A general method for lower bounds on fluctuations of random variables

Sourav Chatterjee
The problem of lower bounds

- There are many ways of proving upper bounds on fluctuations of random variables (concentration inequalities), but ...
- ... very few methods for lower bounds.
- In fact, the only ones I know are:
 - Prove distributional convergence.
 - Prove a lower bound on the variance and a matching upper bound on a higher moment, e.g. Aizenman & Wehr (1990).
 - Problem-specific methods, e.g. Pemantle & Peres (1994).
- Many open questions, because there are many modern problems where none of the above approaches work.
- In this talk, I will introduce a new method for lower bounds, that gives new results for:
 - First-passage percolation.
 - Traveling salesman and minimal matching.
 - Random assignment problem.
 - Spin glasses.
 - Random matrices.
The Lévy concentration function f of a random variable X is defined as

$$f(h) := \sup_{x \in \mathbb{R}} \mathbb{P}(x \leq X \leq x + h).$$

We will say that a sequence of random variables X_n has fluctuations of order at least δ_n if for some $c > 0$,

$$\limsup_{n \to \infty} f_n(c\delta_n) < 1,$$

where f_n is the Lévy concentration function of X_n.

Sourav Chatterjee

Lower bounds on fluctuations
Main lemma

Lemma (C., 2017)

Let X and Y be two random variables defined on the same probability space. Then for any $-\infty < a \leq b < \infty$,

$$
P(a \leq X \leq b) \leq \frac{1}{2}(1 + P(|X - Y| \leq b - a) + d_{TV}(\mathcal{L}_X, \mathcal{L}_Y)),$$

where \mathcal{L}_X is the law of X, \mathcal{L}_Y is the law of Y, and d_{TV} is total variation distance.

Idea: To show that $P(X \in I)$ is uniformly bounded away from 1 for all intervals I of length $\leq \delta$, construct a random variable Y such that:

- $d_{TV}(\mathcal{L}_X, \mathcal{L}_Y)$ is small, and
- $P(|X - Y| \leq \delta)$ is small.

Janson (1994): Similar approach, but Janson takes Y such that $\mathcal{L}_X = \mathcal{L}_Y$. The above lemma is more flexible.
Proof

Let \(I \) denote the interval \([a, b]\).

Then note that

\[
1 \geq \mathbb{P}(\{X \in I\} \cup \{Y \in I\}) \\
= \mathbb{P}(X \in I) + \mathbb{P}(Y \in I) - \mathbb{P}(\{X \in I\} \cap \{Y \in I\}).
\]

But

\[
\mathbb{P}(Y \in I) \geq \mathbb{P}(X \in I) - d_{TV}(\mathcal{L}_X, \mathcal{L}_Y),
\]

and

\[
\mathbb{P}(\{X \in I\} \cap \{Y \in I\}) \leq \mathbb{P}(|X - Y| \leq b - a).
\]

Thus,

\[
1 \geq 2\mathbb{P}(X \in I) - d_{TV}(\mathcal{L}_X, \mathcal{L}_Y) - \mathbb{P}(|X - Y| \leq b - a),
\]

completing the proof.
Let X_1, \ldots, X_n be i.i.d. Bernoulli($1/2$) random variables and let $S_n = X_1 + \cdots + X_n$.

Let $X'_i = 1$ with probability $\alpha n^{-1/2}$, and $X'_i = X_i$ with probability $1 - \alpha n^{-1/2}$. Let $S'_n = X'_1 + \cdots + X'_n$.

Direct calculation shows that

$$d_{TV} (\mathcal{L}_{S_n}, \mathcal{L}_{S'_n}) \leq d_{TV} (\mathcal{L}_{X_1, \ldots, X_n}, \mathcal{L}_{X'_1, \ldots, X'_n}) \leq C_1 \alpha.$$

But $S'_n - S_n > C_2 \alpha n^{1/2}$ with high probability.

Thus, for any interval I of width $\leq \delta_n = C_2 \alpha n^{1/2}$,

$$\mathbb{P}(S_n \in I) \leq \frac{1}{2} (1 + C_1 \alpha + \mathbb{P}(|S'_n - S_n| \leq \delta_n)).$$

Choosing α small enough, the right side can be made uniformly bounded away from 1. This shows that S_n has fluctuations of order at least $n^{1/2}$.
Let us now see how to get an optimal lower bound on the fluctuations of the length of the optimal tour in the **traveling salesman problem**.

Let μ and μ' be two probability measures on some space, having densities f and g with respect to some probability measure ν.

The **Hellinger affinity** between μ and μ' is defined as

$$\rho(\mu, \mu') := \int \sqrt{fg} \, d\nu.$$

This quantity does not depend on the choice of ν.
Total variation distance between product measures

- Let $\mu_1, \ldots, \mu_n, \mu'_1, \ldots, \mu'_n$ be probability measures on some space.
- Let $\mu = \mu_1 \times \cdots \times \mu_n$ and $\mu' = \mu'_1 \times \cdots \times \mu'_n$.
- The following bound is well-known and widely used in mathematical statistics:

$$d_{TV}(\mu, \mu') \leq \sqrt{1 - \prod_{i=1}^{n} \rho(\mu_i, \mu'_i)^2}.$$
Let X be a d-dimensional random vector with probability density function $e^{-V(x)}$ on either \mathbb{R}^d or $[0, \infty)^d$.

Here V is a smooth function satisfying some mild growth conditions (e.g., X may be Gaussian or exponential, but not uniform).

Take some $\epsilon \in (-1/2, 1/2)$ and let $Y = X/(1 + \epsilon)$.
Using integration by parts,

\[
\rho(\mathcal{L}_X, \mathcal{L}_Y) = \int \sqrt{(1 + \epsilon)^d} e^{-V(x + \epsilon x) - V(x)} \, dx
\]

\[
= \left(1 + \frac{\epsilon d}{2}\right) \int \left(1 - \frac{\epsilon}{2} x \cdot \nabla V(x)\right) e^{-V(x)} \, dx + O(\epsilon^2)
\]

\[
= \left(1 + \frac{\epsilon d}{2}\right) \left(1 - \frac{\epsilon d}{2}\right) + O(\epsilon^2) \geq 1 - C\epsilon^2.
\]

Proposition (C., 2017)

If \(X_1, \ldots, X_n\) *are i.i.d. with density as above and* \(Y_i = X_i/(1 + \epsilon_i)\), *then*

\[
d_{TV}(\mathcal{L}(X_1, \ldots, X_n), \mathcal{L}(Y_1, \ldots, Y_n)) \leq C \sqrt{\sum_{i=1}^{n} \epsilon_i^2},
\]

where \(C\) *depends only on* \(\mathcal{L}_{X_1}\) *.*
Let $f_n : (\mathbb{R}^d)^n \to \mathbb{R}$ be a function and $r > 0$ be a constant such that for all $\lambda > 0$,

$$f_n(\lambda x_1, \ldots, \lambda x_n) = \lambda^r f_n(x_1, \ldots, x_n).$$

For example, length of optimal traveling salesman path through x_1, \ldots, x_n, length of minimum matching, volume of convex hull, etc.

Let X_i be as in the previous slide, and let $L_n = f_n(X_1, \ldots, X_n)$. What is a lower bound on the order of fluctuations of L_n?

Theorem (C., 2017)

Let t_n be a sequence of constants such that $\lim \inf \mathbb{P}(L_n > t_n) > 0$. Then L_n has fluctuations of order at least $n^{-1/2} t_n$.

Sourav Chatterjee
Lower bounds on fluctuations
Proof

Let \(Y_i = X_i/(1 + \alpha n^{-1/2}) \) and \(L'_n = f_n(Y_1, \ldots, Y_n) \).

Then \(L'_n = L_n/(1 + \alpha n^{-1/2})^r \).

If \(L_n > t_n \), then \(L_n - L'_n > C_1 r \alpha n^{-1/2} t_n \).

On the other hand, by the Proposition,

\[
d_{TV}(\mathcal{L}_{L_n}, \mathcal{L}_{L'_n}) \leq d_{TV}(\mathcal{L}(X_1, \ldots, X_n), \mathcal{L}(Y_1, \ldots, Y_n)) \leq C_2 \alpha.
\]

Thus, by the main lemma, for any interval \(I \) of length \(\leq \delta_n := C_1 r \alpha n^{-1/2} t_n \),

\[
\mathbb{P}(L_n \in I) \leq \frac{1}{2}(1 + d_{TV}(\mathcal{L}_{L_n}, \mathcal{L}_{L'_n}) + \mathbb{P}(|L_n - L'_n| \leq \delta_n)) \\
\leq \frac{1}{2}(1 + C_2 \alpha + \mathbb{P}(L_n \leq t_n)).
\]

The proof is completed by choosing \(\alpha \) small enough.
Applications

- Let $L_n =$ length of optimal traveling salesman path through X_1, \ldots, X_n, or $L_n =$ length of minimum matching. $d \geq 2$.
- Well-known: In both cases, size of L_n is of order $n^{1-1/d}$.
- Thus, the fluctuations are of order at least
 \[n^{-1/2} n^{1-1/d} = n^{(d-2)/2d}. \]
- For densities with compact support, it is known that the fluctuations are at most of order $n^{(d-2)/2d}$ (Steele, 1997), matching the above lower bound. However, in my theorem, the densities have unbounded support. I have not seen an upper bound for this case.
- The only previous result is due to Rhee (1994), who proved order 1 lower bound for TSP through uniformly distributed points in $[0, 1]^2$.
Each edge in \mathbb{Z}^2 is assigned a random weight. The weights are nonnegative and i.i.d.

The weight of a path is the sum of edge weights along the path.

The first-passage time $T(x, y)$ is the minimum over the weights of all paths from x to y.

Question: What is the order of fluctuations of $T(x, y)$, depending on the distance $|x - y|$ between x and y?

Best known upper bound: $\sqrt{|x - y|/ \log |x - y|}$.

Lower bounds in FPP

- Best known lower bound on variance: Newman & Piza (1995) showed that $\text{Var}(T(x, y)) \geq C \log |x - y|$.
- However, this does not prove a lower bound on the order of fluctuations, since the upper bound does not match.
- Pemantle & Peres (1994) proved an actual lower bound of order $\sqrt{\log |x - y|}$, but only if the weights are exponentially distributed.
- The Pemantle-Peres proof uses the memoryless property of the exponential distribution, and does not seem to extend easily to other distributions.

Theorem (C., 2017)

For 2D first-passage percolation, under mild smoothness and decay assumptions on the edge weight distribution, the fluctuations of $T(x, y)$ are at least of order $\sqrt{\log |x - y|}$.
Proof sketch

- Let $n = |x - y|$.
- In a ball of radius $n/2$ around x, replace each edge weight ω_e by $\omega_e/(1 + \epsilon_e)$, where

$$\epsilon_e = \frac{\alpha}{\text{dist}(e, x)\sqrt{\log n}}.$$

- Let T and T' be the first-passage times from x to y in the two environments.
- Then, one can show that $T - T' \geq C\alpha \sqrt{\log n}$ with high probability, and $d_{TV}(\mathcal{L}_T, \mathcal{L}_{T'}) \leq C\alpha$.
- Proof is completed by choosing α sufficiently small and applying the main lemma.
Let $B(t)$ be the set of all vertices x such that $T(0, x) \leq t$.

Cox & Durrett (1981) proved that there exists a symmetric convex set B_0 such that almost surely, for all $\epsilon > 0$,

$$(1 - \epsilon)B_0 \subseteq \frac{1}{t}B(t) \subseteq (1 + \epsilon)B_0$$

for all large t.

B_0 is called the limit shape and fluctuations of $\frac{1}{t}B(t)$ are called shape fluctuations.

Newman & Piza (1995) defined the natural shape fluctuation exponent

$$\chi' := \inf\{\kappa : (t - t^\kappa)B_0 \subseteq B(t) \subseteq (t + t^\kappa)B_0$$

for all large t a.s.$\}.$

It has been an open problem until now to show that $\chi' > 0$ (in any dimension).
Theorem (C., 2017)

In 2D first-passage percolation, under mild conditions on the edge weight distribution, \(\chi' \geq 1/8 \).

- The main step is to show that there is a direction in which the first-passage time to a point at distance \(n \) has fluctuations of order at least \(n^{1/8} \).
- **Newman & Piza (1995)** proved a corresponding lower bound for the variance, but since that does not imply a lower bound on the order of fluctuations, it could not be used to deduce a lower bound on \(\chi' \).
- It is conjectured that \(\chi' = 1/3 \).
Random assignment problem

- n tasks, to be assigned to n workers.
- a_{ij} is the cost of assigning task j to worker i.
- The minimum cost of assigning tasks is
 \[C_n = \min_{\pi \in S_n} \sum_{i=1}^{n} a_{i\pi(i)}. \]

- Random assignment problem: a_{ij} are i.i.d. nonnegative random variables.
- Let f be the probability density function of a_{ij}. If f is continuous and $f(0) = 1$, Aldous (2001) proved that $C_n \to \pi^2 / 6$ in probability, resolving a conjecture of Mézard & Parisi (1985).
Fluctuations of the minimum cost

- General cost distributions on $[0, 1]$: Best known upper bound on fluctuations is due to Talagrand (1995), of order $(\log n)^2/(\sqrt{n} \log \log n)$.
- Much more can be done if we assume that a_{ij} are exponentially distributed with mean 1.
- Under this assumption, Alm & Sorkin (2002) showed that $\text{Var}(C_n) \geq c/n$, and Wästlund (2005, 2010) proved that
 \[\text{Var}(C_n) = \frac{4\zeta(2) - 4\zeta(3)}{n} + O\left(\frac{1}{n^2}\right). \]
- However, the question about the order of fluctuations is not settled for general cost distributions.

Theorem (C., 2017)

If a_{ij} has a density that is smooth, bounded at zero, and satisfies some mild decay conditions, then the fluctuations of C_n are at least of order $n^{-1/2}$.

Sourav Chatterjee Lower bounds on fluctuations
A remark about the proof

- A simple multiplicative perturbation does not suffice for this problem.
- Instead, a_{ij} needs to be replaced by a'_{ij}, where a'_{ij} solves

$$a'_{ij} + \alpha n^{-1} \phi_n(a'_{ij}) = a_{ij},$$

where ϕ_n is the continuous function satisfying $\phi_n(0) = 0$, $\phi'_n(x) = \sqrt{n}$ for $0 < x < 1/n$, and $\phi'_n(x) = 1$ for $x > 1/n$.
- Then the proof proceeds as in other examples.
Theorem (C., 2017)

Let M be a random square matrix of order N, which is a function of i.i.d. random variables X_1, \ldots, X_n. Assume that this function is homogeneous of degree r, and that the law of X_1 has a smooth density satisfying some mild decay conditions. If n and N tend to infinity while r remains fixed, then $\log |\det M|$ has fluctuations of order at least $n^{-1/2}N$.

Example:

- Let X be a $p \times n$ random matrix of with i.i.d. entries, X_0 be the matrix obtained by subtracting off the row mean from each row of X, and let $M = \frac{1}{n}X_0X_0^T$ be the sample covariance matrix for the data matrix X.
- Then the theorem says that $\log |\det M|$ has fluctuations of order at least $(np)^{-1/2}p = \sqrt{p/n}$.
- This matches the order recently obtained by Cai, Liang and Zhou (2015) for the Gaussian case when $p/n \to c \in [0, 1)$.
Free energy of the SK model

- Let \((g_{ij})_{1 \leq i < j \leq n}\) be i.i.d. \(N(0, 1)\) random variables.
- The free energy of the Sherrington–Kirkpatrick model of spin glasses at inverse temperature \(\beta > 0\) is given by
 \[
 F_n(\beta) = \log \sum_{\sigma \in \{-1, 1\}^n} \exp \left(\frac{\beta}{\sqrt{n}} \sum_{1 \leq i < j \leq n} g_{ij} \sigma_i \sigma_j \right).
 \]
- The best known upper bound on \(\text{Var}(F_n(\beta))\) is \(O(n/\log n)\) (C., 2009).
- When \(\beta < 1\), Aizenman, Lebowitz and Ruelle (1987) proved that \(F_n(\beta)\) has fluctuations of order 1 and satisfies a central limit theorem after centering.

Theorem (C., 2017)

For any \(\beta\), \(F_n(\beta)\) has fluctuations of order at least 1 as \(n \to \infty\).
Open problems

- Prove a tight lower bound for the fluctuations of the length of the minimum matching when the points are uniformly distributed in $[0, 1]^d$.
- Prove a tight lower bound for fluctuations in the longest common subsequence problem for random words. A solution of this problem would complete the proof of the central limit theorem for longest common subsequences, as shown by Houdré & Işlak (2014).
- Improve the lower bound for the fluctuations of the first-passage time in 2D first-passage percolation.
- Prove any nontrivial lower bound for the fluctuations of the first-passage time in higher dimensions.
- Prove a matching upper bound of order $n^{-1/2}$ for random assignment with general cost distribution.
- Prove a CLT in any of these problems.
- Many other open problems — see paper on arXiv.