The sample size required in importance sampling

Sourav Chatterjee
Importance sampling

Let μ and ν be two probability measures on a set \mathcal{X}, with $\nu \ll \mu$.

Let $\rho = \frac{d\nu}{d\mu}$.

Let $X_1, X_2, \ldots \overset{i.i.d.}{\sim} \mu$.

Let $f : \mathcal{X} \to \mathbb{R}$ be a measurable function.

The goal is to estimate the integral

$$I(f) := \int_{\mathcal{X}} f(y) \, d\nu(y) = \int_{\mathcal{X}} f(x) \rho(x) \, d\mu(x).$$

The basic importance sampling estimate is

$$I_n(f) := \frac{1}{n} \sum_{i=1}^{n} f(X_i) \rho(X_i).$$

Question: How large should n be, so that this estimate is accurate?
Problems

- In typical applications, \(\nu \) is nearly singular with respect to \(\mu \), which necessitates very large sample sizes.
- Usually, the estimated variance of \(I_n(f) \) is used as a diagnostic.
- Given \(\nu \), there is a big literature on choosing \(\mu \) so that the required sample size (as prescribed by the variance) is as small as possible, with the constraint that \(\mu \) is a measure that is “easy to generate from”.
- However, the sample size required for making the variance small may be much larger than the sample size required for guaranteeing that \(I_n(f) \) is close to \(I(f) \). In other words, it may be an overkill. We will see examples later.
- So, what is the right approach?
Recall: Base measure μ, target measure ν.

Let $Y \sim \nu$.

Let L be the Kullback–Leibler divergence of μ from ν. That is, $L = \mathbb{E}(\log \rho(Y))$.

The theorem says that if s is the standard deviation of $\log \rho(Y)$, then a sample of size $\exp(L + O(s))$ is sufficient and a sample of size $\exp(L - O(s))$ is necessary for importance sampling to perform well.
The main result, precise statement

- Recall: \(\rho = \frac{d\nu}{d\mu}, \ Y \sim \nu, \ L = \mathbb{E}(\log \rho(Y)) = \text{KL}(\nu \| \mu). \)

Theorem (C. & Diaconis, 2015)

If \(n = \exp(L + t) \) for some \(t \geq 0 \), then

\[
\mathbb{E}|I_n(f) - I(f)| \leq \|f\|_{L^2(\nu)}(e^{-t/4} + 2\sqrt{\mathbb{P}(\log \rho(Y) > L + t/2)}).
\]

Conversely, let \(1 \) denote the function that is identically equal to 1. If \(n = \exp(L - t) \) for some \(t \geq 0 \), then

\[
\mathbb{P}(I_n(1) \geq 1/2) \leq e^{-t/2} + 2\mathbb{P}(\log \rho(Y) \leq L - t/2).
\]
A simple example

- Let $\mu = \text{Binomial}(N, p)$ and $\nu = \text{Binomial}(N, r)$, where $r > p$.
- Then
 \[
 \log \rho(x) = x \log \frac{r}{p} + (N - x) \log \frac{1 - r}{1 - p}.
 \]
- Let $Y \sim \nu$. Then $L = \mathbb{E}(\log \rho(Y)) = NH(r, p)$, where
 \[
 H(r, p) = r \log \frac{r}{p} + (1 - r) \log \frac{1 - r}{1 - p}.
 \]
- Moreover, the standard deviation of $\log \rho(Y)$ is of order \sqrt{N}.
- Thus, the required sample size is $\exp(NH(r, p) + O(\sqrt{N}))$.
- On the other hand, if the variance is used to determine sample size, the required size would be $\exp(NV(r, p))$, where
 \[
 V(r, p) = \log \left(\frac{r^2}{p} + \frac{(1 - r)^2}{1 - p} \right).
 \]
- By Jensen’s inequality, $V(r, p) \geq H(r, p)$.

Sourav Chatterjee

The sample size required in importance sampling
Figure: The dotted line represents $V(r, p)$ and the solid line represents $H(r, p)$. Here $p = 0.5$ and r goes from 0.5 to 1 on the x-axis.
Often, the target density ρ is known only up to an unknown constant.

That is, we are given that $\rho(x) = C\tau(x)$ where τ is known but C is not.

In such cases, the self-normalized importance sampling estimate is used:

$$J_n(f) = \frac{\sum_{i=1}^{n} f(X_i)\tau(X_i)}{\sum_{i=1}^{n} \tau(X_i)}.$$

This is actually much more widely used than $I_n(f)$.

What is the required sample size for this one?

Answer: Same as before. Statement of theorem is slightly different.
Precise result for self-normalized estimate

- Recall: $\rho = \frac{d\nu}{d\mu}$, $Y \sim \nu$, $L = \mathbb{E}(\log \rho(Y)) = \text{KL}(\nu\|\mu)$.

Theorem (C. & Diaconis, 2015)

Let $n = \exp(L + t)$ for some $t \geq 0$. Let

$$
\epsilon := (e^{-t/4} + 2 \sqrt{\mathbb{P}(\log \rho(Y) > L + t/2)})^{1/2}.
$$

Then

$$
\mathbb{P}\left(|J_n(f) - I(f)| \geq \frac{2\|f\|_{L^2(\nu)}\epsilon}{1 - \epsilon} \right) \leq 2\epsilon.
$$

Conversely, suppose that $n = \exp(L - t)$ for some $t \geq 0$. Let $f(x)$ denote the function that is 1 when $\log \rho(x) \leq L - t/2$ and 0 otherwise. Then $I(f) = \mathbb{P}(\log \rho(Y) \leq L - t/2)$ and $\mathbb{P}(J_n(f) \neq 1) \leq e^{-t/2}$.
Estimating probabilities of rare events

- Importance sampling is often used for estimating probabilities of rare events. Large literature, possibly beginning with the work of Siegmund (1976).
- Let μ and ν be two probability measures on the same space, with $\nu \ll \mu$. Let $\rho = \frac{d\nu}{d\mu}$.
- Suppose that A is an event such that $\nu(A)$ is small but $\mu(A)$ is not.
- Let $X_1, X_2, \ldots \sim_{i.i.d.} \mu$. The importance sampling estimate of $\nu(A)$ is
 \[I_n(1_A) = \frac{1}{n} \sum_{i=1}^{n} 1_A(X_i)\rho(X_i). \]
- Question: How large should n be, so that $I_n(1_A)/\nu(A)$ is close to 1?
Sample size required for estimating small probabilities
(rough statement)

Let $Y \sim \nu$, and let ν_A be the law of Y given $Y \in A$. Let $\rho_A = \frac{d\nu_A}{d\mu}$.

Let $L_A = \text{KL}(\nu_A\|\mu)$.

If s_A is the standard deviation of $\log \rho_A(Y)$ conditional on the event $Y \in A$, then a sample of size $\exp(L_A + O(s_A))$ is sufficient and a sample of size $\exp(L_A - O(s_A))$ is necessary for $\ln(1_A)/\nu(A)$ to be close to 1.
Recall: \(Y \sim \nu \), \(\nu_A \) is law of \(Y \) given \(Y \in A \), \(\rho_A = \frac{d\nu_A}{d\mu} \),
\[
L_A = \mathbb{E}(\log \rho_A(Y) | Y \in A) = \text{KL}(\nu_A || \mu).
\]

Theorem (C. & Diaconis, 2015)

If \(n = \exp(L_A + t) \) for some \(t \geq 0 \), then

\[
\mathbb{E} \left| \frac{\ln(1_A)}{\nu(A)} - 1 \right| \leq e^{-t/4} + 2 \sqrt{\mathbb{P}(\log \rho_A(Y) > L_A + t/2 | Y \in A)}.
\]

Conversely, suppose that \(n = \exp(L_A - t) \) for some \(t \geq 0 \). Then

\[
\mathbb{P} \left(\frac{\ln(1_A)}{\nu(A)} \geq \frac{1}{2} \right) \leq e^{-t/2} + 2 \mathbb{P}(\log \rho_A(Y) \leq L_A - t/2 | Y \in A).
\]
Many more theorems and examples in the arXiv preprint “The sample size required in importance sampling” by Chatterjee and Diaconis.

Includes connections with statistical physics and phase transitions.

Contains a proposal for using the smallness of

$$\frac{\max_{1 \leq i \leq n} \rho(X_i)}{\sum_{i=1}^{n} \rho(X_i)}$$

as a diagnostic criterion for convergence of importance sampling, and proves that it works under certain circumstances.