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Multiplicative functions

I Many of the functions of interest to number theorists are
multiplicative. That is, they satisfy f (mn) = f (m)f (n) for all
coprime natural numbers m and n.

I Examples: the Möbius function µ(n), the function nit for a
real number t, Dirichlet characters χ(n).

I Often one is interested in the behavior of partial sums∑
n≤x f (n) of such multiplicative functions.

I For the prototypical examples mentioned above it is a difficult
problem to obtain a good understanding of such partial sums.

I A guiding principle that has emerged is that partial sums of
specific multiplicative functions (e.g. characters or the Möbius
function) behave like partial sums of random multiplicative
functions.

I For example, this viewpoint is explored in the context of
finding large character sums in Granville and Soundararajan
(2001).
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Random multiplicative functions

I Values of the multiplicative function X at primes are chosen
independently at random, and the values at squarefree
numbers are built out of the values at primes by the
multiplicative property.

I For example, X (2), X (3) and X (5) are independent random
variables, while X (30) = X (2)X (3)X (5).

I Define X (n) = 0 for n that is not squarefree (as for the
Möbius function), retaining the multiplicative property.

I In this talk, for each prime p, X (p) is either +1 or −1 with
equal probability. Thus, X (n) ∈ {−1, 0, 1} for all n.
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Summatory behavior of random multiplicative functions

I Let M(x) :=
∑

n≤x X (n).
I Easy to show: E(X (n)) = 0, Var(X (n)) ≤ 1 (with equality if

n is squarefree), and X (n),X (m) are uncorrelated for n 6= m.
I Follows that for every x ,

Var(M(x)) = #{squarefree numbers ≤ x}.
I Since the density of squarefree numbers is 6/π2, this implies

that for any fixed x , the typical fluctuation of M(x) is of
order

√
x .

I But in a given realization of the random function, there may
be anomalous x , just by chance, which exhibit larger
fluctuations.

I Halasz (1982) showed that there are constants c and d such
that with probability 1, |M(x)| is bounded by the function

c
√

x exp(d
√

log log x log log log x).

(Also proved a nearly matching lower bound.)
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Distribution of partial sums?

I Halasz’s result can be viewed as Law of Iterated Logarithm for
random multiplicative functions.

I Naturally raises the question of proving a central limit
theorem.

I We know E(M(x)) = 0, E(M(x)2) ∼ 6
π2 x for large x .

I If one can show that for all k

lim
x→∞

E(M(x)k)

(6x/π2)k/2

?
= E(Z k), (*)

where Z is a standard Gaussian random variable, this would
prove the CLT. (This is called the method of moments.)

I But equation (*) is not true! The limit is ∞ for all even k
above a threshold.

I However, this does not disprove the CLT. Central limit
theorems can hold even without moments converging.
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Recent results

I Hough (2008) showed that for each fixed k, if Mk(x) is the
sum of X (n) over all n ≤ x that have k prime factors, then
Mk(x) satisfies a CLT. Proof by method of moments.

I Harper (2009) showed that Mk(x) satisfies a CLT even if k is
allowed to grow like (1− δ) log log x for any δ > 0. Proof by
martingales.

I However, Harper (2009) showed that if k grows like
(1 + δ) log log x , then CLT is no longer true!

I In particular, the partial sum M(x) does not satisfy a
Gaussian CLT. (Recall: M(x) =

∑
n≤x X (n).)

I Recall that most numbers ≤ x have approximately log log x
prime factors. Harper’s result gives an interesting dichotomy.

I It seems from simulations that M(x)/
√

x has a limiting
distribution as x →∞. But we do not know what it is.

Sourav Chatterjee Central limit theorem for random multiplicative functions



Next question: sums in small intervals

I Sometimes, sums of multiplicative functions in small intervals
like [x , x + y ], where y � x , are of interest.

I Can we analyze the behavior of M(x , y) :=
∑

x<n≤x+y X (n),
where X is our random multiplicative function?

I Unless y grows very slowly (slower than log x), the high
moments of

M(x , y)√
Var(M(x , y))

blow up as x →∞ and y →∞, rendering the method of
moments useless for proving a CLT, just as for M(x).

I Question: Does the CLT hold if y grows like xα for some
α < 1?
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The main result

The following theorem shows that the CLT for M(x , y) holds as
long as y grows slower than x/(log x log log x).

Theorem
Let X be our random multiplicative function and

M(x , y) :=
∑

x<n≤x+y

X (n).

Let S(x , y) be the number of squarefree integers in (x , x + y ]. If
x →∞ and y →∞ such that y = o(x/(log x log log x)), then

M(x , y)√
S(x , y)

distribution−→ standard Gaussian,

provided S(x , y)/y remains bounded away from zero.

Remark: The last condition is satisfied if y grows faster than
x1/5+ε, by a result of Filaseta and Trifonov (1992).
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Large and small primes

I Note: if we change the value of X (p) for some small prime p
(e.g. p = 2), M(x , y) must undergo a large change. On the
other hand, central limit theorems arise mainly as a ‘sum of
many small independent contributions’. If one X (p)
contributes so much, how can we expect a CLT? This is the
main reason why CLT fails for M(x).

I This is taken care of by dividing the set of primes into ‘small’
and ‘large’ primes, and then conditioning on the small primes.

I Let x , y be as in the statement of the theorem, and δ = y/x .

I Let z := 1
2 log(1/δ).

I Divide the primes below 2x into the large (that is > z) and
small (that is ≤ z) primes, denoted by L and S.

I Let F be the sigma-algebra generated by X (p) for all p ∈ S,
and denote the conditional expectation given F by EF .
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Small primes do not matter

I Recall: S(x , y) = number of squarefree integers in (x , x + y ].

I The key step in the proof is to show that the conditional
distribution of M(x , y) given the sigma-algebra F is
approximately Gaussian with mean 0 and variance S(x , y),
irrespective of the values of (X (p))p∈S .

I A basic probabilistic fact is that if the conditional distribution
of a random variable Y given a sigma-algebra F is a
non-random distribution F , then the unconditional
distribution of Y is again F .

I This fact, combined with the above claim about the
conditional distribution, implies that the unconditional
distribution of M(x , y) is approximately Gaussian with mean 0
and variance S(x , y).
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First indication of the irrelevance of small primes

Recall: F is the sigma-algebra generated by the values of X at the
small primes.

Lemma
Irrespective of the values of X (p) for p ∈ S, we have
EF (M(x , y)) = 0 and EF (M(x , y)2) = S(x , y),

I To prove EF (M(x , y)) = 0, we only need observe that any
n ∈ (x , x + y ] must have a prime factor in L.

I This is easy, because the product of all primes in S is less
than x .

I To prove EF (M(x , y)2) = S(x , y), it suffices to prove that
X (n) and X (n′) are uncorrelated even after conditioning on
F , for any n 6= n′ in (x , x + y ].

I Again, this is easy because if n 6= n′, there must exist distinct
p, p′ ∈ L such that p|n and p′|n′.
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The conditional CLT

I The previous lemma shows that the first and second moments
of M(x , y), conditional on the values of X at the small
primes, do not actually depend on these values.

I This needs to be extended to show that the full distribution of
M(x , y), conditional on the values of X at the small primes, is
approximately independent of these values.

I Program: Fix any set of values of X (p) for p ∈ S. Then
M(x , y) is simply a function of X (p), p ∈ L.

I Perturbing any X (p) for p ∈ L creates only a relatively small
perturbation in M(x , y).
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An abstract central limit theorem

I Suppose X = (X1, . . . ,Xn) and X ′ = (X ′1, . . . ,X
′
n) are i.i.d.

random vectors with independent components.
I Let W = f (X ) be a function of X with mean 0 and var 1.
I For each A ⊆ {1, . . . , n}, define the vector XA as: XA

i = X ′i if
i ∈ A, and XA

i = Xi if i 6∈ A.
I Let ∆j f (X ) := f (X )− f (X j).
I Define

T :=
1

2

∑
A

1( n
|A|
)
(n − |A|)

∑
j 6∈A

∆j f (X )∆j f (XA).

Theorem (C., 2008)

Let Z ∼ N(0, 1). Then for any Lipschitz function φ,

|Eφ(W )− Eφ(Z )| ≤
√

Var(T ) +
1

2

n∑
j=1

E|∆j f (X )|3.
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Simplest example

I Suppose f (X ) = n−1/2
∑n

i=1 Xi . Then a simple computation
gives

T =
1

2n

n∑
j=1

(Xj − X ′j )2.

Thus, Var(T ) = O(n−1).

I Also,

n∑
j=1

E|∆j f (X )|3 = n−3/2
n∑

j=1

E|Xj − X ′j |3 = O(n−1/2).

I Combining, we get an O(n−1/2) error bound.
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Applying the abstract CLT to our problem

I Fixing X (p) for p ∈ S, M(x , y) can be considered as a
function of the independent r.v. X (p), p ∈ L.

I Computing T for this function is simple. Getting suitable
estimates for Var(T ) involves expectations of sums of
products like X (n1)X (n2)X (n3)X (n4). (Requires some results
from number theory.)

I The cubic remainder term is small because perturbation of
X (p) for large primes produces a small effect on M(x , y).

I Combination of the above gives the desired CLT for M(x , y)
(conditional on the values of X at small primes).

I Unconditional CLT is derived by the principle mentioned
before.
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Brief sketch of the proof of the abstract CLT

I First, recall the notation:
I X = (X1, . . . ,Xn) and X ′ = (X ′1, . . . ,X

′
n) are i.i.d. random

vectors with independent components. W = f (X ) is a
function of X with mean 0 and var 1. For each
A ⊆ {1, . . . , n}, the vector XA is defined as: XA

i = X ′i if
i ∈ A, and XA

i = Xi if i 6∈ A. ∆j f (X ) := f (X )− f (X j).
Finally, T is defined as

T :=
1

2

∑
A

1( n
|A|
)
(n − |A|)

∑
j 6∈A

∆j f (X )∆j f (XA).

I Thus, for any absolutely continuous function ψ,

E(ψ′(W )T ) =
1

2

∑
A

1( n
|A|
)
(n − |A|)

∑
j 6∈A

E(ψ′(W )∆j f (X )∆j f (XA)).

I Next step: simplify E(ψ′(W )∆j f (X )∆j f (XA)).
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Proof sketch continued

I If ∆j f (X ) is small, then with g = ψ ◦ f , we have the
approximate chain rule
∆jg(X ) ≈ ψ′(f (X ))∆j f (X ) = ψ′(W )∆j f (X ).

I Thus,

E(ψ′(W )∆j f (X )∆j f (XA)) ≈ E(∆jg(X )∆j f (XA))

= E(g(X )∆j f (XA))− E(g(X j)∆j f (XA)).

I Swapping the roles of Xj ,X
′
j inside the second expectation, we

get E(g(X j)∆j f (XA)) = −E(g(X )∆j f (XA)). Combined with
the previous step, this gives

E(ψ′(W )∆j f (X )∆j f (XA)) ≈ 2E(ψ(W )∆j f (XA))

I Combining all steps, we have

E(ψ′(W )T ) ≈ E
(
ψ(W )

∑
A

1( n
|A|
)
(n − |A|)

∑
j 6∈A

∆j f (XA)

)
.
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Proof sketch continued

I A simple algebraic verification shows that∑
A

1( n
|A|
)
(n − |A|)

∑
j 6∈A

∆j f (XA) = f (X )− f (X ′).

I Recalling that W = f (X ), this gives

E(ψ′(W )T ) ≈ E[ψ(W )(f (X )− f (X ′))]

= E(ψ(W )W )− E(ψ(W ))E(f (X ′))

= E(ψ(W )W ), since E(f (X ′)) = E(W ) = 0.

I Exact equality holds for ψ(u) = u, which gives
E(T ) = E(W 2) = 1.

I Thus, if Var(T ) is tiny, then “we can replace T by 1”, and get

E(ψ(W )W ) ≈ E(ψ′(W )).
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Finishing off with Stein’s method

I We have shown that for any ψ, E(ψ(W )W ) ≈ E(ψ′(W )).

I Given a Lipschitz φ, produce a function ψ that solves the
o.d.e.

ψ′(x)− xψ(x) = φ(x)− Eφ(Z ).

I Use basic o.d.e. theory to show that ψ is sufficiently
well-behaved.

I Then

Eφ(W )− Eφ(Z ) = E(ψ′(W )− ψ(W )W ) ≈ 0.

I The above idea is the foundation of Stein’s method of
distributional approximation. This completes the proof.
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