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1. PREAMBLE

This chapter explains some of my reasons for not believing in the usefulness of
the statistical procedures variously termed structural equation models, covariance
structure analysis, LISREL models. The content of this chapter expands upon the
remarks in Rogosa (1987) by providing considerable technical detail on the
longitudinal data analysis topics which I described in that note. In subsequent
conference presentations, I've added examples from outside the setting of
nonexperimental longitudinal research to further illustrate the importance of
individual unit models (and also the failures of covariance structure analysis) in
clinical trials and other experimental settings. One very important example from
those talks which is not included in this chapter is discussion of Holland (1988),
which provides a vivid demonstration of failures of path analysis models in
assessing direct and indirect effects of interventions. The purpose of this preamble
is to present some of the general issues and ideas; the development for the
longitudinal research examples begins in the next section.

The focus on individual unit models in my thinking follows from the watchword
to "model the processes that generate the data." (One of the best discussions of the
central role of individual histories in longitudinal data analysis is Singer, 1980).
Far far from this thinking lies covariance structure analysis, which formulates
models in terms of relationships among variables (latent or observed). My position
is that models for relationships among variables are fundamentally askew and
antithetical to substantive common-sense. In mathematical terms, what I will
show in some detail for the longitudinal research setting is that the parameters
estimated in the standard applications of structural equation models have little
meaning or interest.

Longitudinal research examples have been prominent in expositions and
illustrations of structural equation methods; for example, according to Alwin
(1988), structural equation methods "are perhaps most useful in longitudinal
research designs where the research questions involve the descriptive analysis of
change and its explanation" (p.74). My main impetus for focusing on longitudinal
data analysis examples is that longitudinal research provides one of the best
settings in which there is a natural and obvious individual unit model, the model
for the individual time trajectories. Also, longitudinal research provides the venue



of a real-world application, but one in which I can work under controlled
circumstances by postulating the actual structure of the data through the growth
curve models. The artificial setting allows me to make a clear distinction between
answers provided by stuctural equation methods and useful answers. As I note in
Rogosa (1987), this approach is less ambitious than the heroic efforts of Freedman
(1987, 1991) who takes on modeling issues in real-life research settings. Freedman
(1991) persuasively argues for the value of "shoe leather" science (close
examination of the phenomena) as contrasted with the social science practice of
(causal) inferences based on regression models for distant information (e.g., survey
data, archival data). And he is absolutely right. My limited domain in this
chapter of simple statistical modeling is at least once removed from the shoe
leather reality of the phenomena of interest.

Within the limited world of model building, the distinction I wish to emphasize
is that between sensible, yet very simple, modeling and senseless modeling-- i.e.,
in this example individual time trajectories versus relations among variables (as
in structural equation models). And the results of this chapter seek to illustrate
that senseless modeling leads to meaningless parameters. Put another way, under
the banner of "All models are wrong, but some are useful," I want to distinguish
between somewhat useful and not-at-all useful approaches to modeling.

Latent variables do not require covariance structure analysis. In many areas of
behavioral and social science, the individual attributes of real interest (motivation,
intelligence, attitudes) are obscured by imprecision of measurement (e.g. as in
classical test theory) or imprecision of meaning (as for complex psychological
constructs). There is good reason then to regard these individual attributes as not
directly observable, or latent. The argument for the application of structural
equations seems to be based on the following chain of logic-- whenever latent
variables are present, structural equation modeling is desirable and preferred (i.e.,
modeling should be done in terms of relationships among variables). As part of the
demonstration here, I will construct growth curves in terms of a latent attribute,
and show how and why models for relations among variables, such as structural
equations, fail to serve any useful purpose. The truth is that there is no link
whatsoever between, on the one hand, the need to consider measures obscured by
measurement or by meaning and, on the other hand, the desirability of covariance
structure models.

Identifying the Research Question. All longitudinal studies do not have the same
purposes; different types of longitudinal research questions arise throughout
educational and behavioral sciences research. In the Discussion section of Rogosa
(1988) I tried to describe some common flavors of longitudinal research questions
and constructed a list of seven topics, which for general reference are described in
Appendix B. One or more of these research questions may be addressed in the
context of a particular research effort. Although descriptive analyses of the
individual trajectories are often the most useful part of longitudinal data analysis,
the present purpose of comparison with structural equations leads here to an
emphasis on model parameters and variance components. In assessing the
usefulness of structural equation methods for longitudinal data, one would like to
focus on a research question addressed by these methods, and see how well that
question is answered. But that evaluation can’t be done directly because the



central activity of these covariance structure methods is interpretation of

structural equation parameters (or model fit and so forth), not pursuit of an

answer to a identified research question. What I can do is to consider the key
structural parameters appearing in some of the common, basic structural equation

models and demonstrate their proper meaning (or most often meaninglessness).

I examine the simple 3-wave single variable model in Section 3, a single exogenous

variable is employed in Section 4, and some slightly more complex models are

discussed in Section 5 (for the topics of simplex models and assessments of

stability).

Mythological heritage. Rogosa (1988) is a written version of my talk Myths
about longitudinal research. 1 list these Myths for reference in Appendix A; most
relevant to the development here is Myth 7, "Analyses of covariance matrices
inform about change." The basic message of the Myth 7 is that the between-wave
covariance matrix provides very very limited information about growth and change.
(The subsections of Myth 7 are 7.1 Path analysis informs about change; 7.2
Structural regression models inform about change; 7.3 Simplex models describe
most longitudinal data.) What I've demonstrated in previous papers is that
summarizing the longitudinal data by the covariance matrix (whether or not the
mean vector is also used) discards most, if not all, the important information about
growth and change. Yet the standard procedures based on models for relations
among variables, notably structural equations, have as their starting point the first
two moments of the exogenous and endogenous variables. All I attempt to do in
this chapter is provide additional mathematical results and extended artificial data
examples on this theme.

2. INDIVIDUAL GROWTH CURVE FORMULATION

For quantitative longitudinal (panel) data, the individual growth curve model for
the individual trajectory is a natural representation for "the process that generates
the data." In the mathematical and data illustrations, two types of growth curve
models are employed-- straight-line growth and a restricted form of exponential
growth. The aim here is to keep the statements of the individual growth curve
models relatively simple and just focus on the identification of the key parameters.
The absolute simplest situation is with a straight-line growth curve as the
individual unit model, with the observables having a simple classical test theory
measurement model, and with the between-unit model employing a single
exogenous predictor (perfectly measured and with no missing data).

2.1. Straight-line growth curves

Start with an (latent) attribute m, such as reading proficiency or social
competence, which exhibits systematic change over time. For individual p in the
population of individuals, denote the form of the growth curve in 1 for individual
p as np(t). A straight-line growth-curve is written as



n(t) = M0 + B, . (1)

Equation (1) can be rewritten using the centering parameter ¢ (from Rogosa and
Willett, 1985a, Sec. 2). The parameter t = - 8/ 0(2, has the properties that

8 and n(t) are uncorrelated over the population of individuals and also that the
variance of np(t) is minimized at ¢ = t. I rewrite (1) as

Np(t) = Np(¥) + 6, (¢ -1) . (1)

The constant rate of change 0 in this model is often the key parameter of interest
in research questions about change. For simplicity, I will focus discussion on
questions involving this slope parameter.

The parameters of the individual growth curves have a distribution over the
po;)ulation of individuals. The first two moments of the rate of change are py and

Oy - Figure 1 shows a collection of 15 straight-line growth curves corresponding
to population parameters t = 2; og = 5.333; oﬁ(t) = 48; for 6 ~ U[1, 9], n(x) ~
U[38, 62]. This set of parameter values will be used as a generic straight-line

growth specification. Population mean rate of change is 5, and values of the
population correlation coefficients among the n(,) for observation times ty=1,¢

= 4, t3 = 6 are: p,n(l)n(4) = .614, pﬂ(l)ﬂ(s) = .316, p'l(4)"l(6) = .943. Furthel'more, for
the fallible measure Y (see Observables section below) with var(e) = 5, the
population correlations are pY(l)Y(4) = .567, pY(l)Y(6) = .297, pY(4)Y(6) = -894.
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Figure 1. A collection of straight- Figure 2. A collection of exponential
line growth curves (Equation 1). growth curves (Equation 2).

Longitudinal Research Questions and Parameters of Interest. Parameters
derived from the individual growth curve models have a natural corespondence to



the research questions presented in Appendix B. For example, questions about the
typical individual trajectory and individual differences in the individual trajectories
are addressed by the first two moments of the rate of change over the population
of individuals, pg and og . The correlation between change and initial status
Pone,) 18 the correlation between change 6, and initial status n,(¢)) (true status
at time point #; ), and the correlation between change and an exogenous variable
(Z) is pgg - Similar kinds of statements can be made in terms of the parameters
of the exponentlal growth curves introduced below.

2.2. Exponential growth to an asymptote

An alternative to a the simple straight-line growth curve is the exponential
growth curve with asymptote A and curvature y (see Rogosa & Willett, 1985, Sec.
1.2)

Np(t) = Ny = (B -np(0)exp(-yz) . (2)

Define a centering point < for exponential growth, where t has the properties that
the variance of n,(¢) is minimized at ¢ =« and that n,(x) and (A, - 'l]p(‘t)) are

uncorrelated. For exponential growth t = (-1/y)In{( ozo Oxn(0)/O0, -n(O))] , and
the growth curve can be written:

Np(2) = M@ + (A - M) [1 - exp(-y(¢ - )] . 2"

Figure 2 shows a collection of 15 exponential growth curves corresponding to
population parameters t = 2; y = .5; p; = 75; o) = 16; By = 50; . 9.

This set of parameter values will be used as our generic exponential growth
specification. For reference, values of the population correlation coefficients among
the n(¢;) for observation times ¢, = 1, ¢, = 3, 3 = 5 are: Pnim®) = 657, » PpnG) =
435, PrGmG) = .965.

2.3. Observables

The completion of this simple set-up is the standard (oversimplified) statement
that the observable Y is an imperfectly measured 1, and the relation between Y
and n is through the simple classical test theory model. Times of observation are
denoted as {¢;} = ¢, ,..., £y , which for simplicity are the same for all p. The value
of the growth curve (e g., Eqs 1 or 2) at a discrete time ¢; yields the M, (¢,), and the
Y (¢) are formed by the addition of measurement error accordmg to the classical
test theory model: Y, (t) =1, @) +¢ for p=1,

Exogenous varzables To address addltlonal research questions about systematic
individual differences in growth (i.e. correlates of change) I add an observed
exogenous characteristic Z (e.g., home environment) to the longitudinal data
structure. (See, for example, Rogosa and Willett 1985a, Sec. 1.1). For simplicity,
most often Z is considered to be measured perfectly. The relation of Z to the slope
parameter in straight-line growth, summarized by the conditional expectation
E@®|2Z), is stated here as the simplest possible straight-line regression



E®|Z) = pg + y1(Z - uz) . This is an example of a "between-unit" model. A
similar relation can be stated for the intercept in Equation 1 or 1’. For the

exponential growth model, the exogenous variable Z can have systematic
relationships with both kp and np(t).

3. THREE-WAVE PATH ANALYSIS: DIRECT AND INDIRECT TEMPORAL
INFLUENCE

Path analysis (or LISREL) models for longitudinal data use the temporal ordering
of the measurements to delimit the possible paths between the variables. In this
section I consider the example of a three-wave design with measures at times ¢,
5, t3 . In terms of the latent variable 1, the path regressions (structural model)
for the unstandardized variables are given in Equation (8). To match standard
regression notation, n, is used interchangeably with "lp(tz) and so forth.

Ng =adg +PM; +e5;
Ng = ag + PoNg + P3N, + 3. 3
Figure 3 depicts the structural model in (3). The parameters of (3) are

B3 = Bnegmepmin s B2 = Bregmemey s B1 = By - When written out as partial
regression coefficients.

B1 B2
M2 "3
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Figure 3. Representation of the 3-wave path analysis model in Equation 3.

This simple 3-wave path model is familiar from a number of the early
expositions of path analysis in the social sciences. The example of this type of path
analysis discussed in Rogosa (1987, 1988) was the analysis in Goldstein (1979a,
1979b) for reading test scores obtained for a nationwide British sample with
measurements at ages 7, 11, and 16. (Goldstein 1979b, Fig 2 parallels my Fig 3.)



After considerable data analysis effort and some variable transformations,
Goldstein obtains the following estimates for the {8;}: {.841, 1.11, -.147}. The
negative estimate for B4 causes considerable discomfort, summarized by Goldstein
(1979a, p. 139): "This is difficult to interpret and may indicate that non-linear or
interaction terms should be included in the model, or perhaps that the change in
score between seven and 11 years is more important than the seven-year score
itself. However, the addition of non-linear terms does not change this picture to
any extent." Goldstein’s "difficulties" are explained below.

The main results here are the properties of the path coefficients in (3) for the
two types of growth models in Section 2 and for perfect and fallible measurement
of n (i.e. latent or manifest variable). The results will show that these structural
parameters are basically meaningless in all these settings. The reason is that
procedures based on relations among variables, such as structural equation models,
do not address substantively meaningful questions. What we want to know about,
from simple three-wave data, are answers to questions such as, What does the
typical individual trajectory look like?, What about individual differences in the
individual trajectories? What about correlations of change and initial status? (See
also App. B). These kind of natural questions can be profitably addressed by
descriptive analyses or formal parameter estimation methods. But not by
procedures based on models for relations among variables.

3.1. Straight-line growth

Perfect measurement. The simplest situation is perhaps the most dramatic. Let
Y be measured without error and generated from a straight-line growth curve for
each individual--i.e. the analysis is in terms of the ). Note that even for a fallible
Y, the aim of the structural equation model (e.g., LISREL) analysis is to estimate
the regression parameters for the perfectly measured latent variable (the
structural regressions for the ). And my aim here is to demonstrate that those
parameters are meaningless. :

For this specification the population partial regression (path) coefficients for the
N3 equation in (3) are:

Bg = (g - tx)/tg -t;) <0 and
Bg = (3 -t )/(Eg - t;) > 0. 4)

Appendix C gives a short derivation of the result. Remarkably, these parameters
depend only on the times at which the observations were taken. Moreover, the
squared multiple correlation for the ng equation is identically one, as ng is
perfectly predicted from n, and n, . Even though estimates of either parameter
are totally independent of tlhe information in the data, the path analysis/structural
regression will appear very successful. For example, consider the longitudinal
observations to be taken at times {1, 4, 6}. Then B3 = -.667 and B, = 1.6,
regardless of whether change is large or small, and regardless of whether
individuals are all changing at the same rate (o = 0) or at very different rates

(og large).
For the n, equation, the regression parameter §; has a complex form which



depends on the time points chosen for observation and the moments of the growth
curve parameters (c.f. Rogosa & Willet 1985a, Sec 2.1):
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Fallible measurement. Let the simple classical test theory relation between Y
and n hold, with measurement error variance, var(e), the same magnitude at all
The path analysis regressmn equatlons are (3) with Y takmg the place of .
The population regression coefficients in these path regressions based on the
fallible Y are:
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Figure 4. Values of path coefficients in (6) for the 3-wave path analysis with
fallible measures and underlying straight-line growth.



As the measurement error variance increases, the first coefficient decreases and
the second coefficient increases. Figure 4 depicts the values of these parameters
as a function of measurement error variance for the parameter values used in

Figure 1 and in the data example below-- T = 2; oy = 5.333; 0:(1) = 48 ; and with

observations times ¢, = 1, ¢, = 4, t5 = 6 (observables notated as Y(1), Y(4), Y(6)).
(Error variance of about 30 yields coefficlent values close to those obtained by
Goldstein.)

Artificial Data Example. Perhaps the best way to illustrate the results above is
with an analysis of a small data set. Data, corresponding to 50 individuals each
observed at the three times ¢, = 1, ¢, = 4, t3 = 6, were generated for underlying
straight-line growth given by the parameter specification above. Values for the

n,(¢;) (rounded for this display), numerical and graphlcal descriptions, and the
Fpgure 3 path analysm regression for n(¢3) are displayed in Exhibit 1. The path
analysis regression for 1(t3) matches exactly the theoretical results in (4) with
squared multiple correlatlon of 1.0. Note especially that although the n(,) are
generated from straxght-lme individual growth curves, the between-variable
scatterplots shown in Exhibit 1 appear rather ordinary. Random sampling in the
generation of these 50 cases cause the correlations among the n(¢;) for this sample
to differ some from the population values given in the discussion of Figure 1. Not
shown in Exhibit 1 are the correspondmg values and results for the Y(¢). The
measurement error variance used in forming the Y scores was set to the (small)
va.lue of 5; population reliabilities for the Y scores are .914, .932, .964 for ¢, , ¢, ,

. The path analysis regression for Y(¢3) for these 50 cases produces the fit: Y(6)
= 7 56 - 0.729 Y(1) + 1.59 Y(4) with squared multiple correlation .914. Theoretical
values for these regression coefficients from (6) are -.4767 and 1.459, and the
value for the squared multiple correlation is .8645.

3.2. Exponential growth
For a population of individual growth curves given by (2) the population partial
regression (structural) coefficients for the ng equation in (3) are:
exp[-ytgl - exp[-yi,]
exp[-yz;] - exp[-yz]

B3

_ expl-ytg] - exp[-yt,] |
P2 expl-yty] - expl-v¢4] ) ™

These results are similar to (4) for straight-line growth in that these population
regression coefficients have little to do with the properties of the population that
supposedly is characterized by these parameters. The only feature of the
population that is reflected by these coefficients is the curvature parameter y ; the
important parameters such as the asymptote and level of the individual
trajectories (and their distributions over the population being studied) are not



reflected in these structural parameters. For observationsatt; =1,2,=3,#3=5
(used in Exhibit 2 below), these structural parameters in (7) are B3 = -exp[ -2yl and
Bp=1+ exp[—2y] Figure 5 plots these 5 and B, againsty. For the value of y
= .5 used in Figure 2 and Exhibit 2, B3 = -.3679 and By = 1.3679.
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Figure 5. Values of coefficients from (7); path analysis coefficients for exponentlal
growth example.

Artificial Data Example. Data, corresponding to 50 individuals each observed
at the three times ¢, = 1, ¢, = 3 tg = 5, were generated from a population of
exponential growth curves havmg the parameter specification used for Figure 2--
T=2;7=.5;u =75; 02 =16; pyq = 50; 02(1) 9. Thevaluesforthen @)

(rounded for this dlsplay) numencal and graphical descriptions, and the Flgure
3 path analyms regression for n(¢3) are displayed in Exhibit 2. The path analysis
regression for n(t3) matches the theoretlca.l results in (7) with squared multiple
correlation of 1.0. Note that the between-variable scatterplots for the n(¢;) appear
rather ordinary. Random sampling in the generation of these 50 cases cause the
correlations among the n(¢,) for this sample to differ a little from the population
values given in the dlscussmn of Figure 2. Not shown in Exhibit 2 are the
corresponding values and results for the Y(,). In generating the Y values, the
measurement error variance was set to 3; the population reliabilities of the Y



