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Abstract

The advantage of low-discrepancy sequences in lieu of randamumbers for simple
independent Monte Carlo sampling is well-known. This prockire, known as quasi-
Monte Carlo (QMC), yields an integration error that decays & a superior rate to
that obtained by 1ID sampling, by the Koksma-Hlawka inequaty. For the class of
Markov chain Monte Carlo (MCMC) samplers, little literature has been produced
examining the use of low-discrepancy sequences, and presi@xperiments have of-
fered no theoretical validation for this practice. The ceml result in this work is
the establishment of conditions under which low-discrepag sequences can be used
for consistent MCMC estimation. This condition of completly uniform distribution
(CUD) applies to a series of sequences that look like full quits of a small random
number generator. A strategy for the incorporation of thessequences into a general
MCMC sampling scheme is thoroughly developed here, with a&mtion to the preser-
vation of the CUD condition. The use of these sequences in avfi®ICMC examples
shows reductions in estimate error that are most signi canin Gibbs samplers. From
these examples, the empirical bene ts of CUD sequences in MIC sampling are im-
mense, although no analog of the Koksma-Hlawka inequalityak been produced for

MCMC to provide a general theoretical corroboration of thes improvements.
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Chapter 1

Introduction

The practice of Markov chain Monte Carlo is one whose theoiieal validation has ex-
isted since the seminal paper of Metropolis et al [29] in 19%8nd in greater generality
from Hastings [12] in 1970). At that time, the need was preseto simulate sample
values from a distribution that could not be sampled direcyf. As computing power
grows and complex data structures become more manageablearkbv chain Monte
Carlo is likely to become a more familiar tool to those analyzg these data. The
general Metropolis-Hastings algorithm (of which Gibbs sapiing is a special case) is
almost synonymous with Markov chain Monte Carlo, and its trditional justi cation
relies on the assumption of the use independent uniform valles. The assumption
that we can create truly independent and uniformly distribtied variables is sustain-
able for problems of ample size, thanks to advances in randamamber generation.
The research on Markov chain Monte Carlo and the research ooagi-Monte Carlo,
in which independent uniform sampling is replaced by the usef a point sequence
chosen to approximate the uniform distribution more closg] have been almost ex-

clusively separate. It is easy to believe that the delicategmework that guarantees
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the consistency of the Metropolis-Hastings algorithm wodlbe di cult to maintain
through a sequence of chosen points, because the sampleshave dependent, and, to
a diminishing degree as one looks further in the past, the gent state of the Markov
chain is in uenced by the variates used in any previous step.

Most of the sparse previous e orts to put QMC points in a Marke chain sampler
or a sequential Monte Carlo method (such as particle Iters mBrownian path sam-
pling) do so in a way that the statistical dependence of sucggve points in a QMC
sequence is not carried over to statistical dependence angasuccessive values used to
simulate the chain (see [35] and [34]). Liao [23] runs a Gibbampler using a QMC
point to drive each step, but the order of the points is randomed. Chaudary [5]
uses QMC to weight the sample points from a Metropolis-Hastgs algorithm by a
neighboring point, but the underlying chain is still simulded by 11D sampling. Some
important aspects of the work here draw inspiration from resnt e orts of Niederre-
iter [32], who rst proposed the full output of a small randomnumber generator as a
QMC rule, and of Lemieux and LEcuyer [21], who use such a sequence on the simu-
lation of an in nite-dimensional process. Markov chain Mote Carlo is equivalent to
in nite-dimensional sampling using an overlapping sequee of variates.

The central goal of this work is the development of a theory it justi es the use
of these full-period outputs of small random number generaits in MCMC. There is
some intuition that this strategy may work: because the maigal dependence on the
past of a sample point in an MCMC algorithm decays, a nice disbution among the
values close together in the driving sequence of the chaimm®st essential. This \nice
distribution” is the goal of a good random number generator.

This work begins with a cursory background on Monte Carlo, qasi-Monte Carlo

and Markov chain Monte Carlo in Chapter 2, with particular facus on the aspects
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of the process suited to the goals above. Chapters 3 and 4 d&digh a necessary
and su cient consistency condition on the use of non-1ID pait sets in an arbitrary
Metropolis-Hastings sampler; this condition is quite resictive, but fortunately the
method of using small random number generators satis es tle@ndition for the classes
of generators examined. For a single in nite sequence, thondition is called a
completely uniform distribution (CUD), in which the blocks of s consecutive values
form a sequence whose empirical distribution approachesethuniform distribution
on the s-dimensional hypercube for ALL dimensions. The proof that this yields
consistent estimates is from Owen & Tribble [37], and it genalizes work of Chentsov
[6] on a simpler Markov chain construction. Chapter 4 begirte develop a strategy for
using the full RNG sequences discussed above. In Chapter Biststrategy culminates
in a closed form for the variate sequence recommended for uselriving the MCMC
algorithm.

All experiments and results appear in Chapter 6. A reader whis not so familiar
with Markov chain Monte Carlo or the central results of [37]s encouraged to refer
to these examples to facilitate understanding of the methodnd its motivations.

What is not present in this work is a rate of convergence for thestimation proce-
dure given above. This is perhaps the largest obstacle to adespread acceptance of
this method. As is shown in the simulation results, particdrly for the Gibbs sam-
pler, the performance of the full RNG output sequences is niadly better than that
of 1ID sample points at times, even for problems of much largelimension than is
guaranteed by the theoretical bounds. This is similar to these of quasi-Monte Carlo
in a simple independent sampling scheme, where the Koksméatka inequality pro-
vides an error rate highly sensitive to the dimension of theaspling space. Just as in

the independence scenario, there are ways to codify the inogement beyond these
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conservative bounds using a functional ANOVA decompositm as is done in [41] and
[25]. Still, it is a loftier task to produce a single useful & of estimate convergence

in the Markov chain setting.

1.1 New Results

Much of the paper is a restatement or slight expansion of thesults in [37] and [42].

The following new results are the most signi cant:

1. The entire discussion of Tausworthe and linear feedbadkif register generator
sequences, its incorporation into the framework of CUD arya, and multiple

strategies for its randomization, in Sections 4.5.2 and 5.2

2. A safe scheme for a more smooth use of the generator seqagsach that error

cancellation is augmented, as discussed in Section 5.1

3. A more careful demonstration that the randomized CUD arngs of interest are

array-WCUD, in Section 5.2

4. A more complex Metropolis-Hastings example where the nietd is not as nice,

in Section 6.4

5. A smoother Metropolis-Hastings-type algorithm introdeed in Section 7.1.2

The rst two items are the most essential in the advancement fothe method
beyond what is seen in [37] or [42]. The last item is interest, but there is still

much exploratory work to be done to see if the method providesgeneral advantage.



Chapter 2

Background

The purpose of this section is both to make the reader famihavith the fundamental
aspects of Markov chain Monte Carlo (MCMC) algorithms and qasi-Monte Carlo

(QMC) techniques and to introduce notation of signi cant u® throughout this work.

2.1 Simple Monte Carlo Estimation

We are given a probability distribution on a state spacé, and a functionf : S! R.
The task of Monte Carlo estimation is to construct an estimat of E [f (X)] (X
is a -distributed random variable on S). Frequently an explicit solution for this
expectation is readily obtained. This state spac& will be discrete or continuous in
all cases examined here, and in these respective circumsiasy we denote by (! )
the probability mass function or density function of the digribution at a state! .
In cases whereS is R or a Jordan measurable subset &® and the functionf is
well-behaved, classical quadrature methods are a clear @®for the estimation of

E [f (X)], when an analytical solution is unavailable. In cases wheS is a space
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of considerably larger dimension, the number of function aluations required to im-
plement the analogous quadrature is far larger. The increas di culty of basic
guadrature in higher dimensions can be codied through theate of decay of the
quadrature error; if , is the absolute error of an estimate oE [f (X )] based on an
n-point quadrature rule for a well-behaved functiorf , we note that the rate of decay
of , is far slower for higher dimensions (most methods yield erreate O(n =) for
some constantr). Simple Monte Carlo estimation is a randomized proceduréat is
clearly bene cial in high dimensions, as the absolute erraf the estimate isO,(n )

for a state space of any dimension (assumirighas nite variance over ). In simple

sustainable assumption that these values are mutually ingendent and that eachX;
has distribution . In this case we take as our Monte Carlo estimate & [f (X )] the

sample mean of over our generated point set:

X :
= f(XDYy  E [F(X)] (2.1.1)
i=1
Fundamental results in probability and statistics validae this procedure given the
assumption that the point set really is an I1ID -distributed sample. The strong law

of large numbers guarantees almost sure (a.s.) consisterafyour estimate:
f(XD) 1 E[f(X)] as. (2.1.2)
i=1

In terms of nding the error rate, we note by the Central Limit Theorem that when

f has nite variance 2 over |,
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p_ 1 X
n_

i=1

L

f(XD) 1 N(@©; ?): (2.1.3)

Hence the absolute error of our Monte Carlo estimate Bp(n ). Only in cases
wheref is unbounded but a.s. nite can the task of determining whetér f is of nite

variance become di cult.

2.1.1 Random Number Generation

The assumption that one can create a set of values with indepdent distributions
is one that has become more viable with the advent of computirpower and is crucial
in the justi cation of simple Monte Carlo estimation. The task of generating a set of

independent values with distribution is usually divided into two parts:

2. Transform UM to yield X ) with distribution

Note that the rst step is equivalent to generating a set ohd values assumed to be
independent uniforms on [Q1). The goal of a \random number generator" is this rst
step, to which much attention has been given. As the capacityrows for working with
samples of increasing size, algorithms of increasing satiziation have been designed
to produce a sequence that is practically indistinguishaélin law from a sequence
of independent uniforms. These algorithms usually operatga a recursive formula
such that the next number generated is determined by the lasiumber or last several
numbers. As each number is identi ed to nite precision, a reursive generator must
be periodic. If the sample size is larger than the period of ¢hgenerator then clearly

an illusion of independence is impossible to maintain; thergsence of discernible



CHAPTER 2. BACKGROUND 8

patterns gives rise to an informal notion that to maintain pgudo-independence, a
sample from a RNG should not exceed the square root of the padiin size.

A \good" RNG should be able to produce blocks of points that lok like indepen-
dent uniforms; i.e., the empirical distribution of the entre set ofs-dimensional blocks
obtained by s consecutive outputs of the generator should be close, in sersense, to
the uniform distribution over [0; 1)°. The idea of relating an empirical distribution to
the uniform distribution will be developed in the introduction to quasi-Monte Carlo
and will play a central role in much of the ndings discussedalter.

In this work, one large RNG is used to create practically I1D niform samples. This
generator (due to [28]), commonly known as the \Mersenne Tater," has a period of
219937 1 and has optimal equidistribution property in 623-dimensinal output blocks
to 32-bit accuracy. (In other words, the 92232 pits formed from the leading 32 bits
of 623 successive outputs of the generator take on each vaild 0; 192332 the same
number of times, except the all-zero combination, which agars one fewer time.)
For the simulations studied herein, the assumption of indegmdence and uniformity

among values taken from this generator appears safe.

2.1.2 Transformations

In the continuous univariate setting, the usual method of usg a uniform variate U
to generate a target distribution with cumulative density tinction (CDF) F(x) is to

take X = F 1(U), the image of the uniform under the inverse of the CDF:

P(F (U x)=P(U F(X)= F(x): (2.1.4)

A brief review of the most commonly seen continuous univate distributions

makes it clear that even when the density of a distribution iknown, the closed
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Table 2.1: Acceptance/Rejection Sampling Algorithm

Simple Acceptance/Rejection Sampling
1 | Generate uniformU®
2 | Transform U® to a g-distributed variable G
3 | Generate uniformu®
411f U@ < L3
SetX to G
Else:
Gotostep 1l
5 | Return X

form expression of its CDF or inverse CDF is frequently not aidable. Univariate
Gaussian and Gamma distributions are such cases. In such eass these, some
easily evaluated expressions are available that convert aitorm into its appropriate
quantile to a negligible precision for the vast majority of(; 1); these formulae are in
operation in such functions as \gnorm" and \ggamma" in R, whch come respectively
from [44] and [1]. In arbitrary cases where the inverse CDF ot easily obtained or
su ciently approximated, alternative methods are necessg. See [9] for more detalils.

One method that is usually available for any continuous disibution with an
identi able density is that of acceptance/rejection sampling. What is required
is a distribution (with density g) for which sampling is easy by a simple uniform
transformation, with the condition that

(x)

X
sup—==c<1:
w2k (%)

The algorithm for generating a -distributed variable is in Table 2.1, with all
generated uniforms independent.

The number of uniform variables required to generatX is twice a geometric
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variable with parameter 1=¢ note this number is unbounded.

In the multivariate setting, it is valid to generate each unvariate component by
its conditional distribution on the components already geerated, with the rst com-
ponent sampled from its marginal distribution. For a multiariate Gaussian distribu-
tion with covariance matrix , a common method of generationis a case of the above
practice. Using univariate normal generation, a multivaate normal with identity
covariance matrix is created and then transformed under thénear operator 172,

obtained via the Cholesky decomposition of .

2.2 Quasi-Monte Carlo

The simple Monte Carlo estimate ofE [f (X)] is the sample mean off on a set

empirical measure of this point set. Fof with a bounded variation condition, we can
justify the consistency of this estimation procedure by theonvergence of the empirical
measure to the distribution . As we transform a uniform variableU®  U[0; 1)! to

get X I this convergence is equivalent to the convergence of the @incal measure

The convergence of the empirical measure of a uniform sampée the uniform
distribution is characterized by a notion of discrepancy, hich is a multivariate gener-
alization of the Kolmogorov-Smirnov distance. We develophe notion of discrepancy
as follows.

For points y; z 2 [0; 1], denote by J; Z] the rectilinear box with every edge parallel
to some axis and opposite corners atand z (i.e. the Cartesian product of intervals

[min (yi; z); max (yi; z)]). The uniform measure of ¥; z] is its Euclidean volume:



CHAPTER 2. BACKGROUND 11

v
V(ly; 2], iz i (2.2.1)
i=1
The empirical measure ofyf;z] over a point setu®;:::;u is the fraction of
points in the box:
1 X
S, o Lo (2.2.2)

i=1
Here the focus will be on \anchored" boxes, where is the corner opposite the
origin (y = 0). A notion of local discrepancy comes from the absolute dirence

between the uniform and empirical measure 00{z]:

a(Ziu®:u™y L0 2)  V([0; 2))j: (2.2.3)

An overall notion of the deviation from uniformity of the point set is obtained by
nding the supremum of this local discrepancy. We call this &lue the star discrep-

ancy:

De nition 2.2.1.  The star discrepancy of a point set is the supremum of its loka

discrepancy over all anchored boxes:

D,(u®;::;u™y . sup L (2): (2.2.4)
z2[0;1]d

The star is used to specify that only anchored boxes are examad. An analo-
gous unanchored discrepancy takes the supremum of the voleirdi erence over all
boxes ¥;z]. When it is certain which point set is under examination, i inclusion
as an argument may be suppressed for simplicity of notatiorf-uture references to

\discrepancy" will indicate global star discrepancy unles otherwise speci ed.
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An analogous derivation to that used to derive the null distibution in a Kolmogorov-
Smirnov test veri es that the empirical measure of the rstn values in an IID uniform

sequence converges to the uniform measure witma'=?* rate:

D, = Op(n *(loglogn)): (2.2.5)

This rate of decay of the star discrepancy of a point set bearslevance to the
use of that point set in constructing Monte Carlo estimatesFirst we must note that
evaluating f on the -distributed value X () is equivalent to evaluatingf on the
d-dimensional uniformU®, where is the aforementioned transformation function
used to generate -distributed variables. Thus we can assume that our Monte Gl
task is the evaluation of a functionf over the U[0; 1)? distribution.

For estimating the integral off over the unit hypercube ind dimensions, integra-

tion error relates to discrepancy by the Koksma-Hlawka ineglity:

Theorem 2.2.2 (Koksma-Hlawka Inequality). The absolute error of integration using

Z

X .
. )df du % fw D, Vi (f); (2.2.6)
i1 i=1

whereVyk (f ) is the variation of the functionf in the sense of Hardy and Krause.

The set of functions with nite Hardy-Krause variation includes bounded contin-
uous functionsf with the condition jf (x) f(y)] Cjx vyj for some constantC.
Functions with discontinuity are generally of in nite Hardy-Krause variation; hence
it is a widely held belief that QMC only \works" on continuous integrands. For a
thorough treatment of Hardy-Krause variation, see [36]. W&nf has nite variation,

the rate of decay of the discrepancy bounds the rate of decafytlbe Monte Carlo error.
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In 11D sampling, the O,(n **?) absolute error rate found from (2.1.3) is corroborated
by (2.2.5) and (2.2.6).

The actual practice of quasi-Monte Carlo (QMC) is done in rgmnse to the desire
to improve error rate beyondO(n %72). According to the Koksma-Hlawka inequality,
the use of a point set with a quicker discrepancy decay as ouansple of quasi-
uniform variables will lead to quicker convergence of the salting estimate. QMC
replaces the 1ID uniform sequence with a deterministic \lovdiscrepancy sequence"
that provides a more even cover of the unit hypercube than igeély for an independent
random sample. Ind dimensions, many sequences are known that have discrepancy
O(n *(logn)9). For xed d, this rate is faster thann * for any > 0; it is common

practice to write that these low-discrepancy sequences hadiscrepancyO(n ).

2.2.1 Low-discrepancy Sequences: Examples

The more sizable deviations of empirical measure from unifo measure occur when
large clusters or voids of points appear. An intuitive way tachoose a point set that
minimizes this e ect is to create induce a regular spacing beeen points. This gives
rise to the use of integration lattices as low-discrepancyeguences. An integration

lattice on [0; 1)? of sizen is de ned by a multiplier g = (g1;:::; ) 2 Z%:
: 1.
u® ﬁ[lg(mod n)] (2.2.7)

where the modulus is applied coordinatewise. A good choidegoexists for each prime
n such that the discrepancy of the lattice is Cn *(logn)? for someC constant with
respect ton.

Notice that an integration lattice contains the origin. In many examples we want
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to avoid sampling too closely to the corners of the cube for psample size, and
certainly the actual corner can yield severe problems. Wesal note that there is
one deterministic estimate obtained from the use of a lattec A well-used habit that

addresses both of these concerns is a randomization of theolehset of QMC points.
A good randomization is one such that the image of a single mbin the set is uniform

on the cube under the random transformation, but the joint lav-discrepancy property
is preserved.

In the lattice case, a randomization that preserves the laitte spacing is due to
[7] and is appropriately known as a Cranley-Patterson rota&dn. A single uniform
variable U in the unit cube is taken, and every point is shifted byU with a \wrap-
around" (coordinates shifted above 1 are moved to their modrésidue). For example,
the point (0:8; 0:6; 0:4) shifted by the random vector (02922 0:6623 0:3010) becomes
(0:0921 0:2623 0:7010).

Since each point is marginally uniform, the estimate consicted from a random-
ized QMC point set is unbiased. An approximate variability & an estimate can be
constructed using multiple replications of the procedure ith independent random-
izations.

As seen in [40] and [33], the star discrepancy of a lattice (wh can be di cult to
compute) is related to several \ gures of merit,” which are fequently used to select
good integration lattices of a certain size. See Figure 2.drfa look at a \good" and
a \bad" lattice in two dimensions.

A single in nite sequence with desirable discrepancy is kam as the Halton se-

guence. We note that positive integer has a unique basé representation:

i= ab (2.2.8)
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Figure 2.2: 2-dimensional projections of the Halton seques, rst 1000 points. The
left graph has components corresponding to prime bases 2 aBdwhile the right
graph has components corresponding to 27 and 29.
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2.3 Markov Chain Monte Carlo

The use of Markov chain Monte Carlo (MCMC) is most often in cass where the
construction of an 11D sample of points under a target distbution is impossible.
As was seen in the brief background on transforming uniforrumbers, the knowledge
of the density function of the desired distribution is usudy su cient to create an

independent sampling scheme by means of acceptance/rejestsampling, although

this may be computationally costly.

2.3.1 Metropolis-Hastings Algorithms

The rst instances of MCMC sampling addressed a problem in vith the target dis-

tribution density is proportional to a known energy function. The algorithm due to
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Table 2.2: Metropolis-Hastings Algorithm

The Metropolis-Hastings Algorithm
1|BeginatX©® 2 S
2 | Given X ) generatey ("D
Transition proposal densityqg(X (V; )
3 | GenerateU*Y  U[0; 1)
4 | For A(x;y) = min ( g;gg)’;)l)
If U(|+1) <A (X (|); Y(|+1) )
Set X (*1) tg Y (+1)
Else
Set X (*D to X
Repeat steps 2-K + n times

(631

[29] and its generalization by [12], accordingly known as ¢hMetropolis-Hastings al-
gorithm, creates a Markov chain whose values converge intdisution to an arbitrary
distribution  and requires only the knowledge of the ratio of the density a@vo states
x andy. (Equivalently, one can create the algorithm if a function o the state space
proportional to the density function is known.)

The Monte Carlo sample drawn from this algorithm for the purppse of estimation
is usually all values in the chain beyond a \burn-in" period $uch that every point in
the sample is considered approximately marginally-distributed). The values in this
sample are no longer independent, but the consistency of tlestimate drawn from
this sample is now veri ed by ergodic theory instead of the {& of large numbers. The
mechanics of the general algorithm are outlined in Table 2.2First for every state
X we need a transition distribution Q4 on the state space with density denoted by
ax; ).

The only restriction on the proposal densitieg|(x; ) is that all states communicate,

and the choice of proposal densities can a ect the ease of siating the chain and
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the speed through which the chain ranges over the state spadssues relating to the
choice of proposal densities have warranted signi cant sy, although for the most
part, this topic will not be discussed here. The valué(X ;Y (*D) in the algorithm
above is known as the acceptance probability, as it is the anee of the chain moving
to YU*D versus staying atX (), It is important to note that if the proposed value is
not accepted, then the previous value is repeated in the satap This is essential for
consistency of the estimate constructed from the sample, ssobvious from a 2-state
space with nonuniform target distribution: a sample withotirepeated values would
have an empirical measure converging to the uniform distrition on the two states.
To verify that this chain has stationary distribution , we note that for two distinct
statesx;y 2 S, the overall transition kernel is given byq(x; y)A(x;y), and from the
de nition of A(X;y) in step 4 of the algorithm, it is easy to verify that reversilility

holds for this chain:

A YA Y) = (Y)aly; X)A(Y; X); 8x6y: (2.3.1)

Alternate de nitions for A(x;y) exist which still yield the reversibility condition.
These are acceptable for Metropolis-Hastings, although eéhone given here is most
frequently used, as it minimizes rejections.

Commonly seen sets of proposal distributions include theandom walk" sampler,
in which g(x;y) is a symmetric density ony about the starting value x and the
distributions look the same aboutx for all x (i.e., gq(x;y x) does not depend orx),

and the \independence" sampler, wherg(x;y) is the same for allx.
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2.3.2 Gibbs Sampling

The claim has been made that all valid MCMC methods for appramate sampling

from a stationary distribution are instances of a MetropoB-Hastings algorithm or a
mild extension thereof. The most familiar method of MCMC to many is known as
the Gibbs sampler, which may seem not to t in the MetropolisHastings scheme at
rst glance. In truth, the Gibbs sampler can be reconciled uder this framework,

and much of the theoretical results established in the remader of this work for

Metropolis-Hastings extend to the Gibbs sampler quite edgi

The Gibbs sampler, whose necessity emerges naturally in pkems in Bayesian

distributions; i.e., P(ij 1;:::; i 15 j+1;::5; ¢) IS known for all i. We assume that
drawing from these conditional distributions can be donejhere are instances where
acceptance/rejection sampling or even Metropolis-Hastys sampling is done to gen-
erate points from these conditional distributions. The bds step in the algorithm
updates a single component by keeping the others xed and dving from the condi-
tional distribution of this component given the others. Thee components are often
updated in cyclic fashion, although a random choice is sonees taken as well. We
will keep focus on the cyclic scan algorithm, which is detad in Table 2.3.

Note that this algorithm only returns points taken d steps apart, such that each
component is updated exactly once before the next point in éhsample is taken. A
sample that takes every point can also be used for consistegtimation, and so either
choice is valid. To reconcile with the Metropolis-Hastinggramework, we note that
for a single step, if we use the conditional distribution intep 3 of the algorithm as

our proposal density, our accepance probability is always The only distinction now
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Table 2.3: Gibbs Sampler

The Gibbs Sampler

1 | Start with © _ _

2| Given @ =( W::ii: Uytakes i +1(mod d)
3 Draw_“;from P_( o) §');_::-; é')l_, £'+)1;"'_; ('))
4] set ("0 to ( Wrrrry O~ O Oy

5 | Repeat steps 2-K + nd times

6 | Return (K*d. (K+2d)..... (K+nd)

is that the proposal densities change every step. We can viewery d steps as having
one common proposal distribution (with acceptance probaldy still 1). If we take
every point instead of everyd points, we can view our sample as the combination of

d interlocking Metropolis-Hastings chains.



Chapter 3

Foundation: MCQMC

The main goal that this work has sought to develop is the apmation of randomized
QMC sequences to the general MCMC sampling scheme, such tlve¢ can obtain
bene ts analogous to those of QMC in independence samplinglere we denote this
practice as Markov chain quasi-Monte Carlo, or MCQMC. Most fothe key results in
this section that establish a condition for valid MCQMC appar in some detail in [37]
and [42]. It will become clear by the following results thathie question of validity,
which is synonymous with estimate consistency, is addreds® su cient satisfaction.
The question of superiority to [ID sampling is a far more di cult one, as there is a
dependence structure between successive updates to a Mar&oain. The notion that
a signi cant dependence structure among the variates usddsteps apart can create
problems for sizablek gives rise to a new \curse of dimensionality”" that reduces
advantage of low-discrepancy sequences.

There is a distinction that should be clari ed before the stucture of the MCQMC
algorithm is established: the use of QMC sequences in MCMQiesation is not done

to accelerate convergence to the stationary distributionMuch attention is given to

21
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ways in which convergence can be veri ed and ways in which slanixing or frequently
\stuck" chains can be accelerated; neither question is a ced case by any means.
However, the chief contribution of MCQMC is not the accelettion of convergence.
Rather, on the assumption on convergence, the aim of MCQMC is create a more
balanced sample of the space for improving estimate accuyam the same way that

QMC is done to cover the cube more evenly than by [ID sampling.

3.1 MCQMC Notation

In independent Monte Carlo estimation, the use of a QMC sequoee in lieu of pseu-
dorandom numbers (assumed to be IID) seems immediately aleaise each value in
the sequence as a sample point. It is less obvious how one rhigb about using a
QMC sequence in a Metropolis-Hastings sampler. A de nitivanswer is not given
here, but it will help in future discussion to establish a nation on the values used
at di erent stages of an MCMC algorithm.

Recall in a Metropolis-Hastings sampling scheme that to sutate a step in the
chain, two actions that require random variates must occur:the generation of a
proposal valuey from a transition proposal density, and the generation of aaccep-
tance/rejection decision based on the acceptance probatyil For now, we assume
that with probability 1, at most d 1 independent univariate uniforms are required
to generate a variable from the transition proposal densityfor any starting state).
Clearly only one univariate uniform is needed to generate ¢hdecision, and so each
step in the chain requires (at most)d univariate uniforms.

Similarly in the Gibbs sampler, we assume that a bounded nurab of variates is

required to update ALL the coordinates once, regardless dfé starting values used
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in the conditional distribution sampling. We assume this bonding number isd in
this case, as no acceptance/rejection step is necessary.efld univariate values are
needed to generate the next point in the sample for any MCMC Iseme of interest.
We call this a d-dimensional MCMC sampler.

After a burn-in period (if it is so desired), we wish to genetta a sample of size
N, and so we run the chain throughN steps. The univariate values needed to e ect

theseN steps will be stored in the \variate matrix”, which is indexal as follows:

2 3
u® U@ (@
L(d+D) L(d+2) el
(3.1.1)
N D+ (N 1)d+2) y(Nd)
The sequenceu®; u®;:::;uNd of univariate values in the variate matrix will be

referred to as the \driving sequence" of the MCMC algorithm.

Frequently it will be of interest to look at blocks of this segence as variates in a hy-
percube. To that e ect, we de ne foranyi <j the notationu;; , (u®;ul™;:::;ul)),
the (j 1+1)-dimensional point with coordinates taken from the uniariate sequence.

The mth row um 1d+1)(may Of the variate matrix is used to generate thenth
sample point of the chain. As this is a Markov chain, we can dae a Markov transition

function:

XM = (XM D Um 1ydety( md)) (3.1.2)

We will want to investigate the relationship of the univaridge values in the co-

ordinates of successive multivariate values, and so we derfor a set of points
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3.2 Completely Uniform Distribution

We assume ad-dimensional MCMC sampler is our candidate for receiving Q®I

updates in lieu of psuedorandom values, and we are able to stact a d-dimensional

make each row of the variate matrix a QMC point, such thati(m 1yd+1y:( may = X™.
In this scheme, each QMC point is used to generate one step imetchain. For this
method of inclusion, many QMC point sets will lead to comicél inaccurate results.
Recall the Halton sequence with bases the rstl primes, and suppose we wish
to use this point set in a random walk Metropolis-Hastings gbrithm. Assuming
the standard method of generating the proposal value from aomt in [0;1)" 1, the
proposal will have a smaller rst coordinate than the curretivalue if the rst variate
used (which lies in the rst column of the variate matrix) is less than 0.5. Likewise,
the rst coordinate of the proposal will be larger than the curent value if the rst
variate is greater than 0.5. The use of the Halton sequencedrbases would establish
the rst column of the variate matrix as the base 2 sequencenbwn as the van der

Corput sequence. This sequence is as follows:

1=2; 1=4; 3=4; 1=8; 5=8; 3=8; 7=8; 1-16,9=16: ::

Note that it alternates above and below %#2. Thus the proposals alternately move
up and down in the rst coordinate. The chain is prevented fron moving into the
tails of the marginal distribution of this rst coordinate, and so consistency from a

sample generated in this fashion obviously fails for a vatyeof functions. Alternative
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Figure 3.1: Lag plot of van der Corput sequence.
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methods of interlaying QMC points of di erent dimension maybe even worse, such
as an example in [30], where a patrticle intended to undergomsgnetric random walk
moves in the same direction at every step.

The clear culprit in the grave errors obtained in this crude tiempt at MCQMC
is the relationship between successive points in the QMC sexpce. The practical
notion of independence among successive values in a goodicem number generator

output is not upheld here. We can codify this notion by lookig at the properties of

the relationship betweenu® and u(*9 for all values ofi is not one that approximates
uniformity on the unit square, as seen in Figure 3.1.

It is easy to conceive scenarios in which a lack of approxingatiniformity in [0; 1)™

problem for producing a consistent sample. Sequences thatal this problem are

such that the points created by blocks ofl successive variates Il the unit hypercube
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[0; 1)¢ in a uniform fashion. In an asymptotic sense, to approach uormity is to have
a discrepancy that decays to 0. This motivates the propostn that the following

sequence condition is essential for incorporation of a seqee in an MCMC sampler:

De nition 3.2.1. A sequencai®; u®;:::is completely uniformly distributed (CUD)
if for every integers 1, the sequencex®™;x®;::: of s-blocks k" = Ui s 1)

satis es:

D, (xW;::o:xM1 0  asn!l (3.2.1)

The concept of CUD sequences originated in [17], and a survely many CUD
sequence constructions is given in [22]. The CUD property gsven as a de nition of
randomness in [16]. Note there is no condition of uniform ceergence of the discrep-
ancy to 0 over all dimensions. This de nition applies to deterministic sequences; it

serves us to create a similar de nition for random sequences

De nition 3.2.2. A random sequencau®;u@;::: is weakly completely uniformly
distributed (WCUD) if for every integer s 1, the sequencex®;x®;::: of s-blocks

(xM = uii+s 1)) has the following condition of convergence in probability

0 asn!l : (3.2.2)

To validate the use of (W)CUD sequences in an MCMC sampler, vggeneralize a
result of Chentsov [6] derived for a simpler class of Markowain simulations. Before
the mechanics of this result and its proof are discussed, & helpful to note the

following lemma, shown in [16]:

Lemma 3.2.3. The sequenca®;u®;:::is CUD if and only if for arbitrary integers

s | 1, the sequencéz(Vgof s-tuples de ned byz() = (uls *0;yls 1#2).....yls 1+9))



CHAPTER 3. FOUNDATION: MCQMC 27

satis es

D,(z";:::;Z™M 1 0 asn!l (3.2.3)
An analogous equivalence holds for WCUD sequences.

The lemma establishes that a CUD property has good balance both its over-
lapping blocks and its nonoverlapping blocks of arbitrary set. The \if" statement

is easy to verify via Slutsky's Theorem, but the \only if* stament is less obvious.

3.3 The Main Consistency Theorem

The following result, as mentioned earlier, generalizes asult of Chentsov from what
he calls a \standard construction” for Markov chain simulaion on a nite state space.
The following proof is contained in [37], but it will be repeted here, as the result is
the foundation on which any future results rest. The generalation to Metropolis-
Hastings sampling requires some assumptions. The most regtve is that our state
spaceS is nite; the necessity of this restriction is readily evidat in the proof.

A milder assumption satis ed by all feasible sampling schees is a regularity

condition on the proposal mechanisms in the Metropolis-Haisgs algorithm:

De nition 3.3.1. The proposals of a Metropolis-Hastings algorithm are regai if

and only if for any statesk;| 2 S and time i, the set
AL f e yldrd Djy (+) = when X @ = kg (3.3.1)

is Jordan measurable.
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A Jordan measurable set is one whose indicator function isdfhann integrable.
For a starting statek at time i, the hypercube [01)? * can be divided into regionsA (kil)
of variates whose use to generate the next proposal would pose statel; regularity
implies that each of these sets is Jordan measurable. Note=tie sets are usually the
same for alli (the proposals are homogenous).

See Appendix A for a treatment of Jordan measurable sets ingfunit hypercube.
Included are the results that nite unions and tensor produts of Jordan measurable

sets are also Jordan measurable.

Lemma 3.3.2. |If regularity of proposals holds, for any statek;| 2 S and timei, the

overall transition sets de ned as
s, fuld ;e ydr djx (4D = | whenx @ = kg (3.3.2)

are Jordan measurable.

Proof. Fork 6 1, S\ = Al)  [0;A(k; 1)), the product of two Jordan measurable sets.
i S i i .
Sk = asakgAW [AKGD);1) [A L) [0;1) (assuming [11) = ;). These are

Jordan measurable due to Theorems A.1.4 and A.1.5. O

The central theorem indicates that the replacement of 1ID piats by a CUD se-
guence preserves the consistency of a Metropolis-Hastirsgsnpler. In this nite-state
setting, consistency holds if for any staté 2 S and any starting state X © =1 g:

1 X
() - Lo, !V () (3.3.3)
i=1

Similarly, weak consistency holds if for any stat¢ 2 S and > 0, under any

starting state ! ¢:



CHAPTER 3. FOUNDATION: MCQMC 29

PGM(C)  ()j> jxO=191 o (3.3.4)

used to run a Metropolis-Hastings sampler with regular homenous proposals. As-
sume the resulting sample is weakly consistent if thé) are 1ID U[0; 1), such that
(3.3.4) holds. Then if theu® form a CUD sequence, the consistency result (3.3.3)
holds. Similarly, if u®) are a WCUD sequence, (3.3.4) holds.

Proof. For a given value ofX ©, the empirical measure 4(! ) is completely deter-

\problematic" in the sense that the empirical measure of a ste is not close to its
target value. For a tolerance > 0, we de ne for each starting state and target state

the region
Tin (), FUW U™ jjre)  (W)i> whenX© =1g:

These regions are Jordan measurable by Theorem A.1.4 as thee the nite
unions of the sets in (3.3.2). Because the volume of, ( ) is the probability under
IID sampling that j*,(!«)  ('«)j> whenX© =1, the validity of (3.3.4) under

IID sampling means that for anyk; |:

V(Tkn() ! O asn!1l (3.3.5)

So we pick anm su ciently large that for all k;I, Vol(Txm ( )) < =K , which we
S
can do due to the nite number of states. We now de néely, ( ) , 12s Tikm (), the

region that samples!  \badly" for at least one starting state. This set is Jordan
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measurable as well and has volune .
For !, and m we de ne an indicator Z() of tail behavior of our CUD sequence
fug in the following fashion:
z® ) 1U((i 1d+ay(( i 1)d+md)2Tkm():

We also de ne the empirical measure;f, (! «) on the corresponding block o points

in our sample:

1 X!
Nim (Vi) m Loz,
j=0
Note that if ZM =0, j*m(Pk)  (Y)j < (although the converse is not true
depending onX (' ). Because the sequenag?;u®;:::is CUD, we have by Lemmas
3.2.3and A.2.2:
1 X _
- ZO1 Vol(Tim ()): (3.3.6)

i=1

We dissect our overall empirical law om points as follows:

1 X 1 X!
(k) = n Nim (Vi) + n Lim =y, Ixoem =y, (3.3.7)

i=1 j=1

The latter term in the above decomposition is bounded in magiude by m=n. Now
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we use the triangle inequality and striate oveZ (:

. . X1 AN .
k) (MW N ZONm (L) (1 0)]

1 X . oom
+ ~ @ ZMjMm () (Wi o
i=1

1 X

i m

- B ZW+ 4 o (3.3.8)
' Vol(Tym (1)) + (asn!'l )

2: (3.3.9)

As s arbitrary, (3.3.3) is established for the CUD case. fu()gis WCUD, (3.3.8)

still holds w.p. 1, but now

% ZO 1" \ol(Tun (! K)): (3.3.10)
i=1
So forn > m= ,
. . 1 X
P(i*n('e)  (Wj>3) P - zO> 10 (3.3.11)
i=1
and so (3.3.4) is established for the WCUD case. O

Clearly there are cases where a non-CUD sequence still po®s consistency in
the sense of (3.3.3), but for a non-CUD sequence, it is easy ¢onstruct ad hoc
a Metropolis-Hastings sampler on which (3.3.3) fails. Heaca general practice of
MCQMC designed to adapt to an arbitrary sampling scheme shtwhuse CUD variates.

For the Gibbs sampler, the lack of an acceptance-rejectiotep and the nonhomo-

geneity of proposals are the only distinctions that need beddressed. Without the
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acceptance-rejection step, the Jordan measurable proptssassumption tautologically
gives the Jordan measurable transitions. If we take every tput in the Gibbs sampler
as opposed to evergth output, there is a nonhomogeneity issue in the proposalbut
again this is easily satis ed by viewing the sample ad interlocking samples, each of

which is consistent, and so the average of these samples issistent as well.



Chapter 4

CUD Sequences in Practice

4.1 Low Discrepancy

The results of the previous chapter provide a general conait on the valid use of
QMC sequences in a Metropolis-Hastings sampler. The repdscent of 1ID points by
a CUD or a weakly CUD sequence leads to a consistent estimasng note that 1D
points are weakly CUD), and any other choice of sequence fafbr some Metropolis-
Hastings construction. But not much has been said concermgrnthe actual rate of
decay ofs-dimensional discrepancy in a CUD sequence for any givenThe ultimate
goal is to create estimates with lower variability than thos obtained via [ID sampling;
therefore we wish to create a \balance" along the sequencevafiates, just as is done
with QMC for regular independent Monte Carlo sampling.

It is apparent that for a QMC sequence like the Halton sequeec in which the
relationship between successive points does not support assumption of indepen-
dence, that something must be done which eliminates this e¢lonship. There are

two intuitive notions of how this can be done:

33
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1. Randomize the order of the points in the sequence
2. Choose a sequence whose successive points have moreromidestribution

The rst method was proposed by Liao [23] on a series of Gibbarapling schemes
for tting Bayesian models. The resulting estimates of the gantiles of the marginal
posterior distributions showed lower variability than thcse obtained with 1ID sam-
pling. No theoretical argument was given that this procedw is consistent in some
sense or that the variance is reduced; this chapter will demstrate the former claim
(consistency). A nonrigorous argument for this method saytbat the larger the sam-
ple size, the more the points look like independent random s, except that after
the entire sequence is used, each component has seen a sepdéie variates that are
more evenly spaced than one would expect from independentifenms. Because of
this nal balance, Liao's proposal may be likely to improve o 1ID sampling. Still, a
notion of a better-than-random approximation of uniformily across successive points
may provide further improvement, if it is possible.

The notion of consistency does not make sense for a singletensequence, but
the implementation of Liao's proposed method requires a ele choice of a nite
simulation length before the randomization can occur. In atition, it may be di cult
for a single in nite sequence to maintain a more uniform ap@gance in di erent
dimensions simultaneously (e.g., see the CUD construct®given in [22]). Therefore
the need arises to incorporate the use of nite sequencesarthe theoretical framework
given in the previous chapter. To this e ect, we will de ne chsses of nite sequences
of increasing length such that the limits which characterz the CUD property and
consistency will be over the increase in sequence length.

The goal in constructing sequences that improve on IID samipd is a lower dis-

crepancy in many dimensions (§-dimensional discrepancy" is the discrepancy of the
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sequence ob-blocks formed from concatenatings successive values in the original
sequence). Clearly for a nite sequence of lengtN, the s-dimensional discrepancy
can only be good fors N. Even an in nite sequence will not a discrepancy de-
cay faster thann %2 in every dimension. The reason that this line of inquiry stil
seems worthwhile is that the importance of uniformity ins dimensions decays as
increases. Another nonrigorous argument says that for a Maov chain that is mixing

appropriately, the Markov transition function given in (3.1.2) can be expressed as

XO=mxt ™u)  (u); (4.1.1)

where u is an md-dimensional uniform variate. This approximation gets beer as
m increases, and so at some point when the approximation err@ negligible, the
Markov chain sampler is like an independent sampler ohd dimensions. Thus if we
nd a sampling scheme whoss-blocks are well-distributed fors md, it is likely to
provide less variable estimates than those given by 11D sarnpg.

Much of the work contained here is also found in [42]; some diet proofs are

reproduced here, but more details on the remaining resultseacontained there.

4.2 Useful Lemmas

In working with discrepancy in multiple dimensions, it is usful to note the relation-

ship between discrepancies of theblocks of a sequence.

holds:
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D,(y®;::5y™) D (z(1);:::;2M): (4.2.1)

n([0; 1 y® ;oo y™) sup  o([0;H  [0;m];z; i ZM): (4.2.2)

m2[0;1](s2 s1)
Taking the supremum of both sides over al, (4.2.1) follows. O

Lemma 4.2.2. For a sequencex®;x®;::: 2 [0;1)> and xed integer m, the star

discrepancies of this sequence satisfy the following inafity:

m

D :
n+ m

D

(4.2.3)

n+m n

Proof. For an arbitrary box B, supposek of the rst n points in the sequence lie ifB.

Thus the di erence of the empirical measures d@ on the rst n points and the rst

n+ m points is bounded above by

m(n k)  mk .
max nn+m) nn+m (4.2.4)

which is at mostm=(n + m). By the triangle inequality, the local discrepancies oB

di er by at most m=(n + m), and (4.2.3) follows. O

It is easier to verify the convergence of local discrepancy O than to verify the

convergence of star discrepancy to 0 directly. The follongdlemma establishes a useful
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equivalence that helps to establish the latter.

Lemma 4.2.3. For a sequencex;x@;:::2 [0;1)4, if for arbitrary z 2 [0; 1],

Wz XD xMy 1 o (4.2.5)

D,(xW;::nxMy1 o (4.2.6)

For a random sequenca® ; x@;:::, if the convergence in (4.2.5) holds in probability,

then (4.2.6) holds in probability as well.

Proof. For arbitrary > 0, choose positive integeM > 1= and de ne lattice L to
be the set of points whose coordinates are integer multipled 1=(2dM) between 0
and 1 (inclusive). For arbitrary z 2 [0; 1], there are pointsz®;z® 2 L such that
[0;z0] [0;z] [0;z@]andz? zM < =(2d) for all i.

Note V ([0;z?]) V([0;z¥]) < =2, as the di erence of these sets is contained ¢h
blocks of volume =(2d). V ([0; z]) is contained in the interval [V ([0; zM7); V ([0; z®@1)].

By the nested nature of the boxes,
NW(0;Z])  V(0;2) Wh(0:zZ) V(0;z) Yh([0;zP]) V([0:zZ]): (4.2.7)
Applying the triangle inequality to the left and right ends d the above inequality,

=2 o([0;z20]) < \a([0;2])  V([0;2]) < =2+ ,([0;z?)); (4.2.8)
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and soD, < =2+ maxy. n([0;y]). As L is nite, (4.2.5) yields that, for a deter-
ministic sequence, limsu®, < =2. As is arbitrary, (4.2.6) follows. For a random
sequence, convergence in probability implies thd (maxy,. o([0;y]) > =2) ! 0O,

and soP(D,> )! 0, and (4.2.6) holds in probability. O

4.3 Triangular Arrays

As we would like to use a nite (W)CUD sequence to generate an ®MC sample, it
is important to incorporate the use of a nite sequence intote CUD framework. We
can de ne a classC of sequences of lengthld; <N, <::: 11 . We will denote the

j th value of theith sequence asiy)).

De nition 4.3.1. The classC of sequences is a CUD triangular array (array-CUD)

if for arbitrary dimension s,

lim Dy, oy Wyl s ulY) =o: (4.3.1)

Similarly, a class of random sequences is array-WCUD if forkatrary s, the limit in

(4.3.1) holds in probability.

Many results that held for a single CUD sequence hold for a CUBiangular
array. Most importantly, the central Theorem 3.3.3 extenddo CUD arrays, where

for a Metropolis-Hastings sampler of dimensiod, the rst bN;=dc d elements of row
i of the array fu{’;:::;uf"’g are used to generate a sample of sibi;=cc.

Theorem 4.3.2. Let M; = bN;=dc. Suppose for arbitrary starting valueX © the

@..... (Mid)

sequencd uy ;11 Uy g is used as a driving sequence for a nite-state Metropolis-

Hastings sampler under which (3.3.4) holds with an IID drimg sequence. For the
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resulting sampleX ﬁ,li); i ;Xﬁ,“i’“) and the resulting empirical measure
1 X
N (1) M 1fxgi>:! g (4.3.2)
j=1
the following convergence result holds when the triangukarray is CUD:
YD () 8! 2sS: (4.3.3)
If the triangular array is WCUD, convergence in probabilityholds:
ATy Bl 2s: (4.3.4)

The proof of this theorem includes only a few minor modi cabns of the proof
of Theorem 3.3.3. This result is also fundamental in justifiig the use of certain
sequences in Metropolis-Hastings sampler. Subsequenttises will develop speci c
CUD triangular arrays that will be useful for MCQMC.

Lemma 4.2.3, which veri es the equivalence of local discrapcy decay and star
discrepancy decay, has a clear analog for arrays. Lemma 3,2which establishes
the equivalence of a CUD property for overlapping and nonorapping s-tuples, also
has an analog for arrays (note that this extension is necesgdor Theorem 4.3.2).
However, to verify that certain classes of sequences areadWCUD, we need the
following stronger result, which is not obvious for WCUD arays. Its proof appears

in [42].

Theorem 4.3.3. For some in nite subsetD N, suppose that a triangular array
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satises foranys2D and > O:
n #

: @..... (S)y. (y,(s*D) ... .. @9)y..... (M D)s+1) ... .. (Ms) -0
iI!llmP Dy Uy sirmsug)s Uy, s irug)s s (uy, ;oinuy ) > =0

whereM = bN;=sc. Then the triangular array is array-WCUD.

The lemma says that to show an array-WCUD property, it is onlynecessary to
verify the discrepancy decay in probability of the nonoveapping s-tuples for s in
an in nite subset of the positive integers. This subset ofte contains only integer

multiples of a common integers,.

4.4 Liao's Method

Recall the proposal of Liao that takes a low-discrepancy ssence ind dimensions
and randomly permutes the sequence to use indadimensional Gibbs sampler. This
method requires a selection beforehand of the simulatiomigh N, as the permutation
step does not permit extensibility. A theoretical validaton of this method (in terms

of consistency) is now available through the above framewoon WCUD arrays.

We take a low-discrepancy sequeneé;:::;aN) 2 [0;1)? and a random permuta-
tion on the integersf1;2;:::;Ng. The random sequence with elementg( d*1) |
a]-( O foralli2f1;2:::; Ngandj 2f1;2;:::;dgis one of a triangular array of se-

quences of length&Nd for xed d and all positive integersN .

The following theorem is due to [42]:
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obtained by

z() = Ui 1)s+1):(is) (4.4.1)

for N = b(Nd)=sc satis es, for arbitrary z 2 [0;1)%, > O:

P ¢(zz®;::5;2M)y> =0O(N '+ Dy): (4.4.2)

Although the result is not so surprising, the proof is quite amplex, and so it is
not restated here. The proof uses the Markov inequality asst nal step, as it bounds

the mean of the squared local discrepancy.

Corollary 4.4.2. The random triangular array emerging from Liao's method is
WCUD. Consequently, weak consistency of MCQMC estimatesld® when Liao's

method generates the driving sequence.

Proof. By applying Lemma 4.2.3 to the result of the above theorem, thWCUD

property is veri ed, and so Theorem 4.3.2 yields weak conssicy. O

Notice that there is nothing that requires the dimension offlie permuted points
to match the dimension of the MCMC algorithm. The natural implse is to match
these dimensions, as the variates in each column of the vdeanatrix are more evenly

spaced than is expected with 1ID sampling.

4.5 Random Number Generators Revisited

The goal of Liao's method was to provide an overall balance dhe variate rows used
to update each step but make the successive variate rows lagdsentially independent.

To fully carry over the bene ts of QMC sampling to the Markov ¢ain case, we would
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like to improve on pseudo-independence in the relationshijetween successive variate
rows, and such a sequence would have I@adimensional discrepancy for values of
s greater than d. In other words, the s-tuples formed from consecutives-blocks
of the entire sequence would have an approximate uniform tidution on [0;1)%.
This criterion is equivalent to the criterion used to indicée that a random number
generator is \good." For example, recall the equidistribubn property of the Mersenne
Twister of [28], such that for alls 623, the 32 leading bits of all components of an
s-block evenly coverf 0; 1g°%. We must run through the full period to see this even
distribution; certainly we have no interest in running our Metropolis-Hastings chain
to a length anywhere near £97 1.

So the candidates for MCQMC endorsed by this line of reasogirare sequences
of much smaller periods that may pass as random number gentng in smaller

capacity. The random number generator of periodN produces a sequence of the

we can look at classes of random number generators of inciagssizes, and in cases
where an array-CUD property holds, the use of the full randonmumber generator
output in a MCQMC algorithm is justi able.

Recall the variance matrix given in (3.1.1). Liao's methods expected to provide
some variance reduction due to a \balance in the columns,” veheby the set of variates
used to update each component is evenly distributed acro€s1). If the full output of
a small random number generator with period\ is used exactly once in populating the
variate matrix (discarding the N (mod d) variates left over), the columns of the variate
matrix see at mostN=d values from the generator, and the balance in the columns is
not notably better than that via 1ID sampling. So the actual quence that should

be used is the full output from the random number generator peated exactlyd
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times. Assuming thatN and d are relatively prime (the case in which this is false will

where the indices are equivalent to their mot\ residue. These columns include each
value in the generator exactly once, and so the notion of balee in the columns is
upheld here. If the array-CUD property applies to a class ofegerator sequences,
Slutsky's Theorem and Lemma 4.2.2 verify that the array-CUDproperty applies to
the class of these generator sequences repeadddnes.

An additional benet is that the s-tuples of consecutive values in the columns

around" from the bottom of the matrix to the top). Thus the last s variates used to
update a given component have a better-than-1ID balance i®]1)° as well, assuming
the random number generator is \good." This notion will be mde more concrete for

speci ¢ classes of generators.

45.1 The Korobov Lattice

One well-known recursive pseudorandom number generatorthvidesirable properties
for MCQMC is the multiplicative congruential generator (MCG). For a prime number
M, the generator assumes all values in the sél=M;2=M;:::;(M 1)=Mg exactly
once. The order of the output sequence is determined by powesf an integera, for

somel a (M 1) such that

a’  1(modM) (4.5.1)

has exactly one solution inrn (n = M 1). Such a valuea is known as a primitive

root of the prime M. It is well-known (see [3], e.g.) that the number of primitie
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roots for M is positive; more speci cally, it is equal to (M 1), where is Euler's
totient function (which maps an integern to the number of positive integersk less
than n such that gcfk; n) = 1).

For the sequence (M = a"(mod M), which is equivalent to the recursion

r™M = ar™ Y(mod M); r®=1; (4.5.2)

output sequence of the generator.

A look at the consecutives-tuples in this sequence fos <M reveals that each is

set ofs-tuples from the generator sequence forms an integratiorttige (introduced in
Section 2.2.1). The use of these sequences then guaranteagesnotion of even spacing
in s dimensions for alls, although, as is evident in two-dimensional projectionsose
lattices are better than others.

For an in nite subset of primes, we would like to de ne, on edtmember of this set,
a generator sequence of this type such that we can verify array-CUD property on
the resulting collection of sequences. A simultaneous dispancy bound in dimension
s and periodN = M 1 is useful in verifying this property. Niederreiter [31] deves
the result that for a xed choice ofs and M, at least one primitive root exists such

that the s-dimensional discrepancy of the resulting sequence sass:

! !
1 M 2)(s 1) 2 7
M1 1+ M D —logM + g (4.5.3)

S

The totient function obeys the following limit ( 0:5772 is the Euler-Mascheroni
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constant):
(n)

Iirr]rlllinf Tlog (log(n))=e ; (4.5.4)

so for some MCG sequence on prinkd above a thresholdM, > O:
As
Dy 1< v log (log (M ))(log M )*®; (4.5.5)

where A is a positive constant. Note that the choice of generator fagachs is not

necessarily the same. Still, we can use this fact to verify aray-CUD property.

Theorem 4.5.1. For an in nite subset M of the primes, one can de ne for each
M 2 M a multiplicative congruential generator such that the caétion of full output

sequences from these generators is array-CUD.

Proof. For eachM , we choose a dimensios such thats(M) = o([logM=loglogM] )
for some constant < 1, and choose generators to satisfy (4.5.3) ff; s(M ). Under
this s(M), for large enoughM we have the inequality

h [

loglog M !

(logM)S<M ¥ <M (4.5.6)

for an arbitrary constant 2 (0;1). Thus for this choice ofs, the right side in (4.5.5)
decays to 0 with rateM ** . Now for arbitrary xed dimension s, the sequence of

s-tuples

US) N (s) ceee M 9)..... (M 1) (4.5.7)

formed by the generators above have discrepancy that decagsO at rate M 1* by

Lemmas 4.2.1 and 4.2.2. O

It should be noted that, in the above proof, the implied consint in the rates



CHAPTER 4. CUD SEQUENCES IN PRACTICE 46

of discrepancy decay for di erent dimensions 15 di erent, and there is no notion
of uniform discrepancy decay in all dimensions. Fas that grows with M at least
as quickly as logM=loglogM, the discrepancy bound in (4.5.5) is useless, as the
(logM)® term grows too quickly. For our Metropolis-Hastings sample we need a
generator of periodN = M 1 to run the chain forN steps, and for practical sample
sizes, the resulting value ot for which the above bound is useful is actually quite
small. It should be pointed out that this bound is usually quie conservative. Still,
for purposes of establishing consistency via the array-CURroperty, it is su cient.

To say that a function is o([logM=loglogM] ) for some < 1 is equivalent to
saying that the function is o([logM] ) for some < 1; this latter expression may
seem simpler, but in the calculation above and in future caldations, it is easier to
work with the former.

The choice generator of a desired size for MCQMC is motivatdny minimizing
discrepancy for all dimensions up to some tolerabkg,,x. The actual computation
of star discrepancy of a point set is laborious and becomes faore di cult as the
dimension of the point set grows. Alternatively, one can copute the L, norm of
the anchored local discrepancy rather than the star discrepcy (which is theL;
norm). This mean square discrepancy has a simple calculatidue to [43]; in higher
dimensions, the calculation time is accelerated due to a regsive formula in [13].
While the generator with optimal mean square discrepancy ot necessarily the one
with the best star discrepancy, it is safe to expect that theank of sequences based
on this criterion is not much di erent from the true rank. In independence sampling,
alternate notions of discrepancy can also be used to boundegration error (see [14]),
although in the Markov chain case, these notions may be di cli to use in an analog

of Theorem 3.3.3.
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As previously discussed, a more popular criterion used toawuate the quality
of an integration lattice is one of several functions of theattice called a \ gure of
merit." The gures of merit discussed in [33] and [40] are e&s to compute and relate
to an upper bound on the discrepancy. A table of Korobov latties for a series of
primes (close to 2 for di erent n) whose 8-blocks and 32-blocks have optimal gures

of merit (among Korobov lattices of the same size) is given [18].

4.5.2 Linear Feedback Shift Register Generators

The intuitive value of a series of lattice points in approximating uniformity is the
homogenous spacing of the points. Another intuitive appr@h to approximating
uniformity by a point set is that of equidistribution, in which the unit hypercube is
partitioned into subcubes of equal size, and the point set paithe same number of
points into each subcube. If the subcubes of;[D)* have side length 2, the placement
of a point in a subcube is uniquely determined by th& leading binary digits of the
s coordinates of the point. The goal of random number generat based on bit
recursion is the even distribution of the leading binary digs of successive points.
The linear feedback shift register generator constructsstvariates from an under-
lying sequenceh; by;::: of zeroes and ones. For some choice of integafs< a, <

... < ay, the sequence is advanced by the recursive formula

b = b 5 (mod2) (4.5.8)
j=1
As the future of the sequence is completely determined by tHast m = a; values
and there are only 2' possible choices for these values, the sequence has period a

most 2". As a set ofm zeroes yields an all-zero sequence, the maximal period i$yon
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2" 1

guaranteed through the following well-known theorem (se&§], e.qg.):

Theorem 4.5.2. The resulting sequence from the recurrence relation (4.5.8as pe-

riod 2" 1 (for m = &) if and only if the polynomial
1+ yAL (4.5.9)

is a primitive polynomial over the Galois eld with two elen@s. There are Z, ,
m 1 (2™ 1) such primitive polynomials of degreen over GF(2), and so there are

Z ., degreem recurrence relations whose corresponding sequence hasqoep™ 1.

Any sequence which achieves this maximal period has evenyblock of bits in the
setf0;1g™ nf0g. Thus for any integerg such that gcf(@;2" 1) = 1, the sequence

de ned by
X

u = by pgej2 ! (4.5.10)
i=1
has 2" 1 distinct values which each lie in a di erent interval in thepatrtition of [0; 1)
into intervals of length 2 ™. The lowest interval has no entries, as the leading bits
are never all 0.B is the total number of bits in the number and is usually taken® be
32 or 64. We call this sequence a linear feedback shift regis{LFSR) sequence. In
the special case wherk = 2 and the generator corresponds to a primitive trinomial,
this generator is also known as a Tausworthe generator.

The relationship between successive points is not necedyaone that approxi-

mates uniformity well. For example, if the o set parameterg is 1, then the resulting

pairs (u®; ul*Y) lie in one of four rectangles, each with volume 1/8. (The seand bit
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of u® is the rst bit of u(*Y ) We would like to chooseg such that there is a better
cover of the hypercube by consecutive-tuples. Recall the notion of equidistribution
discussed at the beginning of this section. A more formal deition as it applies to

these LFSR sequences is the following.

De nition 4.5.3.  An LFSR sequence is 2-equidistributed in s dimensions if, upon
the partition of [0; 1) into subcubes of side length 2, the number of s-tuples from
blocks of s consecutive outputs in each subcube is the same, with the eption of

the subcube containing the origin, whose count is one fewer.

Clearly 2 '-equidistribution can only hold forl b m=sc. Given s, a signi cant
fraction of o sets g relatively prime to 2" 1 seem to satisfy equidistribution for
| = bm=sc.

Given an LFSR sequence of lengtN =2™ 1 and a 2 '-equidistribution property
in s dimensions forl = bm=sc, the local discrepancy is 2N on every box whose
corner opposite the origin has coordinates which are integaultiples of 2 ' (call this
collection of boxesB). The volume of any box di ers by at mosts2 ' from that of a
set in B which is either a superset or subset of the box. Thus the staisgrepancy
satis es

1 i} 1 _
Dy i g2 M=s*l < N +2sN s (4.5.11)

This bound is not strong, but we can verify an array-CUD propety for a collection

of LFSR sequences from this.

Theorem 4.5.4. Let s(N) be an integer function with growtto(log N=1log logN ). For
each integerm, de ne an LFSR sequence of sizBl =2™ 1 such that the sequence

is 2P m=s(N)c_equidistributed. The collection of LFSR sequences is ayrCUD.
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Proof. For s(N) above andN su ciently large, the right side of (4.5.11) is bounded
above by (loglogN) 1, and so it decays to 0 adl ands(N) growto 1 . For a specic
s, the s-dimensional discrepancy decays to 0 by the above result ahdmmas 4.2.1

and 4.2.2, and so the collection is array-CUD. O

There are many choices of primitive polynomial and o set with satisfy the
equidistribution condition. Because nding star discrepacy is tedious for high di-
mensions, an exhaustive search for optimal sequence of aaiersize in terms of dis-
crepancy in a certain dimension becomes far too computatially expensive quickly.
It is again easier to look at mean square discrepancy, andlsta nonexhaustive search
for good mean square discrepancy in a few choices of dimensi®lded the sequences
used in the examples in Chapter 6.

The decision of whether to use an LFSR sequence or an MCG sateeis not
clear. Beyond the speci ¢ dimension by which the MCG is selsd, the s-blocks still
form a lattice, although a lattice may still have large gapsrécall Figure 2.1). The
equidistribution property of the LFSR can only hold for a smd set of dimensions and
cube sizes; beyond this, the LFSR may also have large gapsseen in Figure 4.1. The
discrepancy of a sequence and the integration error resalyi from its use, even in an
independent sampling scheme, are not always well-correddt A result in [27] states
that a lattice of sizeN on the s-dimensional hypercube lies in at mosts{N )= parallel
hyperplanes. For a functionf with large variability in the transverse direction, the
MCG points would not provide substantial improvements in esmate accuracy over
random sampling. The results of the search for good MCG seques have been well-
documented, but there is little literature to endorse spea LFSR sequences in terms
of optimal discrepancy; however, results that are at leasbmparable to, and in some

cases substantially better than those attained using MCG gaences emerge using the
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Figure 4.1: Projections of successive values from an LFSRhgeator, with equidistri-

bution in 2-dimensions holding on the left. From an LFSR gemator with multipliers
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Chapter 5

Algorithm Implementation

The results of the previous chapter indicate that an MCQMC aorithm which re-
places 1ID sampling with points drawn from a multiplicative congruential generator
or a linear feedback shift register generator is valid in arriay-consistency sense. This
chapter will include details of a general strategy for popating the variate matrix used
in the simulation, randomizing the variates, and beginninghe sampler. Throughout,

the notion of consistency through an array-WCUD property wi be preserved.

5.1 Populating the Variate Matrix

The discussion in Section 4.5 suggests a strategy for the lusion of a full-period
generator output (with length N) into the variate matrix (3.1.1), where the sequence
is repeatedd times. (Recall that this d is the dimension of the algorithm itself and
is xed.) This strategy assumes thatd and N are relatively prime, such that each
value of the generator appears in each column of the variateamix exactly once.
In the instance where gcfg; N) > 1, some adjustment of this sequence repetition is

necessary so that the balance in the columns of the variate ma is preserved.

52
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For b = gcf(d; N), the method used in simulations in [37] and [42] uses a se&rie

of b 1 skips that occur after everyN=b rows, such that for generator sequence

u®:u@; - uN) | the variate matrix appears as such:
2 3
u® u®@ e
(@D 4(@+2) 429
U(N=D)d d+1) |, (N=b)d d+2) U((N=D))
u(z) u(3) u(d+l)
(@42 4(@+3) L2d+D)
(5.1.1)
U(N=b)d d+2) | ,(N=b)d d+3) L((N=b)d+1)
u® U+ yld+b 1)
L@+ b) 4@+ brD) y@d+b 1)
y((N=b)d d+b) [ (N=b)d d+ br1) u((N=b)d+b 1)

In the above notation and in similar expressions in this chaer, we de ne u® = y®

fori j mod(N). Although this scheme places every output of the generaton

each column exactly once, the-tuples formed by consecutive values in the columns

lattice, as shown in Figure 5.1. To preserve some notion of @eximate uniformity

among thes-tuples that governs successive updates to a component, the skips in the
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sequence must be the same between every pair of rows. An imja strategy is to
nd the smallest integery d such that gcffy; N) = 1, and form the variate matrix

in the following fashion:

2 3
u® u@ L u@
u(y+1) u(y+2) s u(y+ d)
u(2y+l) u(2y+2) s u(2y+ d) (512)
u((N 1)y+1) u((N 1)y+2) s u((N 1)y+d)

This strategy maintains a balance among the-tuples in the columns. As the random
number generator sequence is selected for its optimal propes in small dimensions,
y d (the number of skips between rows) should remain small. Todey d small

such that the array-CUD property is preserved, nothing neetie done for a collection
of array-CUD LFSR sequences, but some primes should be aveddn the MCG case.

These cases will be treated separately below.

5.1.1 The LFSR Case

The preservation of the array-CUD property with generator kips is veri ed through

the following theorem.

Theorem 5.1.1. For a xed positive integerd, let y; be the smallest value d such
that gcf(y;; N;) = 1. If for all sequence lengthdN; in a CUD triangular array, the

valuey; is bounded above by some constéft then the sequences

ul;u s u s uy U a0 @ (N
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Figure 5.1: Left is lag plot of successive updates using (31on MCG with M =
102%a =65;d = 12. Right is the same, using (5.1.2). 12 is a factor of 1020n& so
12 points are out of place in the lattice on the left.

form a CUD array.

Proof. For arbitrary dimension s, the s-dimensional discrepancy of the above is
bounded above by thedsK=de-dimensional discrepancy of the corresponding gen-
erator sequence repeated times without skips, plus an error term for end values.
This bound is achieved by an analogous proof to that of Lemma241, with the er-
ror term of size O(1=N) by Lemma 4.2.2. So as the original sequence collection is
array-CUD, the s-dimensional discrepancies of these sequences decay to 8.s4s

arbitrary, the sequences with skips are still array-CUD. O

The period of each LFSR generator sequence is odd, and so amwer of 2 is
relatively prime to the sequence length. Thus for an algohim dimensiond, the skip
y disless thand for any LFSR sequence. Thus the array-CUD property is presed
for the collection of LFSR sequences by Theorem 5.1.1 wikh = 2d.
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5.1.2 The MCG Case

For a prime M, the period of an MCG sequence with baskel isM 1, which is an
even composite number for anyM > 3. As N increases (algorithm dimensiord is
xed), the smallest valuey d relatively prime to N has limsup,,; (y=logN) > 0.
So some thinning of the prime numbers is necessary. For a spedimension d, we
select a \threshold" prime numbery, at least as large asl. For M >y ¢, the smallest
valuey drelatively prime to M 1 is at mosty, if M is not congruent to 1 (mod
Yo); thus yg can serve as the constarK in Theorem 5.1.1 if each MCG sequence with
prime baseM congruent to 1 (modyy) is discarded from the CUD array.

More rigorously, we can partition the set of primes bigger #n yy into yo 1

M 2 A [ M i(mod yp): (5.1.3)

An array-CUD sequence based on MCG generator outputs is stdrray-CUD with
skips added if the sequences based on primes in the Aetare discarded, by applica-
tion of 5.1.1 with K = y,. The sparseness of the subsets in the above partition is not
a problem, as a result of Valee Poussin [8] says that, for lall:

# A\f 1,2;:::;Ng 1

N“!rln N=logN - Yo 1 (5.14)

In practice, the application of a generator sequence of pedM 1 for whichy is
large should be avoided in favor of a sequence of roughly trere length for which

y is small.
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5.2 Randomization

The randomization of the values in the variate matrix is an irportant tool to minimize
the bias of the estimation procedure. In creating a good raondhization scheme,
the goal is to make points marginally uniform while preserag the low-discrepancy
property; speci cally, we want to preserve an array-WCUD poperty. It seems natural
to apply the same randomization to each row in the variate maix (3.1.1), such
that the d-dimensional point in each row is marginally distributedU[0; 1)¢, but the
balance in the columns is still preserved. This can be achesl/by applying a common
randomization to every univariate value in a single columnfdhe variate matrix, with

the condition that the randomizations applied to di erent columns are independent.

5.2.1 The LFSR Case

The veri cation of an array-CUD property of a collection of gtimally equidistributed
LFSR generators relied on this equidistribution. Consequdy, a randomization that
preserved the notion of equidistribution would be a good ciee. Such a randomization

that does this is an additive bit scramble, de ned below.

De nition 5.2.1.  For arbitrary x 2 [0;1), take the unique binary representation
X = 0:X1XpX3::: such that x; = 0 in nitely often. The additive bit scramble creates a
random binary sequenced; a,; : : :) whoseith coordinate is O or 1 with probability 1/2
(independently of the values of other coordinates), and tlumapsx to the number
whoseith binary digit is x; + & (mod 2): Equivalently, each digit of x is ipped
independently with probability 1/2. The distribution of x under this random map is

uniform on [Q; 1].

A common additive bit scramble is applied to each column of thvariate matrix,
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with the scrambles on separate columns independent. Now baow is marginally

uniform, and an array-WCUD property still holds.

Theorem 5.2.2. For an array-CUD collection of LFSR generator sequences deed
in Theorem 4.5.4 repeated with regular skips as in (5.1.2),eche the random array
by a series ofd independent additive bit scrambles applied to each seq@e(sich that
the nth value in the sequence gets théh randomization, wheren j (modd)). This

array is WCUD.

Proof. Take s(N) = o([logN=loglogN] ) for some constant < 1. For suchs,
s?N 1 0. For the original generator sequence of lengti = 2™ 1, take k(N)
the largest integer power of 2 such thas(N) 2k(N)d. (Recall that there are at
most d skips per row in the construction (5.1.2).) Fol = bm=sc the nonoverlapping
k(N )d-tuples in the sequence are 2 equidistributed in the sense that every subcube
in a partition of [0;1)¥(N)9 into subcubes of side length 2 has the same number of
points, except one random cube which has one fewer point. Byndar reasoning to
that in Theorem 4.5.4, the nonoverlapping discrepancy of ¢hpoint set of sizeN in
dimensionk(N)d goes to 0.

For arbitrary constant ko which is an integer power of 2, wheiN is su ciently
large, ko < k (N). For someN su ciently large, the set of nonoverlapping (Kod)-tuples
can be partitioned into subsets such that theth point is mapped to a subset indexed
by the residue ofi mod (k(N)=k;). From this decomposition, the discrepancy of
nonoverlapping kod)-tuples is bounded above by the sum d{(N )=k, terms at most
equal to the k(N )d-discrepancy, and so the discrepancy of the nonoverlappifkpd)-
tuples is at mosts(N)k(N)N *=(N) “which goes to 0 as speci ed above. By Lemma

4.3.3, the array is WCUD. O

In practice, only the rst 32 or 64 bits of the number are recated, and so the



CHAPTER 5. ALGORITHM IMPLEMENTATION 59

randomization is only carried out to the same number of bits.

5.2.2 The MCG Case

As we want to preserve the regular spacing between points gimatural randomization
here is the Cranley-Patterson rotation where every row is @anslated by a common
variable U uniformly distributed on [0;1)Y. This is equivalent to independent uni-
variate Cranley-Patterson rotations on each column. To shothat this preserves the

array-WCUD property, we rst start with a Lemma relating typ es of discrepancy.

Denition 5.2.3. For0 a<b 1, dene the wrap-around interval [b,a] to be
[0;a] [ [b;1]. A wrap-around box B takes the foer[a;b], where the interval is
wrap-around if ; > b; and traditional otherwise. The wrap-around discrepancy ¥

takes the supremum of the absolute di erence between empmal measure and Jordan

measure over all wrap-around boxes.

Lemma 5.2.4. For the same point set in[0; 1),

DW 4dD .

n n n-

(5.2.1)

Proof. The rst inequality is clear, as all anchored boxes are wrapround boxes. All
simple unanchored boxes have local discrepancy at mo8D2 by (A.2.6). All wrap-
around boxes are the union of at most®simple unanchored boxes, and so every wrap

around box has local discrepancy at most?2 29D .. The result follows. O

Note that the wrap-around discrepancy of a point set with a anmon Cranley-
Patterson rotation applied to every point does not change. Wuse this fact to verify

an array-WCUD property.
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Theorem 5.2.5. For an array-CUD collection of MCG generator sequences deed
in Theorem 4.5.1 repeated with regular skips as in (5.1.2) drthinned to primes not
congruent to 1 mody,, de ne the random array by a series ofl independent Cranley-
Patterson rotations, where thenth value in the sequence undergoes thi rotation if

n j (modd). Then the array is WCUD.

Proof. Take s(N) = o([logN=loglogN] ) as before, where < 1. De ne k(N) the
largest integer power of 2 such thas(N) >k (N)yo. The nonoverlappingk(N )d-tuples
have, by (4.5.5) and (5.2.1), discrepancy at mosAs(N)N *(loglogN )(4logN)stN).
Note that 45(N) js o(N'094=leglogN) " and so this discrepancy is stillO(N '* ) as N
(and s(N)) grow to 1 . The remainder of the argument follows as in the proof of
Theorem 5.2.2 (notek(N)O(N * )= O(N *2) for arbitrary ), verifying that the
array is WCUD. O

5.2.3 The Issue of Bias

It should be noted that even if we assume the starting valu¥ © of the Metropolis
Algorithm is -distributed (i.e., we are already in a stationary distribdion), the
randomizations above do not make the resulting estimate urdsed. The distribution
of successive variates in the same column of the matrix is nahiform under the
randomization, and so the resulting chance that the path m@&s in any direction
given its previous move is not the same as with independentrspling.

For example, take thes-tuple of the rst svariates used to update the rst compo-
nent. In the MCG case with the Cranley-Patterson rotation, his s-tuple is uniformly
distributed on a nite set of line segments. In the LFSR case ih the additive
bit scramble, the s-tuple can lie in only 2 of the 2' subcubes in a partition of the

cube. Yet overall, the set of directions each particle goaseach block ofs steps is still
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well-balanced after the simulation is complete, and so we aot expect a problematic
bias.

One idea to make bias less worrisome is to apply independenaisformations to
each element in a block om rows, wherem is some small number bigger than 1. If
m is relatively prime to the sequence periodN, by running through the generator
dm times, with the same block ofdm independent transformations applied to all
N nonoverlapping @m)-blocks in the variate matrix, the bias is contained in the
approximation error of (4.1.1). This involves the same wor&s the use of a generator of
sequence length Nm, which may have much nicer distribution among its successv
values, and so the marginal return of this step to reduce biasay not be worthwhile.

Speci cally in the LFSR case, one can generalize the addiéivit scramble to a
linear bit scramble, where we de ne a matrixA whose entries are 1 on the diago-
nal, O above the diagonal, and O or 1 independently with probdity 1/2 below the
diagonal; andB an additive bit vector as before. For two values< = 0:X;XpX3:::
andy =0:y1yoy3::, ifj =minfn  1:x, 6 y,g, then the range of the random map
(Ax + B; Ay + B) is a set of 2-dimensional measure 2, as (x;;V;) is uniformly dis-
tributed over f0; 0g; f0; 1g;f 1;0g; f 1; 1gfor all i > . Under the additive bit scramble
alone, the range of X + B;y + B) had 2-dimensional measure 0. Equidistribution
is also preserved under this map. The marginal distributiorof s-tuples with the
same randomization applied componentwise could approachiiormity even more if
the upper diagonal were not restricted to 0, but in this casegquidistribution is not

preserved, and so this should certainly be avoided.
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5.3 Acceptance/Rejection Sampling

The strategy for use of CUD and array-CUD sequences in a Mefrolis-Hastings al-
gorithm has assumed that at mostl variates are needed to generate the next step in
the chain, whered is determined beforehand. In the case where acceptanceéejon
sampling (as described in Table 2.1) is necessary to drawrftgroposal distributions
in the Metropolis-Hastings algorithm (or conditional distibutions in the Gibbs sam-
pler), it is not possible to put a nite bound on the number of \ariates needed to
generate a sample point. (The number of variates needed isit& a geometrically
distributed variable.)

In the experiment of randomizing QMC points to run a Gibbs saipler in [23], Liao
drew from a Gamma distribution using acceptance/rejectiosampling. His strategy
was to run two iterations of an acceptance/rejection algathm using four coordinates
of ad-dimensional QMC point, and if two rejections occurred, a sglence assumed to
be IID was used to nish the acceptance/rejection algorithm|t is not easy to prove
an analogous theorem to Theorem 3.3.3 without some sort ofgtdar inclusion of 11D
sampling after a xed number of rejections using a CUD sequee.

A Metropolis-Hastings algorithm that runs up tok steps of an acceptance/rejection
sampler with points from a CUD sequence before using IID pasis still weakly con-
sistent, as shown in [42]. The reversion to IID sampling to gerate from some
distribution is equivalent to drawing a single uniform thatcorresponds to the CDF of
the distribution evaluated at the drawn value. Hence the emte algorithm, assuming

k acceptance/rejection steps are necessary, is equivaleatusing the variate matrix
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2 3
u® u® ceeoyld D v s y(K) u(@
(@) u(@+2) e y@d 1) y(k+D) e 2K ()
(5.3.1)
N Dd+) AN DA+2) oo (Nd 1) (N DR+ ... ((NK) 4(Nd)

where thefu(g sequence is WCUD (or from an array-WCUD collection) and the
fv(lg are assumed to be IID and independent of thieu()g sequence. The proof that
the sequence formed across the rows is WCUD or array-WCUD aggo's in [42]. This
proof formalizes the intuitive idea that the nonoverlappig m(d+ k)-tuples must have

discrepancy that decays to 0. Lemma 4.3.3 completes the pfoo

5.4 The Final Variate Matrix Expression

We assume the following things:

1. We wish to use a lengthN sequence from a CUD array

2. The Metropolis-Hastings sampler required variates and up tok reversions to

IID sampling for acceptance/rejection

3. The smallest integer d relatively prime to N isy

From this, the general format of the variate matrix to be usedor MCQMC is
given below. Note that for both generators studied, the potrset is incomplete in the

sense that the leading bits in an LFSR sequence point are new 0, and the origin
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of the integration lattice from an MCG sequence is missing. e inclusion of the
origin at the beginning of the sampling scheme makes the odanensional balance in
the columns more complete and is recommended. As it is one oits inclusion does
not a ect results pertaining to the CUD nature of the arrays. In the following, the
sequencd vi)g is an 11D uniform sequence used only when an acceptance-otien

algorithm needs further iterations.

2
1(0) o ¢ 1(0) v o v 4(0)
1(u®) Lo g 1(ut@ ) vk v(zk) a(u?)
1(U(y+l)) s d 1(u(y+d 1)) V(2k+1) s V(3k) d(u()“’ d))
1(u((N 1)y+1) ) g l(u((N 1)y+d 1)) V(Nk+1) s V((N +1) k) d(u((N 1)y+ d))

(5.4.1)
This nal form of the variate matrix is the one used in the simiations whose
results appear in the next chapter, unless otherwise indieal in studies that examine

the marginal bene t of the variate matrix adjustments descibed here.
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MCQMC Examples

Throughout this section, we denote the stationary distribtion by and the transition

distribution from state x by Q. The densities or mass functions of these at state
are (y)andq(x;y). For the Gibbs sampler, the conditional distributions aredenoted
by Q( k] 1;:::; « 15 k+1;::5; q); for simplicity of notation, we denote the vector of

theta except for thekth component by .

6.1 Toy Problems

Before examining the performance of MCQMC in comparison tegular MCMC in
substantial problems, it is interesting to explore variousaspects of the process in
simple toy problems where the e ects of various aspects of@halgorithm can be
easily seen.

A few simple examples shown here will have a Gaussian targestdbution
with known parameters, such thatE [f (X)] is easily computed. The rst example

is a simple univariate Metropolis-Hastings sampler with mposal distributions either

65



CHAPTER 6. MCQMC EXAMPLES 66

Table 6.1: Mean Square Error, Random Walk

=2:4 =1:2 =05
[ID | 4.54e-03| 6.28e-03 5.65e-02
f(x)=x MCG | 1.96e-03 1.64e-03| 2.03e-03
LFSR | 1.77e-03| 2.15e-03 1.78e-03
1D 1.11e-03 1.02e-03] 2.65e-01
f(X)=1tx>09 | MCG | 6.36e-04 3.71e-04 2.57e-01
LFSR | 5.77e-04] 4.53e-04 2.44e-01
[ID | 8.77e-03| 1.35e-02| 9.98e-01
f(x) = x? MCG | 6.01e-03| 5.62e-03| 1.02e+00
LFSR | 5.74e-03| 5.75e-03| 9.22e-01

symmetric about the current state or independent of it:

N (0; 1); Q = N(x; ?): (6.1.1)

N (0; 1); Qx = N(O; : (6.1.2)

The rst sampler is known as the random walk sampler, the send is known as the
independence sampler. The parameter’ will a ect the rate of proposal acceptance
and the rate of decay of dependence on past values. In termstbé mean square
error of the resulting estimates, the performance of MCQMCsing MCG or LFSR
sequences can be compared to MCMC with [ID sampling for the tnsamplers, with
a variety of values for several functions. The values of were chosen to provide
a wide range of mixing speeds of the chain. From here onwarde will denote an

MCG with prime modulus M and primitive root multiplier a as the M;a) MCG,

LFSR. Tables 6.1 and 6.2 compare the (1021,65) MCG and the [{8),52] LFSR to
IID sampling with 1024 steps.
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Table 6.2: Mean Square Error, Independence

=2:4 =1:2 =05

[ID | 2.75e-03 7.42e-04| 9.81e-01

f(x)=x MCG | 5.13e-04| 1.09e-04| 1.21e+00
LFSR | 5.16e-04| 1.35e-04| 1.13e+00

[ID | 7.35e-04 2.84e-04| 2.66e-01

f(X)=1tx>09 | MCG | 1.44e-04 3.22e-05 2.60e-01
LFSR | 1.01e-04| 5.45e-05 2.33e-01

[ID | 3.87e-03| 2.47e-02 1.71e+00

f(x) = x? MCG | 1.09e-03| 1.91e-04| 1.36e+00
LFSR | 1.45e-03| 1.89e-04| 1.11e+00

67

These results show that the MSE reduction using MCQMC is be& the random
walk case for =1:2. An explanation on the diminished performance of the =2:4
case is the high number of rejections, such that the autocetation of the sequence
is high.

The independence sampler also favors MCQMC in the = 1:2 case; note that
for =1 the sampler is a simple Monte Carlo sampler, and so any quite close to
1 will behave similarly to this. The MSE reductions for the =2:4 and = 1:2
samplers range from 1.4 to 3.9 in the random walk case and frdx/ to 13 in the
independence case. The dependence on the past is lower initltiependence sampler:
note that two chains at di erent starting values with the same driving sequence will
match as soon as an acceptance occurs under the independesasepler, whereas the
random walk sampler on these two chains can only move closegether when one
chain accepts and the other rejects.

The = 0:5 sampler is highly unstable, rarely reaching the tails of #h target

density and remaining for long epochs in values of higher magude once they are

reached. MCQMC does not help this sampler.
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Somewhat surprisingly, the advantage of MCQMC over IID saniimg does not
seem to change much for di erent functions, including the a with discontinuity.
In a Gaussian setting, the mean and variances are the expeaotas of unbounded
functions, but the normal tails decay rapidly, such that bomnded functions provide
an excellent approximation to these functions. So it is reasable to expect that
MCQMC does best in estimating the mean and worst in estimatmthe probability of
positivity, but the results do not di er signi cantly. In te rms of looking at the image
of f over the uniform variates used to generate the sample, theasgion to accept or
reject proposals in the Metropolis-Hastings sampler intiduces discontinuity anyway.

The next toy example is small Gibbs sampler on a joint Gaussiadistribution

(with Gaussian conditional distributions):

=NG ) QU K)=NCkt k ki k(& i kk ki ke ok kk)
(6.1.3)
As the correlations j for j & k increase in magnitude, the autocorrelation of the
Markov chain increases as well, and so it is reasonable to exp the advantage of
MCQMC to be the best for target distributions with low correlations. The perfor-
mance of the sampler for a few functions and choices of is sla in Table 6.3 (we
keep = 0 as the performance of the simulation is not a ected by ). The same
MCG and LFSR as in the previous example are used. Each Gaussidistribution
is trivariate with marginal variances 1 and covariance ter® ( 12; 13; 23) Specied
in Table 6.3. For ease of interpretation, the MSE reductionaictors of the MCQMC
methods versus IID MCMC are given in Table 6.4.
The sampler estimates the mean and variance of and the covariance of ;

and , with much greater accuracy by MCQMC in all cases. The casesttilowest
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Table 6.3: Mean Square Error, Gaussian Gibbs Sampler

(0:7;0:4,0:6) | (0:3; 0:2;0:5) | (0:95,0:7;0:75)
1D 4.03e-03 1.67e-03 2.04e-02
f()= 1 MCG 1.81e-05 1.14e-05 4.12e-04
LFSR 1.74e-05 4.43e-06 2.61e-03
[ID 3.76e-03 1.30e-03 2.48e-02
f()= 1 2] MCG 8.50e-04 3.07e-04 1.09e-02
LFSR 7.20e-05 1.25e-05 1.63e-02
[ID 4.23e-03 1.90e-03 2.44e-02
f()= 2 MCG 6.45-04 2.10e-04 1.04e-02
LFSR 6.39e-05 2.36e-05 1.82e-02
Table 6.4: MSE Reduction Factors, Gaussian Gibbs Sampler
(0:7,0:4;0:6) | (0:3; 0:2,0:5) | (0:95,0:7;0:75)
f()= 1 MCG 22 146 50
LFSR 24 375 7.8
f()= 1 2| MCG 4.4 4.2 2.2
LFSR 52 104 15
f()= 2 MCG 6.6 9.0 2.3
LFSR 66 79 1.3

69
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correlation see the greatest advantage of MCQMC, and thosetlwhighest correlation
see the lowest advantage. Here the estimation of the mean&®s to show the best
improvement; interestingly the MCG performance deteriortgs much more than the
LFSR performance for the covariance and variance estimateQverall, except in the
case of 1, =0:95, the error reductions in the Gibbs sampler are far more imgssive

than those in the Metropolis-Hastings samplers above.

6.2 A Bayes Model

An example explored in [23] exhibits promising results for IQMC in dimensions far
larger than the conservative theoretical bounds support. Ae problem and data come
from [11]. Ten pumps experience failures according to indepdent Poisson processes
with rates 1;:::; 10. Each ;is assumed to have a Gamma distribution with shape
parameter = 1:802 and scale parameter with Gamma prior distribution (shape
parameter = 0:1, scale parameter = 1). The data recorded are the number of
failures s; of each pump and timeg; over which the number of failures of the pump
was monitored (see Table 6.5).

For a rate , the number of failures in timet has a Poisson{ ) distribution, and
so the distribution of ; given and the data is indepedent of the other values and
has a Gamma( + s;; + t;) distribution. The distribution of  given all the values
is independent of the data and has a Gamma@10; + P i) distribution. We use
these conditional distributions to run a Gibbs sampler whasvalues converge to the
joint posterior distribution.

For Bayesian modeling, the posterior distributions of thes parameters are of in-

terest, as well as the construction of estimates of these paneters. The valuea that
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Table 6.5: Pump failure data

Pump | Failures | Time
1 5 94.32
2 1 15.72
3 5 62.88
4 14 125.76
5 3 5.24
6 19 31.44
7 1 1.048
8 1 1.048
9 4 2.096
10 22 10.48

minimizesE[(  a)?] over the distribution of is the mean, so for the joint posterior
distribution , the Monte Carlo estimates o [ ;] and E [ ] (by the sample means)
will be the parameter estimates. We wish to investigate thegsiare error of the sample
means from the Gibbs sampler in estimating the true means dfe parameters. The
posterior mean is not obtainable in closed form; the variaecof the estimates will be
explored with a cautious eye towards the potential bias of }aMCQMC estimates.

These simulations were run in the program language R. The lomving MCGs were
used: (1021,65), (4093,209), (16381,665). These were takem [18]. The following
LFSRs were used: [(3,10),52], [(1,3,7,9,11,12),29], /(6,10,11,14),35]. The primitive
polynomial was chosen at random from the full list of primitve polynomials of given
degree, and then the o set was chosen to minimize mean squaliscrepancy.

100 replications were conducted of simulations of size 2% 2*? and 24 using
pseudorandom Mersenne Twister outputs, randomly permutelttice points (\Liao
method"), MCG sequence points and LFSR sequence values. Téemple variances

of these 100 estimates are shown in Table 6.6. From these ilesuhe minimum and
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maximum (over the eleven parameters) variance reduction der of each MCQMC
method over |ID sampling is shown in Table 6.7. Note that the atio of sample
variances, if the sampling distributions are identical, filows an Fgg.99 distribution for
two independent samples of size 100. The .95 quantile of thggge distribution is
roughly 1.4, and so variance reduction factors of size largéan 1.4 are considered
statistically signi cant. All MCQMC estimates yield stati stically signi cant variance
reductions in this example.

The tables indicate that the LFSR method yields the lowest v@ance, with each
method exhibiting larger reductions in variance over IID sapling as the sample size
increases (indicating an improved empirical error rate dag). The bias of the methods
is uncertain, but, assuming that the true mean is somewherear the mean of the 100
unbiased estimates via IID sampling, a look at the boxplotsfestimates shows that
bias is likely far smaller than the variance of the estimatdsy [ID sampling. Sensitivity
to the quality of sequences in more \important” dimensions @kes inference on error
rate volatile from a small set of sequences.

Table 6.6 shows that the variance reduction is the largestfahe Poisson param-
eters with larger monitoring periods (1; 3; 4) and smallest for those with smaller
monitoring periods ( 7; g). This is not surprising, as the dependence of the condi-
tional distribution on is stronger for smaller periods. The multiplicative di erexces
in variance reduction between ; and g (which have identical data) under the MCG
and LFSR methods are consistently around 2, indicating thathe quality of the se-
guences used has an e ect on the improvement in performance.

MCQMC is not expected to perform as well in determing other g®cts of the
target distribution not related to expectation. Appendix B contains histograms of

four samples of obtained by separate Gibbs samplers using each of the |ID, NBC
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and LFSR methods. Not much discernible dierence exists bween the samples
constructed by the various methods; we might expect the CUDasplers to provide
an \even" histogram with greater frequency. Still, when themedians of the samples
are used as estimates of the medians of the marginal posteratistributions, the
variances of these estimates in thel  2%° case drop by factors between 4 and 140
for the MCG case and 6 and 170 for the LFSR case. So MCQMC doesméene cial

in determining quantiles as well. Liao already noted the bents of his method in

determining quantiles in [23].

6.3 Probit Regression Model

This model is due to [2] on data from [10]. There are 39 measorents of patient
respiration, each of which recorded an indicatoy; of vasoconstriction and measure-
ments of the volumeX;.; of air inspired and the rateX;., of inspiration. The probit

regression model says that
P(Yi=1)= (ot 1Xi1t+ 2Xi2); (6.3.1)

where ! is the inverse CDF of the standard Gaussian distribution. Tot this
model, latent data valuesZ; are introduced whereZ; has Gaussian distribution with
mean o+ 1X;1+ 2X;2 and variance 1, andy; is the indicator of whetherZ; is
positive. The prior distribution on is noninformative.

Given this setup, the conditional distribution of the variables given theZ; values
is independent of the response data, and it has a multivariatGaussian distribution
with mean (X TX) X TZ and covariance X "X ) . The Z;, givenY; and , have a

truncated distribution which is the Gaussian distribution above restricted to [01 )
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Table 6.6: Variances of posterior mean estimates, Bayes nebd
N 210
Parameter 1 2 3 4 5
11D 6.21e-07 9.21e-06 1.89e-06 1.22e-06 9.00e-05
Liao 3.72e-09 4.88e-08 8.23e-09 4.13e-09 9.02e-07
MCG 3.79e-09 4.86e-08 7.86e-09 5.52e-09 7.69e-07
LFSR 1.03e-09 1.36e-08 1.62e-09 7.93e-10 1.80e-07
Parameter 6 7 8 9 10
1D 1.63e-05 3.19e-04 4.14e-04 3.74e-04 1.61e-04 9.00e-04
Liao 1.05e-07 1.17e-05 1.37e-05 9.34e-06 1.35e-06 1.37e-05
MCG 7.76e-08 9.34e-06 1.99e-05 3.92e-06 9.99e-07 1.04e-05
LFSR 2.71e-08 7.04e-07 1.32e-06 9.90e-07 3.15e-07 3.14e-06
N 212
Parameter 1 2 3 4 5
11D 1.67e-07 1.90e-06 3.45e-07 3.29e-07 2.79e-05
Liao 2.27e-10 8.53e-09 7.29e-10 3.05e-10 2.14e-07
MCG 2.93e-10 6.64e-09 5.33e-10 3.42e-10 5.06e-08
LFSR 453e-11 1.52e-09 1.25e-10 6.58e-11 1.14e-08
Parameter 6 7 8 9 10
1D 4.97e-06 7.12e-05 8.88e-05 9.98e-05 4.77e-05 1.64e-04
Liao 8.31e-09 2.46e-06 4.14e-06 1.96e-06 1.98e-07 2.00e-06
MCG 5.98e-09 9.25e-07 4.81e-07 4.22e-07 8.81e-08 1.90e-06
LFSR 1.18e-09 1.01le-07 5.77e-08 4.68e-08 1.48e-08 5.40e-07
N 214
Parameter 1 2 3 4 5
11D 3.96e-08 4.62e-07 8.46e-08 6.95e-08 5.44¢-06
Liao 2.48e-11 1.01le-09 5.81e-11 2.30e-11 3.34¢-08
MCG 2.20e-11 1.37e-09 4.67e-11 2.67e-11 6.35€e-09
LFSR 3.51e-12 4.45e-11 8.06e-12 4.32e-12 8.55e-10
Parameter 6 7 8 9 10
1D 1.02e-06 2.18e-05 2.65e-05 3.13e-05 1.07e-05 7.04e-05
Liao 1.02e-09 7.57e-07 7.46e-07 4.63e-07 2.52e-08 8.58e-07
MCG 6.96e-10 3.73e-08 5.33e-08 2.89e-08 1.09e-08 5.79e-07
LFSR 9.12e-11 3.80e-09 2.24e-08 5.22e-09 1.27e-09 9.69e-09
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Table 6.7: Minimum and maximum variance reduction factorsBayes model

75

N 210 N 212 N 214
Method | min VRF max VRF | min VRF max VRF | min VRF max VRF
Liao 27 296 21 1078 29 3016
MCG 21 241 77 961 121 2603
LFSR 286 1543 304 5003 1186 16089

ifYi=1and (1

;0] if Y; = 0. These conditional distributions are used to run a

Gibbs sampler. The parameters of interest are the regressiparameters o; 1; and
>. Again we look at the estimation of posterior means by the sgste means of each
parameter, hoping to minimize the square error of these estates.

These simulations were performed in JAVA with the same MCG ahLFSR se-
guences as were used in the Bayes model. The Colt Package Mene Twister [15]
was implemented in place of JAVA's insu cient random numbergenerator for the
1D sequences.

Reported in Table 6.8 are the variance reduction factors of08 estimates of the
posterior means using the various methods versus using IIRmspling. Here our
signi cance threshold is roughly 1.2, taken from thé=,q4.099 distribution. The speci c
choices of sequence seem to have a sizeable e ect on the perdmces of the MCQMC
methods. For the LFSR case, the search for a good sequenceemts of discrepancy
is far from exhaustive, and so the lower improvement in accacy for sample size 2'°
may be ameliorated by a better sequence choice. None of theammended Korobov
lattices in [18] for prime baseM = 4093 seem to perform as well here as might be
expected. Again the MSE reduction is likely not as high as theariance reduction
due to possible bias, although boxplots of estimates stithdicate that bias is likely far
smaller than variability under 11D sampling. For the 2!* sample sizes, the boxplots

of the estimates under 1ID, MCG and LFSR sampling are contaed in Figures 6.1,
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6.2 and 6.3.

A more concrete justi cation of the minor e ects of bias comse from a simulation
of this same problem conducted over a much longer time framehere 1000 posterior
mean estimates using chains of length 100,000 each follayvan heavy burn-in period
were used to create a small 95% con dence interval for the meaof o, 1 and ».
These intervals are bounded by the horizontal lines in Figes 6.1, 6.2 and 6.3. The
range of MSE reductions taken from the assumption that eachalue in this interval
is the true mean yields a 95% con dence interval for the trueeduction in MSE. In
the 2! case, the MSE reduction con dence intervals are in Table 6.9

The same simulation with the same MCG sequences was perfodria [42], but
the skipping of generator values (as discussed in Sectiorl)owas done according to
(5.1.1), while the simulations here skipped according to (6.2). Variance is reduced
up to an additional 60% by the new method, which is algorithnzially simpler and

computationally comparable.

6.4 A Larger Metropolis-Hastings Algorithm

An example discussed in [5] from quantum physics is used iretlattempt to calculate
the ground-state energy of a helium atom. This model assum#st the nucleus of
the atom is at the origin, and the electrons exist at positios ; and , in R3. There
is a true ground-state wavefunction of the electron posities that is unknown, and
so the quality of a trial wavefunction is evaluated. Assumig this trial function is

the true function, one estimates the ground-state energy bgstimating the mean of
a local energy function of the electron positions. The digbution on the electron

positions is proportional to the squared modulus of the wafienction (which can be
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Table 6.8: VRFs of posterior mean estimates, probit model

N 210
Parameter| o| 1| 2
Liao 20119 21
MCG 201 18| 24
LFSR 141 15| 14
N 212
Parameter 0 1 2
Liao 231 22|24
MCG 241 24| 24
LFSR 64| 56| 76

N 214
Parameter 0 1 2
Liao 19| 20 | 18
MCG 55| 62 | 47
LFSR 114 | 108| 124

Table 6.9: Con dence Intervals for True MSE Reduction

Parameter 0 1 2
MCG [44,54] | [45,60] | [41,47]
LFSR [70,110]| [66,102]| [83,123]
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Figure 6.1: Boxplots for, from left to right, IID, MCG and LFSR estimates ofE[ ¢].
The horizontal lines bound 95% con dence intervals for thertie mean, obtained by
much larger simulations.
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Figure 6.2: Boxplots for, from left to right, IID, MCG and LFSR estimates ofE[ 4].
The horizontal lines bound 95% con dence intervals for thertie mean, obtained by
much larger simulations.
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Figure 6.3: Boxplots for, from left to right, IID, MCG and LFSR estimates ofE[ ].
The horizontal lines bound 95% con dence intervals for thertie mean, obtained by
much larger simulations.
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complex). The example in [5] evaluates the trial wavefunain
( 1; 2)=¢e 2 1) 2 2j+(1=2)j 2 1] (6.4.1)
and, from [26], the local energy function reduces to

17 1 (2 1) 2 (2 1)
f(q 2= — — e e 6.4.2
(b= 7 T 0 Td. 4 (6:4.2)

Thus the task is the integration off over distribution  proportional to 2. This is
a 7-dimensional Metropolis-Hastings algorithm if the propsals are uniform moves of
1 and , over cubes of side length 2centered at their current value. The sample
variances of 300 estimates & [f ( 1; )] using IID sampling and MCQMC sampling
with an MCG sequence, using sample size"2 did not dier signi cantly. (The
sample variance of the estimates under [ID sampling was 1-84, and the sample
variance of estimates under MCG sampling was 1.1e-04.) Asasident from these
variances, the improvements of MCQMC in the Gibbs sampler arnot seen in this
case. There are several explanations for the diminished leetis of MCQMC here.
One is the sharper uctuation of the functionf. The acceptance/rejection step in
the Metropolis-Hastings sampler also creates a discontiby in the estimand as a
function of the uniform variates used to generate it. A thirddi culty is the strong
dependence of the sequence on the past, as was seen in thelsmedndom walk
sampler (6.1.1).
The simulations here were performed in JAVA using the Colt Biribution Mersenne

Twister and the (16381,665) MCG.
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Conclusion

7.1 Future Directions

A framework that gives su cient con dence in the acceptabiity of MCQMC with
CUD driving sequences has been outlined here. As it has beenttwn and imple-
mented with the sequence classes discussed, no theoretitsivation of an improved
error rate is yet available. The qualitative explanation ofthe inherent di culty in
obtaining an error rate is that the growth of the discrepancyounds for the sequence
classes is too quick as the dimension of the point set grows.s & = log N grows
too rapidly to make the discrepancy bounds meaningful, theegmetric decay of the
marginal dependence of values in the chain on the past is ktbo large to ignore en-
tirely. It is worth noting that the implied in nite dimensio nal integrals corresponding
many Monte Carlo sampling schemes are of a relatively low egve dimension (as
de ned in [4] in the functional ANOVA sense of [41]) and that he low-dimensional

projections of larges-blocks from a small random number generator output sequesc
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tend to look more uniform than is theoretically guaranteed.These observations cor-
roborate the encouraging results seen in the Gibbs sampletaenples above, despite
the slow asymptotics of the theory.

The improved accuracy of MCQMC estimation is best in scenas$ where the
function estimated is \nice", the transitions are continuaus, and the dependence on
the past decays quickly. E orts to augment the bene ts of MCQMC in cases that
are not as nice are of importance in the further developmenhé eld. Although the
greatest bene ts are seen in cases where the traditional nhetd is thought to work
well already, the added bene ts are quite important, as thelaility to perform MCMC

simulations quickly to a desired accuracy is essential fasiwidespread use.

7.1.1 Functional ANOVA

This brief outline follows [25]. We have a functiorf on [0, 1]° with [o;1]df u =1.
We are interested in looking at the e ects orf (uy;:::;ugy) of each set of arguments
Ua,; iU fOr some subseb = (as;:::;a) f 1,:::;dg. The method of functional
ANOVA performs the decomposition
X
f(u)= fa(u); (7.1.1)
af 1;::dg

where f 5(u) is independent ofu,, for all m 2 a. This unique decomposition sets
f.(u) = | constant and then recursively de nes, withul ® the components ofu
whose indices are not ira:
z X z X
fa(u) = f (u) fow) ul®d= f) ut? fu(X): (7.1.2)

v( a v( a
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R
Since f,(u)f,(u) = 0 when the setsa and v are not equal, the following equality
holds for allf 2 L2?[0; 1]%:
2= 2, (7.1.3)

R R
where 2= f(u) uand 2= f,(u) u.
For s < d and some predetermined tolerance a d-dimensional functionf can be

thought of as having \e ective dimension" s (due to [4]) in a superposition sense if

A (R (7.1.4)
jaj s
and in a truncation sense if
X 2 2
g a ): (7.1.5)
af 1;:sg

The superposition sense is often used to say that a large-@insional function is still
a suitable candidate for independent QMC sampling.

The Markov transition function (3.1.2) applied recursivey becomes

X; = gu®;u@;::); (7.1.6)

an in nite-dimensional function of the uniform variates ugd to arrive at the value
from the in nite past. Heuristic arguments contained in this paper have said that at
time m in the past, the values before then have negligible e ect orhé current states.
This is equivalent to the notion that the in nite-dimensional function is of e ective
dimensiondm in the truncation sense. (The functional ANOVA above has a raral

extension to in nite-dimensional functions, although ony nite subsets are included
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in this decomposition.)

A look at the Bayes example and Probit example nds that many bthe param-
eters tend to be independently updated; this independenceplies that the higher
cardinality terms in the ANOVA will tend to have lower variance as well. This is
another explanation for the immense reductions in variandeom MCQMC. Analysis
of the relationship between e ective dimension and the MCQK2 advantage is worth
future study.

It remains to be seen if an error bound for MCQMC estimates cdre obtained from
conditions on the functional ANOVA that are generally applcable to MCMC samplers
of interest. Again, a simple relation of the decay on the pasb the discrepancy bounds
on the sequences used is not su cient, and so this line of ingy for this application

is still in an inchoate stage.

7.1.2 Smoothing the Metropolis Algorithm

While the scenario of estimating parameter means via a quigkmixing continu-

ous Gibbs sampler shows the strongest advantage of using CldbDays, the fact re-
mains that MCQMC is not clearly outperformed by regular MCMCsampling in the
Metropolis-Hastings examples above. One way to reduce the@s of discontinuities

in Metropolis-Hastings samplers, initially suggested by lGaudary [5], is by a modi ed
algorithm that runs a chain as normal, but replaces each sangppoint by a weighted
average of the point and a nearby point. As written Chaudarg algorithm had an
error that led to inconsistent estimates, and so the algofitm here is o ered both as
a correction and as an incorporation of this algorithm into he MCQMC framework
above, such that a CUD sequence can supply the variates whidhve all parts of the

algorithm.
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Table 7.1: Smoothed Metropolis-Hastings

The Smoothed Metropolis-Hastings Algorithm
1|BeginatX©® 2 S
2 | Given X )| generateY (*9
Transition proposal densityg(X ;)
3 | GenerateUl*)  UJ[0; 1)
4 | For A(x;y) = min( (y)aly:x :1)
e (x)axy)’
If U+ < A (X (I); y (i+1) )
Set X (i+1) to Y(i+1)
Else
SetX ("D to X
5 | Given X (*) | generatez (*V)
Transition density g(X ); )
6 | For A(X;z) = min( (D)&(z:x) . 1)
’ (x)&(x;z)’
De ne g(x;z) = A(x;2)f (2) +(1  A(x; 2))f (x)
7 | Repeat stgps 2-&K + N times
8| Return 1 17 g(x 1);20))

The goal is the estimate ofe [f (X )], and the algorithm as written in Table 7.1
returns the estimate constructed from a sample, rather thathe sample itself.

The steps 5 and 6 look similar to standard Metropolis-Hastgs, except the ac-
ceptance/rejection decision is replaced by a continuous ighting of the two points.
The branch pointsZ(® do not in uence future steps of the chain. The correction to
Chaudary is the inclusion of the latter term in the de nition of g; this latter term
can be viewed as the continuous analog of repeating a samptenp upon rejection of

a proposal.

Theorem 7.1.1. The smoothed Metropolis-Hastings algorithm is consistennder a
CUD sampling scheme if the underlying chain is a valid ergodvietropolis-Hastings

chain on a nite state space under IID sampling.
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Proof. We examine the distribution of X (); Z()) 2 S S, The distribution (x;y),
(X)e(x; y) satis es the reversibility condition for all (x1;y1);(X2;y2) 2 S S, and

so it is the stationary distribution of the chain (X ;). Under IID sampling, by

ergodicity, the algorithm returns a value which convergesotE [g(X;Z)]. This is the

same as the target value of the estimation procedure:

X X
Eg

(X)ea(x; 2)[AXx 2)f (2) +(1 A(x; ) f (X)]

X X X X
min (e(x;2) (X);&(z;x) (2)(f(z) f(x))+ X)f(x) &% 2)

X z

><( z
x)f (x) = E f: (7.1.7)

X

The algorithm is consistent under IID sampling; CUD consigincy follows by com-

pletely similar reasoning to that in Theorems 3.3.3 and 4.3. O

For cases where the transitions are homogenoug & ), the benet of this
smoothed algorithm is apparent in the small random walk sangr (6.1.1), with an
additional 6-fold variance reduction beyond the use of an M& on regular Metropolis-
Hastings, but no signi cant improvements come in the variabnal Monte Carlo ex-
ample of Section 6.4. Beyond the heuristic improvement of srathing the accep-
tance/rejection step to make a QMC-theme approach more wdnvhile, the bene t of
this method may be the application of a di erent proposal digibution set for gener-
ating the branchesZ from that used to drive the chain. An application of Slutskys
Theorem allows for the use of antithetics in creating multile branches with the same
marginal distribution but a joint antithetic property, wit h consistency preserved. Like
many of the results here, this result establishes a relatiyebroad set of conditions

under which the algorithm works, such that there is freedomat adjust the algorithm
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to nd further variance reduction techniques. Many extensins and generalizations of
the Metropolis-Hastings algorithm are gaining popularity([24] includes an interesting
survey of these). The extension of CUD consistency to thesengralizations is likely
possible, although those algorithms were not designed topdait the advantages of

QMC sequences.

7.1.3 General implementation

The expression (5.4.1) of the variate matrix used for MCQMCsione that is readily
implemented in a general sense. For the MCG and LFSR casesg tbtomputational
cost of constructing a variate and applying the appropriat@gandomization is not any
worse than that of the complex procedure that generates thesrt value in a Mersenne
Twister. As sample size and sequence type can be options & tiser, the greatest task
in creating software that takes in an algorithm and returns a MCQMC estimate is
the speci ¢ selection of sequences among those of a certaresand type in response
to the dimension of the problem. A simple method that chooses good sequence
based on gures of merit or mean square discrepancy in some cecate dimension
would not be dicult to implement. It would be more complicated to develop a
method for sequence choice based on the algorithm dimensiohain autocorrelation

and component interaction together.



Appendix A

Jordan Measurability

A.1 Construction

The condition of regularity in the proposals of the Metropas-Hastings sampler is
necessary for the proof of Theorem 3.3.3; this measurabhjlitondition perhaps merits
more attention than could be a orded in [37]. Its use in the tleorem relates the \vol-
ume" of sets to the fraction of points in a sequence containéd that set. This volume
is the Jordan measure of the set in question, and to see how ves ¢ake the relevant
steps in the proof of Theorem 3.3.3, a brief background on tleenstruction of Jordan
measure is useful. This construction and the relevant de hon of measurability is
due to 19th century mathematician Camille Jordan.

We de ne a semi-open boxd; b) in [0; 1) to be the Cartesian productQ idzl [a;h),
Pt a)tothis

set. We include the empty set (with measure 0) as a semi-openxy From here we

whereh > a; for all i. We assign Jordan measur¥ ([a; ) ,

move to expand the measure to increasingly complex sets sublat the measure is

valid.
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De nition A.1.1. A simple set is a set in [01) which can be expressed as the nite

union of semi-open boxes.

The collection of semi-open boxes which comprise a simplé¢ isenot unique. But
by chopping the simple set along anyd 1)-dimensional plane on which the boundary
of the simple set has positived 1)-dimensional volume, we can divide the simple
set into a collection of disjoint semi-open boxes. The measuof the simple set must
therefore be the sum of the measures of the semi-open boxethis disjoint collection.

For an arbitrary set Y [0;1)Y, there is at least one simple seX such that
X Y, and at least one simple seZ such thatY Z. So for the collectionS of

simple sets in [01)%, one can de ne the internal and external volumes of :

Vi (Y) sup V(X); (A.1.1)
X2SX Y

Vea(Y) . inf V(2): (A.1.2)

De nition A.1.2. A set Y is Jordan measurable iViy (Y) = Vex(Y). Its Jordan

measureV (Y) is equal to this common internal and external volume.

Note that any Jordan measurable set is Lebesgue measurablé bome Lebesgue
measurable sets are not Jordan measurable. The rational pts are not Jordan
measurable, for example, as they have internal volume 0 andternal volume 1.
Clearly when a set is Jordan measurable, the Jordan measuradathe Lebesgue
measure are identical.

The proof of Theorem 3.3.3 requires that nite unions and tesor products of

Jordan measurable sets are also Jordan measurable. Thesailts are shown below.

Lemma A.1.3. The collection of simple sets if0; 1)¢ is closed under nite unions,
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nite intersections and complements.

Proof. The nite union of simple sets is also a simple set by de nitin. As the
intersection of two semi-open boxes is also a semi-open bibwe nite intersection of
simple sets is the nite union of semi-open boxes and is alsosanple set. As the
complement of a semi-open box is a simple set, the complemenia simple set is the

nite intersection of simple sets, and so it is also a simpleet O

Theorem A.1.4. The collection of Jordan measurable sets ii9; 1)? is closed under

nite unions, nite intersections and complements.

Proof. For any subsetA  [0;1)%, Vi (A) =1 Ve (A®) and Ve (A) =1 Vi (AC).
Thus if A is Jordan measurable, so i8¢,

To verify closure under unions, take arbitrary Jordan measable setsA and B.
For any > O, there are simple set®#\;;A,;B; and B, such that A;, A Ay,
B, B ByandV(A) =4<V(A) V(A) <V(A)+ =4, V(B) =4<
V(B;) V(B <V (B)+ =4. A,nA; and B, nB; have internal volume less than
=2; by the above lemma, these are simple sets with measure s =2 each.

From the above lemma, the setd\;[ B; and A,[ B, are simple sets, and\;[ B;

A[ B A;[ B,. The simple set &, B,)n(A:[ B1) (AznA;)[ (B2nB,), and

SO

V(Az[ B2) V(Ai[ B1) V(Az2nAy+ V(BanBy) < (A.1.3)

and so the internal and external volumes oA [ B dier by an amount less than
. As is arbitrary, the internal and external volumes agree, sé& [ B is Jordan
measurable. This result naturally extends to closure undenite unions. Closure

under nite unions and complements yields closure under mé intersections. O
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Theorem A.1.5. For Jordan measurable set® 2 [0;1) and B 2 [0;1)%2, the

Cartesian productA B 2 [0;1)(*32) is Jordan measurable.

Proof. The Cartesian product of two semi-open boxes is clearly a seapen box
whose measure is the product of the box measures, and so (gsihe decomposition
of a simple set into a nite union of disjoint semi-open boxgghe Cartesian product
of two simple sets is also a simple set whose measure is thedoii of the measures
of the simple sets.

It follows by de nition that for two arbitrary sets, the inte rnal volume of the
Cartesian product is the product of the internal volumes, ash the external volume of
the Cartesian product is the product of the external volumesThus for A; B Jordan
measurable, the internal and external volumes & B agree, andA B is Jordan

measurable. 0

A.2 Empirical Measure

For a sequencex®;x@;::: we can de ne the empirical measure of a sé&t on the

rst n values of the sequence as

X0
U (Y) % Layg: (A.2.1)

i=1
Suppose our sequence?; x@;:::hasD,! 0. Then we have the following:

Lemma A.2.1. For x®;x@:::: with D, ! 0 and arbitrary semi-open boxa; b,
W(a;b) ! V(a;b): (A.2.2)

The analogous weak law holds for random sequences.
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Proof. SinceD, ! 0, the empirical measure of the missing boundary;j n[a; b
converges to 0, as lim;  Va([0;b) = lim nn  ¥h([0; b]) So it su ces to prove

¥
lim W(ah)! (b a) (A.2.3)

i=1
Qn

We de ne signed local discrepancy, ([a; ) = On([a; ) i1 (b &) and note

that

D, = sup j,([0;h)j (A.2.4)
b2[0;1)d

where D;c] 2 Cyi exactly dofthec are equal tog. The following inclusion-exclusion

formula holds:

xXd X :
o ([a; 1) = ( 1) ,(C) (A.2.5)

j=0 C2C;

And by the triangle inequality,
j (&8 2D, (A.2.6)

and so the result follows fronD ! 0.
The analogous weak law for random sequences, whére ! ? 0, is veri ed by the
same logic with little modi cation.

O

As empirical measure converges to Jordan measure of a sepei box, the same

is true for simple sets. The key lemma emerges from this fact.
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Lemma A.2.2. For a Jordan measurable se¥ and setx®;x@;:::with D, ! 0,

lim Ua(Y) ! V(Y); (A.2.7)
n!
and an analogous weak convergence holds for weak discrepalecay.

Proof. Fix > 0. There is a simple setX contained inY such that V(X) >
V(Y) . SinceV,(X) ! V(X) by the above results andV,(Y)  Vn(X) for
all n, liminfo,  Ya(Y) >V (Y) . Similarly using a simple seZ containing Y, we
get limsup,; Vn(Y) <V (Y)+ . As is arbitrary, (A.2.7) holds. For the weak law,
note that P(j\’7n(Y) V(Y)] )! O for arbitrary from the above results, and so

the weak law holds as well. O
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Figure B.1: Four samples from the marginal posterior of in the Bayes model, under
a Gibbs sampler of size®® with 1ID sampling.
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Figure B.2: Four samples from the marginal posterior of in the Bayes model, under
a Gibbs sampler of size 2! with MCG sampling.
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Figure B.3: Four samples from the marginal posterior of in the Bayes model, under
a Gibbs sampler of size 2° with LFSR sampling.
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