_j.$$

H_N is the Hamiltonian (or energy function) in the Sherrington-Kirkpatrick model of spin glasses. Note that it is a random function on $\{-1, 1\}^N$.

Sourav Chatterjee
Superconcentration
The Sherrington-Kirkpatrick model

- System of N particles, each with spin $+1$ or -1. State space: $\{-1, 1\}^N$.
- **Spin glass**: particles have magnetic interactions with each other; both ferromagnetic and anti-ferromagnetic interactions present in the same material.

Let $(g_{ij})_{1 \leq i, j \leq N}$ be i.i.d. standard Gaussian random variables.

The Sherrington-Kirkpatrick model: For each state $\sigma \in \{-1, 1\}^N$, define the energy of σ as

$$H_N(\sigma) := -\frac{1}{\sqrt{N}} \sum_{1 \leq i < j \leq N} g_{ij} \sigma_i \sigma_j.$$

H_N is the Hamiltonian (or energy function) in the Sherrington-Kirkpatrick model of spin glasses. Note that it is a random function on $\{-1, 1\}^N$.

Sourav Chatterjee
Superconcentration
The Sherrington-Kirkpatrick model

- System of N particles, each with spin $+1$ or -1. State space: $\{-1, 1\}^N$.
- Spin glass: particles have magnetic interactions with each other; both ferromagnetic and anti-ferromagnetic interactions present in the same material.
- Let $(g_{ij})_{1 \leq i, j \leq N}$ be i.i.d. standard Gaussian random variables.
The Sherrington-Kirkpatrick model

- System of N particles, each with spin $+1$ or -1. State space: $\{-1, 1\}^N$.

- **Spin glass**: particles have magnetic interactions with each other; both ferromagnetic and anti-ferromagnetic interactions present in the same material.

- Let $(g_{ij})_{1 \leq i, j \leq N}$ be i.i.d. standard Gaussian random variables.

- **Sherrington-Kirkpatrick model**: For each state $\sigma \in \{-1, 1\}^N$, define the energy of σ as

$$H_N(\sigma) := -\frac{1}{\sqrt{N}} \sum_{1 \leq i < j \leq N} g_{ij} \sigma_i \sigma_j.$$
The Sherrington-Kirkpatrick model

- System of N particles, each with spin $+1$ or -1. State space: $\{-1, 1\}^N$.

- **Spin glass**: particles have magnetic interactions with each other; both ferromagnetic and anti-ferromagnetic interactions present in the same material.

- Let $(g_{ij})_{1 \leq i, j \leq N}$ be i.i.d. standard Gaussian random variables.

- **Sherrington-Kirkpatrick model**: For each state $\sigma \in \{-1, 1\}^N$, define the energy of σ as

 $$H_N(\sigma) := -\frac{1}{\sqrt{N}} \sum_{1 \leq i < j \leq N} g_{ij} \sigma_i \sigma_j.$$

- H_N is the Hamiltonian (or energy function) in the Sherrington-Kirkpatrick model of spin glasses. Note that it is a random function on $\{-1, 1\}^N$.

Sourav Chatterjee

Superconcentration
Some history

- Introduced by Sherrington and Kirkpatrick in 1975; first breakthrough by Thouless-Anderson-Palmer in 1977; revolutionary development of the broken replica method by Parisi and Mézard in late 70’s and early 80’s; first rigorous analysis of the high temperature phase by Aizenman-Lebowitz-Ruelle in 1987, and later by Fröhlich-Zegarlinski, Comets-Neveu; high temperature phase under nonzero external field studied by Talagrand and Shcherbina in the late 90’s; great advancement in the rigorous understanding of the low temperature phase due to breakthroughs of Guerra, Toninelli, Talagrand and Panchenko between 2001 and 2008. Most significant breakthrough: Proof of the Parisi formula by Talagrand in 2003.

Still, many mysteries.

Sourav Chatterjee
Superconcentration
Some history

- Introduced by Sherrington and Kirkpatrick in 1975; first breakthrough by Thouless-Anderson-Palmer in 1977; revolutionary development of the broken replica method by Parisi and Mézard in late 70’s and early 80’s; first rigorous analysis of the high temperature phase by Aizenman-Lebowitz-Ruelle in 1987, and later by Fröhlich-Zegarlinski, Comets-Neveu; high temperature phase under nonzero external field studied by Talagrand and Shcherbina in the late 90’s; great advancement in the rigorous understanding of the low temperature phase due to breakthroughs of Guerra, Toninelli, Talagrand and Panchenko between 2001 and 2008. Most significant breakthrough: Proof of the Parisi formula by Talagrand in 2003.

- Still, many mysteries.
For $\sigma^1, \sigma^2 \in \{-1, 1\}^N$, define

$$R_{\sigma^1, \sigma^2} = R_{1,2} := \frac{\sum_{i=1}^N \sigma^1_i \sigma^2_i}{N}.$$
The overlap

For $\sigma^1, \sigma^2 \in \{-1, 1\}^N$, define

$$R_{\sigma^1, \sigma^2} = R_{1,2} := \frac{\sum_{i=1}^{N} \sigma_i^1 \sigma_i^2}{N}.$$

In the spin glass literature, the quantity $R_{1,2}$ is called the overlap between the configurations σ^1 and σ^2.
Recall: The energy of a state σ is defined as

$$H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum_{1 \leq i < j \leq N} g_{ij} \sigma_i \sigma_j,$$

where g_{ij} are i.i.d. standard Gaussian r.v.
The multiple valley question

Recall: The energy of a state σ is defined as

$$H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum_{1 \leq i < j \leq N} g_{ij} \sigma_i \sigma_j,$$

where g_{ij} are i.i.d. standard Gaussian r.v.

Is it true that with high probability, there exists a large number of mutually nearly-orthogonal states that all have nearly minimum-energy?
The multiple valley question

- Recall: The energy of a state \(\sigma \) is defined as

\[
H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum_{1 \leq i < j \leq N} g_{ij} \sigma_i \sigma_j,
\]

where \(g_{ij} \) are i.i.d. standard Gaussian r.v.

- Is it true that with high probability, there exists a large number of mutually nearly-orthogonal states that all have nearly minimum-energy?

Sourav Chatterjee
Superconcentration
Recall: The energy of a state σ is defined as

$$H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum_{1 \leq i < j \leq N} g_{ij} \sigma_i \sigma_j,$$

where g_{ij} are i.i.d. standard Gaussian r.v.

Is it true that with high probability, there exists a large number of mutually nearly-orthogonal states that all have nearly minimum-energy?

No rigorous formulation or results till now.
A counterexample

To realize the non-triviality of the question, consider a slightly different Gaussian field Y_N on $\{-1,1\}^N$, defined as

$$Y_N(\sigma) := -\sum_{i=1}^{N} g_i \sigma_i,$$

where g_1, \ldots, g_N are i.i.d. standard Gaussian random variables.
To realize the non-triviality of the question, consider a slightly different Gaussian field Y_N on $\{-1, 1\}^N$, defined as

$$Y_N(\sigma) := -\sum_{i=1}^{N} g_i \sigma_i,$$

where g_1, \ldots, g_N are i.i.d. standard Gaussian random variables.

Clearly, Y_N is minimized at $\hat{\sigma}$, where $\hat{\sigma}_i = \text{sign}(g_i)$.

Thus, the field Y_N does not have multiple valleys.

This is true in spite of $Y_N(\sigma)$ and $Y_N(\sigma')$ being nearly independent for most σ, σ'.

Sourav Chatterjee Superconcentration
A counterexample

To realize the non-triviality of the question, consider a slightly different Gaussian field Y_N on $\{-1, 1\}^N$, defined as

$$Y_N(\sigma) := -\sum_{i=1}^{N} g_i \sigma_i,$$

where g_1, \ldots, g_N are i.i.d. standard Gaussian random variables.

Clearly, Y_N is minimized at $\hat{\sigma}$, where $\hat{\sigma}_i = \text{sign}(g_i)$.

Since

$$Y_N(\sigma) = -\sum_{i: \sigma_i = \hat{\sigma}_i} |g_i| + \sum_{i: \sigma_i \neq \hat{\sigma}_i} |g_i|,$$

we see that if σ is another configuration that is near-minimal for Y_N, then σ must agree with $\hat{\sigma}$ at nearly all coordinates.
To realize the non-triviality of the question, consider a slightly different Gaussian field Y_N on $\{-1, 1\}^N$, defined as

$$Y_N(\sigma) := -\sum_{i=1}^{N} g_i \sigma_i,$$

where g_1, \ldots, g_N are i.i.d. standard Gaussian random variables.

Clearly, Y_N is minimized at $\hat{\sigma}$, where $\hat{\sigma}_i = \text{sign}(g_i)$.

Since

$$Y_N(\sigma) = -\sum_{i: \sigma_i = \hat{\sigma}_i} |g_i| + \sum_{i: \sigma_i \neq \hat{\sigma}_i} |g_i|,$$

we see that if σ is another configuration that is near-minimal for Y_N, then σ must agree with $\hat{\sigma}$ at nearly all coordinates.

Thus, the field Y_N does not have multiple valleys.
A counterexample

To realize the non-triviality of the question, consider a slightly different Gaussian field Y_N on $\{-1, 1\}^N$, defined as

$$Y_N(\sigma) := -\sum_{i=1}^{N} g_i \sigma_i,$$

where g_1, \ldots, g_N are i.i.d. standard Gaussian random variables.

Clearly, Y_N is minimized at $\hat{\sigma}$, where $\hat{\sigma}_i = \text{sign}(g_i)$.

Since

$$Y_N(\sigma) = -\sum_{i: \sigma_i = \hat{\sigma}_i} |g_i| + \sum_{i: \sigma_i \neq \hat{\sigma}_i} |g_i|,$$

we see that if σ is another configuration that is near-minimal for Y_N, then σ must agree with $\hat{\sigma}$ at nearly all coordinates.

Thus, the field Y_N does not have multiple valleys.

This is true in spite of $Y_N(\sigma)$ and $Y_N(\sigma')$ being nearly independent for most σ, σ'.

Sourav Chatterjee

Superconcentration
Weak resolution of the multiple valley conjecture

Recall: \(R_{\sigma^1, \sigma^2} = \frac{1}{N} \sum \sigma^1_i \sigma^2_i \), \(H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum g_{ij} \sigma_i \sigma_j \).
Weak resolution of the multiple valley conjecture

Recall: \(R_{\sigma_1, \sigma_2} = \frac{1}{N} \sum \sigma_i^1 \sigma_i^2 \), \(H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum g_{ij} \sigma_i \sigma_j \).

Theorem (C. '09)

There are constants \(r_N \to \infty, \gamma_N \to 0, \epsilon_N \to 0, \text{ and } \delta_N \to 0 \) such that with probability at least \(1 - \gamma_N \), there is a set \(A \subseteq \{-1, 1\}^N \) satisfying

(a) \(|A| \geq r_N \),

(b) \(R_{\sigma_1, \sigma_2}^2 \leq \epsilon_N \) for all \(\sigma_1, \sigma_2 \in A, \sigma_1 \neq \sigma_2 \), and

(c) For all \(\sigma \in A \),

\[
\left| \frac{H_N(\sigma)}{\min_{\sigma' \in \{-1,1\}^N} H_N(\sigma')} - 1 \right| \leq \delta_N.
\]
Weak resolution of the multiple valley conjecture

Recall: \(R_{\sigma^1, \sigma^2} = \frac{1}{N} \sum \sigma_i^1 \sigma_i^2 \), \(H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum g_{ij} \sigma_i \sigma_j \).

Theorem (C. ’09)

There are constants \(r_N \to \infty \), \(\gamma_N \to 0 \), \(\epsilon_N \to 0 \), and \(\delta_N \to 0 \) such that with probability at least \(1 - \gamma_N \), there is a set \(A \subseteq \{-1, 1\}^N \) satisfying

(a) \(|A| \geq r_N\),

(b) \(R_{\sigma^1, \sigma^2}^2 \leq \epsilon_N\) for all \(\sigma^1, \sigma^2 \in A\), \(\sigma^1 \neq \sigma^2\), and

(c) For all \(\sigma \in A\),

\[
\left| \frac{H_N(\sigma)}{\min_{\sigma' \in \{-1,1\}^N} H_N(\sigma')} - 1 \right| \leq \delta_N.
\]

Quantitatively, we can take \(r_N = (\log N)^{1/8} \), \(\delta_N = (\log N)^{-1/8} \), \(\epsilon_N = e^{-(\log N)^{1/8}} \) and \(\gamma_N = C(\log N)^{-1/12} \), where \(C \) is an absolute constant. However these are not necessarily the best choices.
The S-K model at inverse temperature $\beta \geq 0$ defines a probability measure G_N on $\{-1, 1\}^N$ through the formula

$$G_N(\{\sigma\}) := Z(\beta)^{-1} e^{-\beta H_N(\sigma)},$$

(1)

where $Z(\beta)$ is the normalizing constant. The measure G_N is called the Gibbs measure. Recall that

$$H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum_{1 \leq i < j \leq N} g_{ij} \sigma_i \sigma_j.$$
Disorder chaos in the S-K model

Suppose σ^1 and σ^2 are two configurations drawn independently from the Gibbs measure G_N. Recall:

$$R_{1,2} = \frac{1}{N} \sum \sigma_i^1 \sigma_i^2.$$
Disorder chaos in the S-K model

- Suppose σ^1 and σ^2 are two configurations drawn independently from the Gibbs measure G_N. Recall: $R_{1,2} = \frac{1}{N} \sum \sigma^1_i \sigma^2_i$.
- It is known that when $\beta < 1$, $R_{1,2} \simeq 0$ with high probability. (Aizenman-Lebowitz-Ruelle '87.)
Disorder chaos in the S-K model

- Suppose σ_1 and σ_2 are two configurations drawn independently from the Gibbs measure G_N. Recall: $R_{1,2} = \frac{1}{N} \sum \sigma_1^i \sigma_2^i$.
- It is known that when $\beta < 1$, $R_{1,2} \approx 0$ with high probability. (Aizenman-Lebowitz-Ruelle '87.)
- This is not true when $\beta > 1$. In this regime, $R_{1,2}$ has a non-degenerate limiting distribution (the Parisi measure).

Not to be confused with temperature chaos.

Again, no rigorous formulation or proof in the past. Seems related to noise-sensitivity, although we do not understand the exact connection.
Disorder chaos in the S-K model

- Suppose σ^1 and σ^2 are two configurations drawn independently from the Gibbs measure G_N. Recall:
 \[R_{1,2} = \frac{1}{N} \sum \sigma^1_i \sigma^2_i. \]
- It is known that when $\beta < 1$, $R_{1,2} \simeq 0$ with high probability. (Aizenman-Lebowitz-Ruelle ’87.)
- This is not true when $\beta > 1$. In this regime, $R_{1,2}$ has a non-degenerate limiting distribution (the Parisi measure).
- Suppose we choose σ^2 from a new Gibbs measure G'_N, based on a new Hamiltonian H'_N obtained by applying a small perturbation to H_N.

Sourav Chatterjee

Superconcentration
Disorder chaos in the S-K model

- Suppose σ^1 and σ^2 are two configurations drawn independently from the Gibbs measure G_N. Recall:
 \[R_{1,2} = \frac{1}{N} \sum \sigma^1_i \sigma^2_i. \]
- It is known that when $\beta < 1$, $R_{1,2} \simeq 0$ with high probability. (Aizenman-Lebowitz-Ruelle ’87.)
- This is not true when $\beta > 1$. In this regime, $R_{1,2}$ has a non-degenerate limiting distribution (the Parisi measure).
- Suppose we choose σ^2 from a new Gibbs measure G'_N, based on a new Hamiltonian H'_N obtained by applying a small perturbation to H_N.
- The conjecture of disorder chaos (Fisher-Huse ’85, Bray-Moore ’87) states that in this case, $R_{1,2} \simeq 0$. (Any β.)

Not to be confused with temperature chaos. Again, no rigorous formulation or proof in the past. Seems related to noise-sensitivity, although we do not understand the exact connection.
Disorder chaos in the S-K model

▶ Suppose σ^1 and σ^2 are two configurations drawn independently from the Gibbs measure G_N. Recall: $R_{1,2} = \frac{1}{N} \sum \sigma^1_i \sigma^2_i$.

▶ It is known that when $\beta < 1$, $R_{1,2} \simeq 0$ with high probability. (Aizenman-Lebowitz-Ruelle ’87.)

▶ This is not true when $\beta > 1$. In this regime, $R_{1,2}$ has a non-degenerate limiting distribution (the Parisi measure).

▶ Suppose we choose σ^2 from a new Gibbs measure G'_N, based on a new Hamiltonian H'_N obtained by applying a small perturbation to H_N.

▶ The conjecture of disorder chaos (Fisher-Huse ’85, Bray-Moore ’87) states that in this case, $R_{1,2} \simeq 0$. (Any β.)

▶ Not to be confused with temperature chaos.
Suppose σ^1 and σ^2 are two configurations drawn independently from the Gibbs measure G_N. Recall:

$$R_{1,2} = \frac{1}{N} \sum_{i} \sigma^1_i \sigma^2_i.$$

It is known that when $\beta < 1$, $R_{1,2} \approx 0$ with high probability. (Aizenman-Lebowitz-Ruelle '87.)

This is not true when $\beta > 1$. In this regime, $R_{1,2}$ has a non-degenerate limiting distribution (the Parisi measure).

Suppose we choose σ^2 from a new Gibbs measure G'_N, based on a new Hamiltonian H'_N obtained by applying a small perturbation to H_N.

The conjecture of disorder chaos (Fisher-Huse '85, Bray-Moore '87) states that in this case, $R_{1,2} \approx 0$. (Any β.)

Not to be confused with temperature chaos.

Again, no rigorous formulation or proof in the past. Seems related to noise-sensitivity, although we do not understand the exact connection.
We consider two kinds of perturbation.

Discrete perturbation:

Replace a randomly chosen fraction p of the couplings (g_{ij}) by independent copies. The resulting Gibbs measure will be called the p-perturbed measure.

Theorem (C. '09)

Let σ_1 be chosen from the original Gibbs measure and σ_2 is chosen from the p-perturbed measure. Then

$$E(R_1^2, R_2^2) \leq C \beta p \log N,$$

where C is an absolute constant and the expectation is taken over all randomness.
We consider two kinds of perturbation.

- **Discrete perturbation**: Replace a randomly chosen fraction p of the couplings (g_{ij}) by independent copies.

The resulting Gibbs measure will be called the p-perturbed measure.

Theorem (C. '09)

Let σ_1 be chosen from the original Gibbs measure and σ_2 is chosen from the p-perturbed measure. Then

$$E(R^2) \leq C \beta p \log N,$$

where C is an absolute constant and the expectation is taken over all randomness.
Discrete perturbation

- We consider two kinds of perturbation.
- **Discrete perturbation**: Replace a randomly chosen fraction p of the couplings (g_{ij}) by independent copies.
- The resulting Gibbs measure will be called the p-perturbed measure.

Theorem (C. '09)

Let σ_1 be chosen from the original Gibbs measure and σ_2 is chosen from the p-perturbed measure. Then

$$E(\mathbb{R}_1^2, \mathbb{R}_2^2) \leq C \beta^p \log N,$$

where C is an absolute constant and the expectation is taken over all randomness.

Sourav Chatterjee
Superconcentration
Discrete perturbation

- We consider two kinds of perturbation.
- **Discrete perturbation**: Replace a randomly chosen fraction p of the couplings (g_{ij}) by independent copies.
- The resulting Gibbs measure will be called the p-perturbed measure.

Theorem (C. ’09)

Let σ^1 be chosen from the original Gibbs measure and σ^2 is chosen from the p-perturbed measure. Then

$$\mathbb{E}(R_{1,2}^2) \leq \frac{C \beta}{p \log N},$$

where C is an absolute constant and the expectation is taken over all randomness.
How to prove multiple valleys using chaos

- Choose σ^1 from the Gibbs measure G_N at inverse temperature β and σ^2 from the p-perturbed measure G'_N.

Suppose $\beta = \beta(N) \to \infty$ and $p = p(N) \to 0$ sufficiently slowly so that chaos holds.

Then due to chaos, σ^1 and σ^2 are approximately orthogonal.

Since $\beta \to \infty$, σ^1 nearly minimizes H_N and σ^2 nearly minimizes H'_N.

But, since $p \to 0$, $H_N \approx H'_N$.

Thus, σ^1 and σ^2 both nearly minimize H_N.

This procedure finds two states that have nearly minimal energy and are nearly orthogonal. Repeating this procedure, we find many such states.
How to prove multiple valleys using chaos

- Choose σ^1 from the Gibbs measure G_N at inverse temperature β and σ^2 from the p-perturbed measure G'_N.
- Suppose $\beta = \beta(N) \to \infty$ and $p = p(N) \to 0$ sufficiently slowly so that chaos holds.

- Thus, σ^1 and σ^2 both nearly minimize H_N. This procedure finds two states that have nearly minimal energy and are nearly orthogonal. Repeating this procedure, we find many such states.
How to prove multiple valleys using chaos

- Choose σ^1 from the Gibbs measure G_N at inverse temperature β and σ^2 from the p-perturbed measure G'_N.
- Suppose $\beta = \beta(N) \to \infty$ and $p = p(N) \to 0$ sufficiently slowly so that chaos holds.
- Then due to chaos, σ^1 and σ^2 are approximately orthogonal.

Since $\beta \to \infty$, σ^1 nearly minimizes H_N and σ^2 nearly minimizes H'_N.
- But, since $p \to 0$, $H_N \approx H'_N$.
- Thus, σ^1 and σ^2 both nearly minimize H_N.
- This procedure finds two states that have nearly minimal energy and are nearly orthogonal. Repeating this procedure, we find many such states.
How to prove multiple valleys using chaos

- Choose σ^1 from the Gibbs measure G_N at inverse temperature β and σ^2 from the p-perturbed measure G'_N.
- Suppose $\beta = \beta(N) \to \infty$ and $p = p(N) \to 0$ sufficiently slowly so that chaos holds.
- Then due to chaos, σ^1 and σ^2 are approximately orthogonal.
- Since $\beta \to \infty$, σ^1 nearly minimizes H_N and σ^2 nearly minimizes H'_N.

Sourav Chatterjee
Superconcentration
Choose σ^1 from the Gibbs measure G_N at inverse temperature β and σ^2 from the p-perturbed measure G'_N.

Suppose $\beta = \beta(N) \to \infty$ and $p = p(N) \to 0$ sufficiently slowly so that chaos holds.

Then due to chaos, σ^1 and σ^2 are approximately orthogonal.

Since $\beta \to \infty$, σ^1 nearly minimizes H_N and σ^2 nearly minimizes H'_N.

But, since $p \to 0$, $H_N \approx H'_N$.

This procedure finds two states that have nearly minimal energy and are nearly orthogonal. Repeating this procedure, we find many such states.
How to prove multiple valleys using chaos

- Choose σ^1 from the Gibbs measure G_N at inverse temperature β and σ^2 from the p-perturbed measure G'_N.
- Suppose $\beta = \beta(N) \to \infty$ and $p = p(N) \to 0$ sufficiently slowly so that chaos holds.
- Then due to chaos, σ^1 and σ^2 are approximately orthogonal.
- Since $\beta \to \infty$, σ^1 nearly minimizes H_N and σ^2 nearly minimizes H'_N.
- But, since $p \to 0$, $H_N \approx H'_N$.
- Thus, σ^1 and σ^2 both nearly minimize H_N.

This procedure finds two states that have nearly minimal energy and are nearly orthogonal. Repeating this procedure, we find many such states.
How to prove multiple valleys using chaos

- Choose σ^1 from the Gibbs measure G_N at inverse temperature β and σ^2 from the p-perturbed measure G'_N.
- Suppose $\beta = \beta(N) \to \infty$ and $p = p(N) \to 0$ sufficiently slowly so that chaos holds.
- Then due to chaos, σ^1 and σ^2 are approximately orthogonal.
- Since $\beta \to \infty$, σ^1 nearly minimizes H_N and σ^2 nearly minimizes H'_N.
- But, since $p \to 0$, $H_N \approx H'_N$.
- Thus, σ^1 and σ^2 both nearly minimize H_N.
- This procedure finds two states that have nearly minimal energy and are nearly orthogonal. Repeating this procedure, we find many such states.
The free energy of the S-K model at inverse temperature β is:

$$F_N(\beta) := \frac{1}{\beta} \log \sum_{\sigma} e^{-\beta H_N(\sigma)}.$$

Recall: $H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum g_{ij} \sigma_i \sigma_j$.

It is known that $\text{Var}(F_N(\beta)) \leq \text{const}$ if $\beta < 1$.

However, $\text{Var}(F_N(\beta)) \leq N$ was the best available bound for $\beta > 1$ till now.

We claim that for any β, $F_N(\beta)$ is superconcentrated, meaning that $\text{Var}(F_N(\beta)) = o(N)$.

Superconcentration
The free energy of the S-K model at inverse temperature β is:

$$F_N(\beta) := \frac{1}{\beta} \log \sum_\sigma e^{-\beta H_N(\sigma)}.$$

Recall: $H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum g_{ij} \sigma_i \sigma_j$.

As a function of the Gaussian random vector $(g_{ij})_{1 \leq i < j \leq N}$, $F_N(\beta)$ is Lipschitz with Lipschitz constant N.

It is known that $\Var(F_N(\beta)) \leq \text{const.}$ if $\beta < 1$. (Aizenman-Lebowitz-Ruelle, Fröhlich-Zegarlinski, Comets-Neveu, Talagrand, Shcherbina, etc.)

However, $\Var(F_N(\beta)) \leq N$ was the best available bound for $\beta > 1$ till now.

We claim that for any β, $F_N(\beta)$ is superconcentrated, meaning that $\Var(F_N(\beta)) = o(N)$.

Sourav Chatterjee
Superconcentration

- The free energy of the S-K model at inverse temperature β is:
 \[F_N(\beta) := \frac{1}{\beta} \log \sum_\sigma e^{-\beta H_N(\sigma)}. \]

 Recall: $H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum g_{ij} \sigma_i \sigma_j$.

- As a function of the Gaussian random vector $(g_{ij})_{1 \leq i < j \leq N}$, $F_N(\beta)$ is Lipschitz with Lipschitz constant N.

- Standard concentration of Lipschitz functions under the Gaussian measure implies that $\text{Var}(F_N(\beta)) \leq N$.

- It is known that $\text{Var}(F_N(\beta)) \leq \text{const}$ if $\beta < 1$.

- However, $\text{Var}(F_N(\beta)) \leq N$ was the best available bound for $\beta > 1$ till now.

- We claim that for any β, $F_N(\beta)$ is superconcentrated, meaning that $\text{Var}(F_N(\beta)) = o(N)$.

Sourav Chatterjee
The free energy of the S-K model at inverse temperature β is:

$$F_N(\beta) := \frac{1}{\beta} \log \sum_{\sigma} e^{-\beta H_N(\sigma)}.$$

Recall: $H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum g_{ij} \sigma_i \sigma_j$.

As a function of the Gaussian random vector $(g_{ij})_{1 \leq i < j \leq N}$, $F_N(\beta)$ is Lipschitz with Lipschitz constant N.

Standard concentration of Lipschitz functions under the Gaussian measure implies that $\text{Var}(F_N(\beta)) \leq N$.

It is known that $\text{Var}(F_N(\beta)) \leq \text{const.}$ if $\beta < 1$. (Aizenman-Lebowitz-Ruelle, Fröhlich-Zegarlinski, Comets-Neveu, Talagrand, Shcherbina, etc.)
The free energy of the S-K model at inverse temperature β is:

$$F_N(\beta) := \frac{1}{\beta} \log \sum_{\sigma} e^{-\beta H_N(\sigma)}.$$

Recall: $H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum g_{ij} \sigma_i \sigma_j$.

As a function of the Gaussian random vector $(g_{ij})_{1 \leq i < j \leq N}$, $F_N(\beta)$ is Lipschitz with Lipschitz constant N.

Standard concentration of Lipschitz functions under the Gaussian measure implies that $\text{Var}(F_N(\beta)) \leq N$.

It is known that $\text{Var}(F_N(\beta)) \leq \text{const.}$ if $\beta < 1$.

(Aizenman-Lebowitz-Ruelle, Fröhlich-Zegarlinski, Comets-Neveu, Talagrand, Shcherbina, etc.)

However, $\text{Var}(F_N(\beta)) \leq N$ was the best available bound for $\beta > 1$ till now.
The free energy of the S-K model at inverse temperature β is:

$$F_N(\beta) := \frac{1}{\beta} \log \sum_{\sigma} e^{-\beta H_N(\sigma)}.$$

Recall: $H_N(\sigma) = -\frac{1}{\sqrt{N}} \sum g_{ij} \sigma_i \sigma_j$.

As a function of the Gaussian random vector $(g_{ij})_{1 \leq i < j \leq N}$, $F_N(\beta)$ is Lipschitz with Lipschitz constant N.

Standard concentration of Lipschitz functions under the Gaussian measure implies that $\text{Var}(F_N(\beta)) \leq N$.

It is known that $\text{Var}(F_N(\beta)) \leq \text{const.}$ if $\beta < 1$. (Aizenman-Lebowitz-Ruelle, Fröhlich-Zegarlinski, Comets-Neveu, Talagrand, Shcherbina, etc.)

However, $\text{Var}(F_N(\beta)) \leq N$ was the best available bound for $\beta > 1$ till now.

We claim that for any β, $F_N(\beta)$ is superconcentrated, meaning that $\text{Var}(F_N(\beta)) = o(N)$.
Theorem (C. ’09)

Let $F_N(\beta)$ be the free energy of the S-K model. Then for any β,

$$\text{Var}(F_N(\beta)) \leq \frac{CN \log(1 + C\beta)}{\log N},$$

where C is an absolute constant.
Superconcentration of the free energy

Theorem (C. ’09)

Let $F_N(\beta)$ be the free energy of the S-K model. Then for any β,

$$\text{Var}(F_N(\beta)) \leq \frac{CN \log(1 + C\beta)}{\log N},$$

where C is an absolute constant.

Reminiscent of improvement in the variance of first passage percolation time (Benjamini-Kalai-Schramm ’03). Difference: hypercontractivity does not seem to work in spin glasses. Techniques are completely different.
Theorem (C. ’09)

Let $F_N(\beta)$ be the free energy of the S-K model. Then for any β,

$$\text{Var}(F_N(\beta)) \leq \frac{CN \log(1 + C\beta)}{\log N},$$

where C is an absolute constant.

- Reminiscent of improvement in the variance of first passage percolation time (Benjamini-Kalai-Schramm ’03). Difference: hypercontractivity does not seem to work in spin glasses. Techniques are completely different.
- Has been called ‘sublinear variance’ or ‘submean variance’ before. ‘Superconcentration’ is probably more evocative.
Superconcentration of the free energy

Theorem (C. ’09)

Let $F_N(\beta)$ be the free energy of the S-K model. Then for any β,

$$\text{Var}(F_N(\beta)) \leq \frac{CN \log(1 + C\beta)}{\log N},$$

where C is an absolute constant.

- Reminiscent of improvement in the variance of first passage percolation time (Benjamini-Kalai-Schramm ’03). Difference: hypercontractivity does not seem to work in spin glasses. Techniques are completely different.
- Has been called ‘sublinear variance’ or ‘submean variance’ before. ‘Superconcentration’ is probably more evocative.
- In [Chatterjee ’08], it was shown that superconcentration is equivalent to chaos and multiple valleys in a general setting. Therefore, it is more than just a curious phenomenon.
The following theorem shows that the system is chaotic if
\(\text{Var}(F_N(\beta)) = o(N) \). That is, superconcentration implies chaos.
The following theorem shows that the system is chaotic if $\text{Var}(F_N(\beta)) = o(N)$. That is, superconcentration implies chaos.

Theorem (C. '09)

Suppose σ^1 is drawn from the Gibbs measure and σ^2 from the p-perturbed Gibbs measure. Then

$$\mathbb{E}(R_{1,2}^2) \leq C \frac{\text{Var}(F_N(\beta))}{pN} + C\beta N^{-1/2},$$

where C is an absolute constant.
Continuous perturbation

Replace g_{ij} by $ag_{ij} + bg_{ij}'$, where (g_{ij}') is another set of independent standard Gaussian random variables and $a^2 + b^2 = 1$. When $a \approx 1$, we say that the perturbation is small. A convenient way to parametrize the perturbation is to set $a = e^{-t}$, where t is a parameter that we call 'time'. Perturbing the couplings up to time t corresponds to running an Ornstein-Uhlenbeck flow at each coupling for time t, with initial value g_{ij}. The new Gibbs measure will be called the t-perturbed measure.
Continuous perturbation

- Replace g_{ij} by $ag_{ij} + bg'_{ij}$, where (g'_{ij}) is another set of independent standard Gaussian random variables and $a^2 + b^2 = 1$.
- When $a \sim 1$, we say that the perturbation is small.
Replace g_{ij} by $ag_{ij} + bg'_{ij}$, where (g'_{ij}) is another set of independent standard Gaussian random variables and $a^2 + b^2 = 1$.

When $a \approx 1$, we say that the perturbation is small.

A convenient way to parametrize the perturbation is to set $a = e^{-t}$, where t is a parameter that we call ‘time’.

Perturbing the couplings up to time t corresponds to running an Ornstein-Uhlenbeck flow at each coupling for time t, with initial value g_{ij}.

The new Gibbs measure will be called the t-perturbed measure.
Continuous perturbation

Replace g_{ij} by $ag_{ij} + bg_{ij}'$, where (g_{ij}') is another set of independent standard Gaussian random variables and $a^2 + b^2 = 1$.

When $a \simeq 1$, we say that the perturbation is small.

A convenient way to parametrize the perturbation is to set $a = e^{-t}$, where t is a parameter that we call ‘time’.

Perturbing the couplings up to time t corresponds to running an Ornstein-Uhlenbeck flow at each coupling for time t, with initial value g_{ij}.
Replace g_{ij} by $ag_{ij} + bg'_{ij}$, where (g'_{ij}) is another set of independent standard Gaussian random variables and $a^2 + b^2 = 1$.

When $a \sim 1$, we say that the perturbation is small.

A convenient way to parametrize the perturbation is to set $a = e^{-t}$, where t is a parameter that we call ‘time’.

Perturbing the couplings up to time t corresponds to running an Ornstein-Uhlenbeck flow at each coupling for time t, with initial value g_{ij}.

The new Gibbs measure will be called the t-perturbed measure.
Theorem (C. ’09)

Let σ^1 be chosen from the original Gibbs measure and σ^2 be chosen from the t-perturbed measure. Then there is an absolute constant C such that for any positive integer k,

$$\mathbb{E}(R_{1,2}^{2k}) \leq (Ck)^k N^{-k \min\{1, \frac{t}{C \log(1+C\beta)}\}}.$$
How to prove superconcentration ⇐⇒ continuous chaos

Theorem (C. ’09)

Let $\phi(t)$ denote $\mathbb{E}(R^2_{1,2})$ when σ^2 is drawn from the t-perturbed measure. Let $F_N(\beta)$ be the free energy. Then

$$\text{Var}(F_N(\beta)) = N \int_0^\infty e^{-t} \phi(t) dt.$$
Theorem (C. ’09)

Let $\phi(t)$ denote $\mathbb{E}(R_{1,2}^2)$ when σ^2 is drawn from the t-perturbed measure. Let $F_N(\beta)$ be the free energy. Then

$$\text{Var}(F_N(\beta)) = N \int_0^\infty e^{-t} \phi(t) dt.$$

Proof: Heat equation + Integration-by-parts.
Theorem (C. ’09)

Let $\phi(t)$ denote $\mathbb{E}(R_{1,2}^2)$ when σ^2 is drawn from the t-perturbed measure. Let $F_N(\beta)$ be the free energy. Then

$$\text{Var}(F_N(\beta)) = N \int_0^\infty e^{-t} \phi(t) dt.$$

Proof: Heat equation $+$ Integration-by-parts.

“\text{Var}(F_N(\beta)) = o(N)$ if $\phi(t) = o(1)$ for all $t > o(1)$.”
Theorem (C. ’09)

Let $\phi(t)$ denote $\mathbb{E}(R_{1,2}^2)$ when σ^2 is drawn from the t-perturbed measure. Let $F_N(\beta)$ be the free energy. Then

$$\text{Var}(F_N(\beta)) = N \int_{0}^{\infty} e^{-t} \phi(t) dt.$$

- Proof: Heat equation + Integration-by-parts.
- “$\text{Var}(F_N(\beta)) = o(N)$ if $\phi(t) = o(1)$ for all $t > o(1)$.”
- We will also show that ϕ is a nonnegative and decreasing function. This proves the converse implication.
How to prove superconcentration \iff continuous chaos

Theorem (C. ’09)

Let $\phi(t)$ denote $\mathbb{E}(R_{1,2}^2)$ when σ^2 is drawn from the t-perturbed measure. Let $F_N(\beta)$ be the free energy. Then

$$\text{Var}(F_N(\beta)) = N \int_0^\infty e^{-t} \phi(t) dt.$$

- Proof: Heat equation + Integration-by-parts.
- “$\text{Var}(F_N(\beta)) = o(N)$ if $\phi(t) = o(1)$ for all $t > o(1)$.”
- We will also show that ϕ is a nonnegative and decreasing function. This proves the converse implication.
- By our chaos theorem for continuous perturbation, $\phi(t) \leq CN^{-\min\{1,t/C(\beta)\}}$. This shows that

$$\text{Var}(F_N(\beta)) \leq \frac{C(\beta)N}{\log N}.$$
What have we sketched till now?

- Continuous chaos \iff superconcentration of free energy
 \implies discrete chaos \implies multiple valleys.

Remains to prove: continuous chaos.

Sourav Chatterjee Superconcentration
What have we sketched till now?

- Continuous chaos \iff superconcentration of free energy \implies discrete chaos \implies multiple valleys.
- Remains to prove: continuous chaos.
Suppose σ^1 is drawn from the Gibbs measure and the σ^2 from the t-perturbed measure. Recall: $R_{1,2} = \frac{1}{N} \sum \sigma_1^1 \sigma_2^1$. Let

$$\phi_k(t) := \mathbb{E}(R_{1,2}^{2k})$$
Suppose σ^1 is drawn from the Gibbs measure and the σ^2 from the t-perturbed measure. Recall: $R_{1,2} = \frac{1}{N} \sum \sigma^1_i \sigma^2_i$. Let

$$\phi_k(t) := \mathbb{E}(R_{1,2}^{2k})$$

$$= \mathbb{E} \left(\sum_{\sigma^1, \sigma^2} \left(\frac{\sum \sigma^1_i \sigma^2_i}{N} \right)^{2k} e^{\frac{\beta}{\sqrt{N}} \sum_{i<j}(g_{ij}\sigma^1_i \sigma^1_j + g^t_{ij}\sigma^2_i \sigma^2_j)} \right) \frac{\sum_{\sigma^1, \sigma^2} e^{\frac{\beta}{\sqrt{N}} \sum_{i<j}(g_{ij}\sigma^1_i \sigma^1_j + g^t_{ij}\sigma^2_i \sigma^2_j)}}{\sum_{\sigma^1, \sigma^2} e^{\frac{\beta}{\sqrt{N}} \sum_{i<j}(g_{ij}\sigma^1_i \sigma^1_j + g^t_{ij}\sigma^2_i \sigma^2_j)}}$$

where $g^t_{ij} := e^{-t}g_{ij} + \sqrt{1 - e^{-2t}}g'_{ij}$.

To show: For all t, $\phi_k(t) \leq CN^{-k \min\{1, t/C\}}$ for some constant C depending on β.

By repeated applications of differentiation and Gaussian integration-by-parts, we show that $(-1)^j \phi^{(j)}(t) \leq 0$ for all t and j. Here $\phi^{(j)}(t)$ denotes the jth derivative of $\phi(t)$. Such functions are called completely monotone.
Proof of chaos under continuous perturbation - 1

- Suppose σ^1 is drawn from the Gibbs measure and the σ^2 from the t-perturbed measure. Recall: $R_{1,2} = \frac{1}{N} \sum \sigma_1^1 \sigma_2^2$. Let

$$\phi_k(t) := \mathbb{E}(R_{1,2}^{2k})$$

$$= \mathbb{E} \left(\sum_{\sigma^1, \sigma^2} \left(\frac{\sum \sigma_1^1 \sigma_2^2}{N} \right)^{2k} e^{\frac{\beta}{\sqrt{N}} \sum_{i<j} (g_{ij} \sigma_1^1 \sigma_1^j + g_{ij}^t \sigma_2^1 \sigma_2^j)} \right)$$

where $g_{ij}^t := e^{-t} g_{ij} + \sqrt{1 - e^{-2t}} g_{ij}'$.

- To show: For all t, $\phi_k(t) \leq CN^{-k \min\{1, t/C\}}$ for some constant C depending on β.

Sourav Chatterjee

Superconcentration
Suppose σ^1 is drawn from the Gibbs measure and the σ^2 from the t-perturbed measure. Recall: $R_{1,2} = \frac{1}{N} \sum \sigma_i^1 \sigma_i^2$. Let

$$
\phi_k(t) := \mathbb{E}(R_{1,2}^{2k})
= \mathbb{E} \left(\frac{\sum_{\sigma^1, \sigma^2} \left(\frac{\sum_{\sigma_i^1 \sigma_i^2}}{N} \right)^2 e^{\frac{\beta}{\sqrt{N}} \sum_{i<j}(g_{ij} \sigma_i^1 \sigma_i^1 + g_{ij}^t \sigma_i^2 \sigma_i^2)} }{\sum_{\sigma^1, \sigma^2} e^{\frac{\beta}{\sqrt{N}} \sum_{i<j}(g_{ij} \sigma_i^1 \sigma_i^1 + g_{ij}^t \sigma_i^2 \sigma_i^2)}} \right),
$$

where $g_{ij}^t := e^{-t} g_{ij} + \sqrt{1 - e^{-2t}} g_{ij}'.

To show: For all t, $\phi_k(t) \leq CN^{-k \min\{1, t/C\}}$ for some constant C depending on β.

By repeated applications of differentiation and Gaussian integration-by-parts, we show that $(-1)^j \phi_k^{(j)}(t) \geq 0$ for all t and j. Here $\phi_k^{(j)}$ denotes the jth derivative of ϕ_k.

Sourav Chatterjee

Superconcentration
Suppose σ^1 is drawn from the Gibbs measure and the σ^2 from the t-perturbed measure. Recall: $R_{1,2} = \frac{1}{N} \sum \sigma_1^i \sigma_2^i$. Let

$$\phi_k(t) := \mathbb{E}(R_{1,2}^{2k})$$

$$= \mathbb{E} \left(\frac{\sum \sigma_1^i \sigma_2^i \left(\frac{\sum \sigma_1^i \sigma_2^i}{N} \right)^{2k} e^{\frac{\beta}{\sqrt{N}}} \sum_{i < j}(g_{ij}\sigma_1^i \sigma_1^j + g_t^t \sigma_2^i \sigma_2^j)}{\sum \sigma_1^i \sigma_2^i e^{\frac{\beta}{\sqrt{N}}} \sum_{i < j}(g_{ij}\sigma_1^i \sigma_1^j + g_t^t \sigma_2^i \sigma_2^j)} \right),$$

where $g_t^t := e^{-t} g_{ij} + \sqrt{1 - e^{-2t}} g_{ij}'$.

To show: For all t, $\phi_k(t) \leq C N^{-k \min\{1, t/C\}}$ for some constant C depending on β.

By repeated applications of differentiation and Gaussian integration-by-parts, we show that $(-1)^j \phi_k^{(j)}(t) \geq 0$ for all t and j. Here $\phi_k^{(j)}$ denotes the jth derivative of ϕ_k.

Such functions are called completely monotone.
By a classical theorem of Bernstein about completely monotone functions, there is a probability measure μ_k on $[0, \infty)$ such that

$$\phi_k(t) = \phi_k(0) \int_0^\infty e^{-xt} d\mu_k(x).$$

By Hölder's inequality and the above representation, it follows that for $0 \leq t < s$,

$$\phi_k(t) \leq \phi_k(0) \frac{1 - t/s}{\phi_k(s) t/s}.$$

In other words, chaos under large perturbations implies chaos under small perturbations.

Thus, it suffices to prove that $\phi_k(s) \leq \text{const} \cdot N^{-k}$ for sufficiently large s.

Sourav Chatterjee
Superconcentration
By a classical theorem of Bernstein about completely monotone functions, there is a probability measure μ_k on $[0, \infty)$ such that

$$\phi_k(t) = \phi_k(0) \int_0^\infty e^{-xt} d\mu_k(x).$$

By Hölder’s inequality and the above representation, it follows that for $0 \leq t < s$,

$$\phi_k(t) \leq \phi_k(0)^{1-t/s} \phi_k(s)^{t/s}.$$
By a classical theorem of Bernstein about completely monotone functions, there is a probability measure μ_k on $[0, \infty)$ such that

$$\phi_k(t) = \phi_k(0) \int_0^\infty e^{-xt} d\mu_k(x).$$

By Hölder’s inequality and the above representation, it follows that for $0 \leq t < s$,

$$\phi_k(t) \leq \phi_k(0)^{1-t/s} \phi_k(s)^{t/s}.$$

In other words, chaos under large perturbations implies chaos under small perturbations.
Proof of chaos under continuous perturbation - 2

- By a classical theorem of Bernstein about completely monotone functions, there is a probability measure μ_k on $[0, \infty)$ such that

$$\phi_k(t) = \phi_k(0) \int_0^\infty e^{-xt} d\mu_k(x).$$

- By Hölder’s inequality and the above representation, it follows that for $0 \leq t < s$,

$$\phi_k(t) \leq \phi_k(0)^{1-t/s} \phi_k(s)^{t/s}.$$

- In other words, chaos under large perturbations implies chaos under small perturbations.

- Thus, it suffices to prove that $\phi_k(s) \leq \text{const}.N^{-k}$ for sufficiently large s.

Sourav Chatterjee Superconcentration
Induction from infinity: Since σ^1 and σ^2 are independent and uniformly distributed on $\{-1, 1\}^N$ when $t = \infty$, we have $\phi_k(\infty) = \text{const}.N^{-k}$.
Induction from infinity: Since σ^1 and σ^2 are independent and uniformly distributed on $\{-1, 1\}^N$ when $t = \infty$, we have $\phi_k(\infty) = const. N^{-k}$. We will use this to obtain a similar bound on $\phi_k(s)$ for sufficiently large s.

Using various tricks, one can show that for any k and s,

$$\phi_k'(s) \geq -2 N \beta^2 e^{-s \phi_k(s) + 1}.$$

Thus, we have a chain of differential inequalities.

It is possible to manipulate this chain to conclude that

$$\phi_k(s) \leq 2^{-2 N \sum \sigma_1, \sigma_2 (\sigma_1 \cdot \sigma_2) / N^2 \exp(2 \beta^2 e^{-s (\sigma_1 \cdot \sigma_2) / N})}.$$

The right hand side is bounded by $const. N^{-k}$ iff s is sufficiently large. (Related to the fact that when $Z \sim N(0, 1)$, $E(e^{\alpha Z^2}) < \infty$ iff $\alpha < 1/2$.) This completes the proof.
Induction from infinity: Since σ^1 and σ^2 are independent and uniformly distributed on $\{-1, 1\}^N$ when $t = \infty$, we have $\phi_k(\infty) = \text{const}.N^{-k}$. We will use this to obtain a similar bound on $\phi_k(s)$ for sufficiently large s.

Using various tricks, one can show that for any k and s,

$$\phi'_k(s) \geq -2N\beta^2 e^{-s}\phi_{k+1}(s).$$

Thus, we have a chain of differential inequalities.
Induction from infinity: Since σ^1 and σ^2 are independent and uniformly distributed on $\{-1, 1\}^N$ when $t = \infty$, we have $\phi_k(\infty) = const. N^{-k}$. We will use this to obtain a similar bound on $\phi_k(s)$ for sufficiently large s.

Using various tricks, one can show that for any k and s,

$$\phi'_k(s) \geq -2N \beta^2 e^{-s} \phi_{k+1}(s).$$

Thus, we have a chain of differential inequalities.

It is possible to manipulate this chain to conclude that

$$\phi_k(s) \leq 2^{-2N} \sum_{\sigma^1, \sigma^2} \left(\frac{\sigma^1 \cdot \sigma^2}{N} \right)^{2k} \exp \left(2\beta^2 e^{-s} \frac{(\sigma^1 \cdot \sigma^2)^2}{N} \right).$$
Proof of chaos under continuous perturbation - 3

- **Induction from infinity:** Since σ_1 and σ_2 are independent and uniformly distributed on $\{-1, 1\}^N$ when $t = \infty$, we have $\phi_k(\infty) = const. N^{-k}$. We will use this to obtain a similar bound on $\phi_k(s)$ for sufficiently large s.

- Using various tricks, one can show that for any k and s,
 \[\phi'_k(s) \geq -2N\beta^2 e^{-s} \phi_{k+1}(s). \]

 Thus, we have a chain of differential inequalities.

- It is possible to manipulate this chain to conclude that
 \[\phi_k(s) \leq 2^{-2N} \sum_{\sigma_1, \sigma_2} \left(\frac{\sigma_1 \cdot \sigma_2}{N} \right)^{2k} \exp \left(2\beta^2 e^{-s} \frac{(\sigma_1 \cdot \sigma_2)^2}{N} \right). \]

- The right hand side is bounded by $const. N^{-k}$ iff s is sufficiently large. (Related to the fact that when $Z \sim N(0, 1)$, $\mathbb{E}(e^{\alpha Z^2}) < \infty$ iff $\alpha < 1/2$.) This completes the proof.
Other results

- Presence of chaos, superconcentration and multiple valleys in **directed polymers** in a Gaussian random environment [C. ’08].

- Implication in directed last passage percolation: many approximately longest paths that are all approximately disjoint.

- Chaos in eigenvectors of Gaussian random matrices [C. ’08].

- Superconcentration, chaos and multiple valleys in the discrete Gaussian free field [C. ’08].

- Multiple global maxima in the Kauffman-Levin N-K fitness model of evolutionary biology [C. ’08].

- Bond overlap in the Edwards-Anderson model of lattice spin glasses is not chaotic [C. ’09].

- Long list of unsolved questions (actually, almost everything). See in: Disorder chaos and multiple valleys in spin glasses.

arXiv:0907.3381v1

Sourav Chatterjee

Superconcentration
Other results

- Presence of chaos, superconcentration and multiple valleys in directed polymers in a Gaussian random environment [C. ’08].
- Implication in directed last passage percolation: many approximately longest paths that are all approximately disjoint.
Other results

- Presence of chaos, superconcentration and multiple valleys in directed polymers in a Gaussian random environment [C. ’08].
- Implication in directed last passage percolation: many approximately longest paths that are all approximately disjoint.
- Chaos in eigenvectors of Gaussian random matrices [C. ’08].
Other results

- Presence of chaos, superconcentration and multiple valleys in directed polymers in a Gaussian random environment [C. ’08].
- Implication in directed last passage percolation: many approximately longest paths that are all approximately disjoint.
- Chaos in eigenvectors of Gaussian random matrices [C. ’08].
- Superconcentration, chaos and multiple valleys in the discrete Gaussian free field [C. ’08].
Other results

- Presence of chaos, superconcentration and multiple valleys in directed polymers in a Gaussian random environment [C. ’08].
- Implication in directed last passage percolation: many approximately longest paths that are all approximately disjoint.
- Chaos in eigenvectors of Gaussian random matrices [C. ’08].
- Superconcentration, chaos and multiple valleys in the discrete Gaussian free field [C. ’08].
- Multiple global maxima in the Kauffman-Levin N-K fitness model of evolutionary biology [C. ’08].
Other results

- Presence of chaos, superconcentration and multiple valleys in directed polymers in a Gaussian random environment [C. '08].
- Implication in directed last passage percolation: many approximately longest paths that are all approximately disjoint.
- Chaos in eigenvectors of Gaussian random matrices [C. '08].
- Superconcentration, chaos and multiple valleys in the discrete Gaussian free field [C. '08].
- Multiple global maxima in the Kauffman-Levin N-K fitness model of evolutionary biology [C. '08].
- Bond overlap in the Edwards-Anderson model of lattice spin glasses is not chaotic [C. '09].
Other results

- Presence of chaos, superconcentration and multiple valleys in directed polymers in a Gaussian random environment [C. ’08].
- Implication in directed last passage percolation: many approximately longest paths that are all approximately disjoint.
- Chaos in eigenvectors of Gaussian random matrices [C. ’08].
- Superconcentration, chaos and multiple valleys in the discrete Gaussian free field [C. ’08].
- Multiple global maxima in the Kauffman-Levin N-K fitness model of evolutionary biology [C. ’08].
- Bond overlap in the Edwards-Anderson model of lattice spin glasses is not chaotic [C. ’09].
- Long list of unsolved questions (actually, almost everything). See in: Disorder chaos and multiple valleys in spin glasses. arXiv:0907.3381v1