1. 3.1.7
Let \(\rho(d - \zeta)\) be an invariant loss function. and
\[
\delta - \zeta = X_11\{X_3 > 0\} + X_21\{X_3 \leq 0\} - \zeta
\]
\[
= (X_1 - \zeta)1\{X_3 > 0\} + (X_2 - \zeta)1\{X_3 \leq 0\}
\]
\[
\therefore R(\zeta, \delta) = E_\zeta[\rho(\delta - \zeta)]
\]
\[
= E_\zeta[\rho(X_1 - \zeta)1\{X_3 > 0\} + \rho(X_2 - \zeta)1\{X_3 \leq 0\}]
\]
\[
= E_0[\rho(X_1)1\{X_3 > -\zeta\} + \rho(X_2)1\{X_3 \leq -\zeta\}]
\]
\[
\therefore E_0[\rho(X_1)] = E_0[\rho(X_2)]
\]
\[
\therefore R(\zeta, \delta) = E_0[\rho(X_1)]
\]
So we got that \(R(\zeta, \delta)\) is constant for any invariant loss function.

But
\[
\delta + a = (X_1 + a)1\{X_3 > 0\} + (X_2 + a)1\{X_3 \leq 0\}
\]
\[
\neq (X_1 + a)1\{X_3 + a > 0\} + (X_2 + a)1\{X_3 + a \leq 0\}
\]
So \(\delta\) is not location equivariant.

2. 3.1.8
Suppose \(0 \leq \rho(t) \leq M\) for all \(t\) and \(M < \infty\). Further, suppose that \(\rho(t) \to M\) as \(t \to \pm \infty\) and that the density, \(f\), of \(X\) is continuous a.e. Then, let \(\phi(v) = E_0[\rho(X - v)]\). Then use Lebesgue’s Bounded Convergence theorem by noting \(|\rho(t)| = \rho(t) \leq M\) for all \(t\), and considering the measure space \((\mathbb{R}, B, \mu)\) where \(\mu\) is the Lebesgue measure. Then \(M\) is \(\mu\) integrable,
\[
\int_\mathbb{R} M d\mu(\omega) = \int_\mathbb{R} M d\mathcal{P}_X(x) = \int_\mathbb{R} M f(x) dx = M < \infty.
\]
such that by the BCT
\[
\lim_{v \to \infty} \phi(v) = \lim_{v \to \infty} \int_{-\infty}^{\infty} \rho(x - v) f(x) dx = \lim_{v \to \infty} \int_{-\infty}^{\infty} \rho(X(\omega) - v) d\mu(\omega)
\]
\[
= DCT \int_{-\infty}^{\infty} \lim_{v \to \infty} \rho(X(\omega) - v) d\mu(\omega) = \int_{-\infty}^{\infty} M d\mu(\omega)
\]
\[
= \int_{-\infty}^{\infty} M f(x) dx = M.
\]

It is clear that \(\lim_{v \to \infty} \phi(v) = M\) can be shown by an analogous calculation.
The function \(\phi(v)\) is continuous if \(\lim_{n \to \infty} v_n = v\) implies \(\lim_{n \to \infty} \phi(v_n) = \phi(\lim_{n \to \infty} v_n) = \phi(v)\). The proof of this is almost exactly as above. Suppose \(v_n \to v\),
\[
\lim_{n \to \infty} \phi(v_n) = \lim_{n \to \infty} \int_{-\infty}^{\infty} \rho(x - v_n) f(x) dx = \int_{-\infty}^{\infty} \rho(u) f(u + v_n) du
\]
\[
= \int_{-\infty}^{\infty} \rho(u) f(u + v) du = \int_{-\infty}^{\infty} \rho(x - v) f(x) dx = \phi(v)
\]
the third equation is by the result given in the appendix 2 because ρ is bounded and
\[\lim_{n \to \infty} f(x + v_n) = f(x + v) \text{ a.e. by the a.e. continuity of } f, \text{ so } f(x + v_n) \text{ weakly converge to } f(x+v). \]
Finally, we have that ϕ is continuous and that $\lim_{n \to \pm \infty} \phi(v) = M$. Therefore for all $\epsilon > 0$
there exists $a(\epsilon), b(\epsilon) \in \mathbb{R}$ such that $\phi(t) > M - \epsilon$ for all $t \notin [a(\epsilon), b(\epsilon)]$. Because ϕ is
continuous and $[a(\epsilon), b(\epsilon)]$ is compact, ϕ will attain its minimum over $[a(\epsilon), b(\epsilon)]$ for some
$t^* \in [a(\epsilon), b(\epsilon)]$. Thus if there exists t_0 such that $\phi(t_0) < M$ letting $\epsilon = M - \phi(t_0)$ will
ensure that ϕ attains its global minimum in $[a(\epsilon), b(\epsilon)]$. Therefore an MRE exists.

3. 3.1.10

Begin by noticing

\[E[\rho(X - v)] = \int_{-\infty}^{\infty} \rho(x - v)f(x)dx \]
\[= -\int_{-\infty}^{v} Axf(x)dx + \int_{v}^{\infty} Avf(x)dx + \int_{v}^{\infty} Bxf(x)dx - \int_{-\infty}^{v} Bvf(x)dx \]
\[= AvF(v) - Bv[1 - F(v)] + \int_{v}^{\infty} Bxf(x)dx - \int_{-\infty}^{v} Axf(x)dx \]

such that because

\[\frac{d}{dv} \left[\int_{-\infty}^{v} Axf(x)dx \right] = Avf(v) \]

\[\frac{d}{dv} E[\rho(X - v)] = [AF(v) + Avf(v) - B + Bvf(v) + BF(v)] - Bvf(v) - Avf(v) \]
\[= F(v)[A + B] - B = 0 \]

implies $F(v) = B/(B + A)$, as desired. Next note that

\[\frac{d^2}{dv^2} E[\rho(X - v)] = (A + B)f(v) \geq 0 \]

such that the extremum we have found is indeed a minimum.
Furthermore, since $A + B \geq 0$ and $F(v)$ is weakly increasing, it follows that the derivative
is weakly increasing in v. Hence, $E[\rho(X - v)]$ must be globally minimized at $F(v) = B/(B + A)$.

4. 3.1.11

Let X_1, X_2, \ldots, X_n be iid $N(\xi, \sigma^2)$ where σ is known. Then $\delta_0 = \bar{X}$ is a complete, sufficient
statistic for ξ, and moreover, that it is independent of the vector Y from Theorem 3.1.10 by
Basu’s Theorem. Hence, we must minimize $E_0[\rho(\bar{X} - v)]$ when v is constant (as in Example
3.1.16). Since $\bar{X} \sim N(\xi, \sigma^2/n)$ we can use our result from the previous exercise and use
(for $\xi = 0$, as in the proof of Theorem 3.1.10)

\[F(v) = P(\bar{X} \leq v) = \Phi \left(\frac{v}{\sigma/\sqrt{n}} \right) = \frac{B}{A + B} \]

such that the minimizing value is

\[v^* = \Phi^{-1} \left(\frac{B}{A + B} \right) \frac{\sigma}{\sqrt{n}}. \]
Finally, the MRE is given by
\[\bar{X} - v^* = \bar{X} - \Phi^{-1} \left(\frac{B}{A + B} \right) \frac{\sigma}{\sqrt{n}}. \]

It should also be clear that no MRE exists if \(A = 0 \) or \(B = 0 \), since in this case smaller and smaller risk can be attained as \(v^* \to \pm \infty \).

5. 3.1.14
Suppose \(X_1, \ldots, X_m \) and \(Y_1, \ldots, Y_n \) have joint density
\[f(x_1 - \xi, \ldots, x_m - \xi; y_1 - \eta, \ldots, y_n - \eta) \tag{1} \]
and consider the problem of estimating \(\Delta = \xi - \eta \). An estimator will be called “good” if it satisfies
\[\delta(x + a, y + b) = \delta(x, y) + (b - a). \]

The following results are analogous to those provided in the text:

Theorem 1.4 Let \(X, Y \) be distributed as in (1), and \(\delta \) be equivariant with loss function \(L((\xi, \eta), d) = \rho(d - \Delta) \). Then the bias, risk and variance of \(\delta \) are all constant.

Proof. As in the book, it suffices to illustrate the case of bias because risk and variance are shown by the same process,
\[b(\Delta) = E_{\xi, \eta}[\delta(X, Y)] - \Delta = E_0[\delta(X + \xi, Y + \eta) - \Delta] = E_0[\delta(X, Y)] \]
which does not depend on \(\xi \) or \(\eta \).

Lemma 1.6 If \(\delta_0 \) is equivariant then \(\delta \) is also equivariant iff \(\delta = \delta_0 + u \) where \(u(x + a, y + b) = u(x, y) \) for all \(x, y \) and \(a, b \).

Proof. Assume that \(\delta = \delta_0 + u \) where \(u(x + a, y + b) = u(x, y) \) for all \(x, y \) and \(a, b \). Then
\[\delta(x + a, y + b) = \delta_0(x + a, y + b) + u(x + a, y + b) = \delta(x, y) + (b - a) \]
such that \(\delta \) is equivariant. In the other direction, assume that \(\delta \) is equivariant and let \(u(x, y) = \delta(x, y) - \delta_0(x, y) \) such that
\[u(x + a, y + b) = \delta(x + a, y + b) - \delta_0(x + a, y + b) = \delta(x, y) - \delta_0(x, y) = u(x, y) \]
as desired.

Lemma 1.7 A function \(u \) satisfies \(u(x + a, y + b) = u(x, y) \) iff it is a function of the differences \(z_i = x_i - x_m \) for \(i = 1, \ldots, m \) and \(w_i = y_i - y_n \) for \(i = 1, \ldots, n \).

Proof. If \(u \) is a function of \(x \) and \(w \) then it is clear that \(u(x + a, y + b) = u(x, y) \). In the other direction, the result follows from letting \(a = -x_m \) and \(b = -y_n \).
\[u(x, y) = u(x_1 + a, \ldots, x_m + a; y_1 + b, \ldots, y_n + b) = u(z_1, \ldots, z_{m-1}, 0; w_1, \ldots, w_{n-1}, 0) \]
as desired.

Theorem 1.8 If \(\delta_0 \) is equivariant, then a necessary and sufficient condition for \(\delta \) to be good is that there exists a function \(v \) of \(n - 1 + m - 1 = n + m - 2 \) arguments such that
\[\delta(x, y) = \delta_0(x, y) - v(z, w). \]
Proof. Lemmas 1.6 and 1.7.

Lemma 1.10 Let X, Y be distributed according to (1), and let Z and W denote the differences, as introduced above. Then suppose there exists a good estimator of Δ with finite risk. Further, assume for each (z, w) there exists a number $v(z, w) = v^*(z, w)$ such that v^* minimizes

$$E_0[\rho(\delta_0(X, Y) - v(z, w)) | z, w].$$

Then an MRE exists.

Proof. By Theorem 1.8 we want minimize

$$E_{\xi, \eta}[\rho(\delta_0(X, Y) - v(z, w) - \Delta)]$$

but it is sufficient to consider $\xi, \eta = 0$ because the risk does not depend on ξ or η. Then we seek to minimize

$$E_0[\rho(\delta_0(X, Y) - v(z, w))] = \int E_0[\rho(\delta_0(X, Y) - v(z, w)) | z, w] dP_0(z, w)$$

for which is sufficient to minimize the integrated $E_0[\rho(\delta_0(X, Y) - v(z, w)) | z, w]$, which has minimum by assumption. Thus, an MRE estimator of Δ exists.

Corollary 1.11 Suppose ρ is convex and not monotone. Then $E_0[\rho(\delta_0(X, Y) - v(z, w)) | z, w]$ has minimum as a direct result of Theorem 1.7.15, such that an MRE of Δ exists by Theorem 1.10.

Corollary 1.12 If ρ is squared error loss then $v^*(z, w) = E_0[\delta_0(X, Y) | z, w]$ by example 1.7.17. Next, if ρ is absolute error loss then V^* is any median of $\delta_0(X, Y)$ under the conditional distribution of (X, Y) given z, w by example 1.7.18.

Corollary 1.14 Example 1.13 implies that if $m = n = 1$, and if $(Y - X)$ has finite risk then v^* is any value minimizing

$$E_0[\rho((Y - X) - v)].$$

Suppose that $0 \leq \rho(t) \leq M$ and that $\rho(t) \to M$ as $t \to \pm \infty$ and that the density of $Y - X$ is a.e. continuous. Then an MRE estimator of Δ exists. The proof of this corollary is exactly analogous to exercise 1.8 in this homework set.

Theorem 1.17 Let \mathcal{F} be the class of all univariate distributions F that have a density and fixed finite variance $\sigma^2 = 1$. Let X_1, \ldots, X_m, Y_1, \ldots, Y_n be iid with density $f(x_1 - \xi, \ldots, x_m - \xi; y_1 - \eta, \ldots, y_n - \eta)$ and let $r_n(F)$ be the risk of the MRE estimator of $\xi - \eta$ with squared error loss. Then, $r_n(F)$ takes on its maximum value over \mathcal{F} when F is normal.

Proof. The MRE estimator for ξ and η in the normal case are \bar{X} and \bar{Y} respectively. Then by the original proof,

$$E[(\bar{Y} - \bar{X} - \Delta)^2] = E[(\bar{Y} - \eta) - (\bar{X} - \xi))^2]
= E[(\bar{X} - \xi)^2] + E[(\bar{Y} - \eta)^2] - 2E[(\bar{Y} - \eta)(\bar{X} - \xi)]
= E[(\bar{X} - \xi)^2] + E[(\bar{Y} - \eta)^2] = \frac{1}{n} + \frac{1}{m}.$$

Since the risk did not depend on F, the MRE estimator of any other F must have risk $\leq 1/n + 1/m$, completing the proof.
6. 3.1.16
If the X_i's and Y_i's are independently normally distributed with known variances, we know from Example 1.6.20 that the statistics $\tilde{X}_i = X_i - X_n$ are ancillary for ξ and the statistics $\tilde{Y}_i = Y_i - Y_n$ are ancillary for η. Clearly, \tilde{X}_i must be ancillary for η since the distribution of X does not depend on η, and similarly \tilde{Y}_i must be ancillary for ξ. Thus, (\tilde{X}, \tilde{Y}) is ancillary for (ξ, η). Since (\bar{X}, \bar{Y}) is complete sufficient for (ξ, η) by Theorem 1.6.22, it follows from Basu’s Theorem that any function of (\bar{X}, \bar{Y}) is independent of (\tilde{X}, \tilde{Y}), and in particular so is $\delta_0(X, Y) = \bar{Y} - \bar{X}$. Since δ_0 has the property in Exercise 3.1.13, it qualifies in our search for a minimum risk estimator. By Theorem 1.10, if δ_0 has finite risk, then the MRE estimator can be found by minimizing $E_0\{\rho[\delta_0(X, Y) - v(x, y)]\} = E_0\{\rho[\delta_0(X, Y) - v]\}$ by independence. Clearly, δ_0 will be MRE as long as this expression is minimized at $v^* = 0$. Since δ_0 is a linear combination of Gaussians, it is itself Gaussian with mean zero under $\xi = \eta = 0$.

Therefore, by Corollary 1.7.19, if ρ is convex and even, then $\bar{Y} - \bar{X}$ will be MRE. Similarly, by Exercise 1.7.23, the same is true if ρ is even and non-decreasing on $(0, \infty)$ (in fact, the conditions in this sentence and the previous one imply each other).

7. 3.1.22
By Lemma 3.1.6, any equivariant estimator δ can be written as $\delta = \delta_0 + u$, where δ_0 is any equivariant estimator and u is any location invariant function.

Suppose that δ_0 is MRE, by lemma 3.1.23, it is unbiased under square error loss function. Also by Lemma 3.1.23, if δ is biased with constant bias b, then $\delta - b$ is equivariant, unbiased and has smaller risk than δ. So that δ_0 is MRE among all the unbiased equivariant estimators is equivalent to δ_0 is MRE. Then by the similar proof of Theorem 2.1.7, we can get the result.