Central limit theorem for random multiplicative functions

Sourav Chatterjee (Courant Institute)

joint work with Kannan Soundararajan (Stanford)

Multiplicative functions

- Many of the functions of interest to number theorists are multiplicative. That is, they satisfy f(mn) = f(m)f(n) for all coprime natural numbers m and n.
- Examples: the Möbius function $\mu(n)$, the function n^{it} for a real number t, Dirichlet characters $\chi(n)$.
- ▶ Often one is interested in the behavior of partial sums $\sum_{n < x} f(n)$ of such multiplicative functions.
- ► For the prototypical examples mentioned above it is a difficult problem to obtain a good understanding of such partial sums.
- A guiding principle that has emerged is that partial sums of specific multiplicative functions (e.g. characters or the Möbius function) behave like partial sums of random multiplicative functions.
- ▶ For example, this viewpoint is explored in the context of finding large character sums in Granville and Soundararajan (2001).

Random multiplicative functions

- ▶ Values of the multiplicative function X at primes are chosen independently at random, and the values at squarefree numbers are built out of the values at primes by the multiplicative property.
- ▶ For example, X(2), X(3) and X(5) are independent random variables, while X(30) = X(2)X(3)X(5).
- ▶ Define X(n) = 0 for n that is not squarefree (as for the Möbius function), retaining the multiplicative property.
- ▶ In this talk, for each prime p, X(p) is either +1 or -1 with equal probability. Thus, $X(n) \in \{-1, 0, 1\}$ for all n.

Summatory behavior of random multiplicative functions

- ▶ Let $M(x) := \sum_{n \le x} X(n)$.
- ▶ Easy to show: $\mathbb{E}(X(n)) = 0$, $Var(X(n)) \le 1$ (with equality if n is squarefree), and X(n), X(m) are uncorrelated for $n \ne m$.
- Follows that for every x,

$$Var(M(x)) = \#\{\text{squarefree numbers} \le x\}.$$

- Since the density of squarefree numbers is $6/\pi^2$, this implies that for any fixed x, the typical fluctuation of M(x) is of order \sqrt{x} .
- ▶ But in a given realization of the random function, there may be anomalous x, just by chance, which exhibit larger fluctuations.
- ▶ Halasz (1982) showed that there are constants c and d such that with probability 1, |M(x)| is bounded by the function

$$c\sqrt{x}\exp(d\sqrt{\log\log x\log\log\log x}).$$

(Also proved a nearly matching lower bound.)

Distribution of partial sums?

- Halasz's result can be viewed as Law of Iterated Logarithm for random multiplicative functions.
- Naturally raises the question of proving a central limit theorem.
- ▶ We know $\mathbb{E}(M(x)) = 0$, $\mathbb{E}(M(x)^2) \sim \frac{6}{\pi^2} x$ for large x.
- ▶ If one can show that for all *k*

$$\lim_{x \to \infty} \frac{\mathbb{E}(M(x)^k)}{(6x/\pi^2)^{k/2}} \stackrel{?}{=} \mathbb{E}(Z^k), \tag{*}$$

where Z is a standard Gaussian random variable, this would prove the CLT. (This is called the method of moments.)

- ▶ But equation (*) is not true! The limit is ∞ for all even k above a threshold.
- However, this does not disprove the CLT. Central limit theorems can hold even without moments converging.

Recent results

- ▶ Hough (2008) showed that for each fixed k, if $M_k(x)$ is the sum of X(n) over all $n \le x$ that have k prime factors, then $M_k(x)$ satisfies a CLT. Proof by method of moments.
- ▶ Harper (2009) showed that $M_k(x)$ satisfies a CLT even if k is allowed to grow like $(1 \delta) \log \log x$ for any $\delta > 0$. Proof by martingales.
- ▶ However, Harper (2009) showed that if k grows like $(1 + \delta) \log \log x$, then CLT is no longer true!
- In particular, the partial sum M(x) does not satisfy a Gaussian CLT. (Recall: $M(x) = \sum_{n \le x} X(n)$.)
- ▶ Recall that most numbers $\leq x$ have approximately $\log \log x$ prime factors. Harper's result gives an interesting dichotomy.
- ▶ It seems from simulations that $M(x)/\sqrt{x}$ has a limiting distribution as $x \to \infty$. But we do not know what it is.

Next question: sums in small intervals

- ▶ Sometimes, sums of multiplicative functions in small intervals like [x, x + y], where $y \ll x$, are of interest.
- ▶ Can we analyze the behavior of $M(x,y) := \sum_{x < n \le x+y} X(n)$, where X is our random multiplicative function?
- Unless y grows very slowly (slower than log x), the high moments of

$$\frac{M(x,y)}{\sqrt{\operatorname{Var}(M(x,y))}}$$

blow up as $x \to \infty$ and $y \to \infty$, rendering the method of moments useless for proving a CLT, just as for M(x).

▶ Question: Does the CLT hold if y grows like x^{α} for some $\alpha < 1$?

The main result

The following theorem shows that the CLT for M(x, y) holds as long as y grows slower than $x/(\log x \log \log x)$.

Theorem

Let X be our random multiplicative function and

$$M(x,y) := \sum_{x < n \le x+y} X(n).$$

Let S(x, y) be the number of squarefree integers in (x, x + y]. If $x \to \infty$ and $y \to \infty$ such that $y = o(x/(\log x \log \log x))$, then

$$\frac{M(x,y)}{\sqrt{S(x,y)}} \stackrel{distribution}{\longrightarrow} standard Gaussian,$$

provided S(x,y)/y remains bounded away from zero.

Remark: The last condition is satisfied if y grows faster than $x^{1/5+\epsilon}$, by a result of Filaseta and Trifonov (1992).

Large and small primes

- Note: if we change the value of X(p) for some small prime p (e.g. p=2), M(x,y) must undergo a large change. On the other hand, central limit theorems arise mainly as a 'sum of many small independent contributions'. If one X(p) contributes so much, how can we expect a CLT? This is the main reason why CLT fails for M(x).
- ➤ This is taken care of by dividing the set of primes into 'small' and 'large' primes, and then conditioning on the small primes.
- ▶ Let x, y be as in the statement of the theorem, and $\delta = y/x$.
- ▶ Let $z := \frac{1}{2} \log(1/\delta)$.
- ▶ Divide the primes below 2x into the large (that is > z) and small (that is $\le z$) primes, denoted by \mathcal{L} and \mathcal{S} .
- ▶ Let \mathcal{F} be the sigma-algebra generated by X(p) for all $p \in \mathcal{S}$, and denote the conditional expectation given \mathcal{F} by $\mathbb{E}^{\mathcal{F}}$.

Small primes do not matter

- ▶ Recall: S(x, y) = number of squarefree integers in (x, x + y].
- ▶ The key step in the proof is to show that the conditional distribution of M(x,y) given the sigma-algebra \mathcal{F} is approximately Gaussian with mean 0 and variance S(x,y), irrespective of the values of $(X(p))_{p \in \mathcal{S}}$.
- A basic probabilistic fact is that if the conditional distribution of a random variable Y given a sigma-algebra F is a non-random distribution F, then the unconditional distribution of Y is again F.
- ▶ This fact, combined with the above claim about the conditional distribution, implies that the unconditional distribution of M(x, y) is approximately Gaussian with mean 0 and variance S(x, y).

First indication of the irrelevance of small primes

Recall: \mathcal{F} is the sigma-algebra generated by the values of X at the small primes.

Lemma

Irrespective of the values of X(p) for $p \in \mathcal{S}$, we have $\mathbb{E}^{\mathcal{F}}(M(x,y)) = 0$ and $\mathbb{E}^{\mathcal{F}}(M(x,y)^2) = S(x,y)$,

- ▶ To prove $\mathbb{E}^{\mathcal{F}}(M(x,y)) = 0$, we only need observe that any $n \in (x, x + y]$ must have a prime factor in \mathcal{L} .
- ▶ This is easy, because the product of all primes in S is less than x.
- ▶ To prove $\mathbb{E}^{\mathcal{F}}(M(x,y)^2) = S(x,y)$, it suffices to prove that X(n) and X(n') are uncorrelated even after conditioning on \mathcal{F} , for any $n \neq n'$ in (x,x+y].
- Again, this is easy because if $n \neq n'$, there must exist distinct $p, p' \in \mathcal{L}$ such that p|n and p'|n'.

The conditional CLT

- ▶ The previous lemma shows that the first and second moments of M(x, y), conditional on the values of X at the small primes, do not actually depend on these values.
- ▶ This needs to be extended to show that the full distribution of M(x,y), conditional on the values of X at the small primes, is approximately independent of these values.
- ▶ Program: Fix any set of values of X(p) for $p \in \mathcal{S}$. Then M(x,y) is simply a function of $X(p), p \in \mathcal{L}$.
- ▶ Perturbing any X(p) for $p \in \mathcal{L}$ creates only a relatively small perturbation in M(x, y).

An abstract central limit theorem

- Suppose $X = (X_1, ..., X_n)$ and $X' = (X'_1, ..., X'_n)$ are i.i.d. random vectors with independent components.
- ▶ Let W = f(X) be a function of X with mean 0 and var 1.
- ▶ For each $A \subseteq \{1, ..., n\}$, define the vector X^A as: $X_i^A = X_i'$ if $i \in A$, and $X_i^A = X_i$ if $i \notin A$.
- $\blacktriangleright \text{ Let } \Delta_i f(X) := f(X) f(X^j).$
- Define

$$\mathcal{T} := rac{1}{2} \sum_{A} rac{1}{inom{n}{|A|}(n-|A|)} \sum_{j
ot\in A} \Delta_j f(X) \Delta_j f(X^A).$$

Theorem (C., 2008)

Let $Z \sim N(0,1)$. Then for any Lipschitz function ϕ ,

$$|\mathbb{E}\phi(W) - \mathbb{E}\phi(Z)| \leq \sqrt{\operatorname{Var}(T)} + \frac{1}{2}\sum_{i=1}^n \mathbb{E}|\Delta_i f(X)|^3.$$

Simplest example

▶ Suppose $f(X) = n^{-1/2} \sum_{i=1}^{n} X_i$. Then a simple computation gives

$$T = \frac{1}{2n} \sum_{j=1}^{n} (X_j - X_j')^2.$$

Thus, $Var(T) = O(n^{-1})$.

Also,

$$\sum_{j=1}^n \mathbb{E}|\Delta_j f(X)|^3 = n^{-3/2} \sum_{j=1}^n \mathbb{E}|X_j - X_j'|^3 = O(n^{-1/2}).$$

▶ Combining, we get an $O(n^{-1/2})$ error bound.

Applying the abstract CLT to our problem

- ▶ Fixing X(p) for $p \in \mathcal{S}$, M(x, y) can be considered as a function of the independent r.v. X(p), $p \in \mathcal{L}$.
- ▶ Computing T for this function is simple. Getting suitable estimates for Var(T) involves expectations of sums of products like $X(n_1)X(n_2)X(n_3)X(n_4)$. (Requires some results from number theory.)
- ▶ The cubic remainder term is small because perturbation of X(p) for large primes produces a small effect on M(x, y).
- ▶ Combination of the above gives the desired CLT for M(x, y) (conditional on the values of X at small primes).
- Unconditional CLT is derived by the principle mentioned before.

Brief sketch of the proof of the abstract CLT

- First, recall the notation:
- ▶ $X = (X_1, \ldots, X_n)$ and $X' = (X'_1, \ldots, X'_n)$ are i.i.d. random vectors with independent components. W = f(X) is a function of X with mean 0 and var 1. For each $A \subseteq \{1, \ldots, n\}$, the vector X^A is defined as: $X_i^A = X_i'$ if $i \in A$, and $X_i^A = X_i$ if $i \notin A$. $\Delta_j f(X) := f(X) f(X^j)$. Finally, T is defined as

$$\mathcal{T} := rac{1}{2} \sum_A rac{1}{inom{n}{|A|}(n-|A|)} \sum_{j
ot\in A} \Delta_j f(X) \Delta_j f(X^A).$$

lacktriangle Thus, for any absolutely continuous function ψ ,

$$\mathbb{E}(\psi'(W)T) = \frac{1}{2} \sum_{A} \frac{1}{\binom{n}{|A|}(n-|A|)} \sum_{i \notin A} \mathbb{E}(\psi'(W)\Delta_{j}f(X)\Delta_{j}f(X^{A})).$$

▶ Next step: simplify $\mathbb{E}(\psi'(W)\Delta_i f(X)\Delta_i f(X^A))$.

Proof sketch continued

▶ If $\Delta_j f(X)$ is small, then with $g = \psi \circ f$, we have the approximate chain rule $\Delta_j g(X) \approx \psi'(f(X)) \Delta_j f(X) = \psi'(W) \Delta_j f(X)$.

► Thus,

$$\mathbb{E}(\psi'(W)\Delta_j f(X)\Delta_j f(X^A)) \approx \mathbb{E}(\Delta_j g(X)\Delta_j f(X^A))$$

= $\mathbb{E}(g(X)\Delta_j f(X^A)) - \mathbb{E}(g(X^j)\Delta_j f(X^A)).$

▶ Swapping the roles of X_j, X_j' inside the second expectation, we get $\mathbb{E}(g(X^j)\Delta_j f(X^A)) = -\mathbb{E}(g(X)\Delta_j f(X^A))$. Combined with the previous step, this gives

$$\mathbb{E}(\psi'(W)\Delta_j f(X)\Delta_j f(X^A)) \approx 2\mathbb{E}(\psi(W)\Delta_j f(X^A))$$

▶ Combining all steps, we have

$$\mathbb{E}(\psi'(W)T) \approx \mathbb{E}\left(\psi(W)\sum_{A} \frac{1}{\binom{n}{|A|}(n-|A|)}\sum_{j \notin A} \Delta_{j} f(X^{A})\right).$$

Proof sketch continued

A simple algebraic verification shows that

$$\sum_{A} \frac{1}{\binom{n}{|A|}(n-|A|)} \sum_{j \notin A} \Delta_j f(X^A) = f(X) - f(X').$$

▶ Recalling that W = f(X), this gives

$$\mathbb{E}(\psi'(W)T) \approx \mathbb{E}[\psi(W)(f(X) - f(X'))]$$

$$= \mathbb{E}(\psi(W)W) - \mathbb{E}(\psi(W))\mathbb{E}(f(X'))$$

$$= \mathbb{E}(\psi(W)W), \text{ since } \mathbb{E}(f(X')) = \mathbb{E}(W) = 0.$$

- ► Exact equality holds for $\psi(u) = u$, which gives $\mathbb{E}(T) = \mathbb{E}(W^2) = 1$.
- ▶ Thus, if Var(T) is tiny, then "we can replace T by 1", and get

$$\mathbb{E}(\psi(W)W) \approx \mathbb{E}(\psi'(W)).$$

Finishing off with Stein's method

- ▶ We have shown that for any ψ , $\mathbb{E}(\psi(W)W) \approx \mathbb{E}(\psi'(W))$.
- ▶ Given a Lipschitz ϕ , produce a function ψ that solves the o.d.e.

$$\psi'(x) - x\psi(x) = \phi(x) - \mathbb{E}\phi(Z).$$

- Use basic o.d.e. theory to show that ψ is sufficiently well-behaved.
- ► Then

$$\mathbb{E}\phi(W) - \mathbb{E}\phi(Z) = \mathbb{E}(\psi'(W) - \psi(W)W) \approx 0.$$

► The above idea is the foundation of Stein's method of distributional approximation. This completes the proof.