
A recycling estimator of Sobol’s sensitivity index

Art Owen
Stanford University

September 2012

Abstract

A new estimator of Sobol’s global sensitivity index is given in Owen
(2012). That estimator attains a better rate of convergence in a certain
small effects limit than other estimators. It costs 4 function evaluations
per Monte Carlo observation, using parts from three different uniformly
distributed random vectors. With some variable reuse, greater efficiency
can potentially be obtained. This note develops two methods that recycle
the parts of the vectors and reuse some function evaluations. In numerical
examples, efficiency gains from about 1.5 fold to about 3 fold are observed.

Introduction

This note retains the notation of Owen (2012). That article also has the moti-
vating context and references to the literature.

The estimator studied there takes the form

1

n

n∑
i=1

(f(xi)− f(zi,u :xi,−u)(f(xi,u :yi,−u)− f(yi)). (1)

It constructs one product of differences from 4 function evaluations per Monte
Carlo sample. If we compute it for multiple subsets u, then they can all share
function evaluations f(xi) and f(yi) but each new subset potentially costs up
to 2 more function evaluations per sample.

Of the sample points xi, yi, and zi, the portions used are as depicted here

x−u y−u z−u
xu • •
yu •
zu •

where a bullet shows a combination used in equation (1) and an empty spot
shows a combination not used.

By making use of other combinations of these variables we are able to average
more pairs of the form (1) with only a small increase in the number of function

1



evaluations per (x,y, z) triple. One approach is to run all 9 combinations. A
second approach is to merge all three of xu, yu and zu with x−u and y−u
generating 6 combinations and letting z−u remain unused.

Nine fold

Let x, y, z be independent U[0, 1]d random variables. We may form 9 distinct
points au :b−u where a and b are in {x,y, z}. Taking a, b, c, d and e in
{x,y, z} subject to a, c and e distinct as well as b 6= d, we find that

E
(
g(a, b, c,d, e)

)
= τ2u where

g(a, b, c,d, e) = (f(au :b−u)− f(cu :b−u))(f(au :d−u)− f(eu :d−u)).

There are 36 ways to assign a through e but they only yield 18 different formulas
because the product inside the expectation evaluates to the same quantity if
(b, c) is swapped with (d, e). We introduce the ordering x � y � z on the
(labels of) the triple of vectors. Then we immediately get:

Proposition 1 The expected value of

1

18

∑
a,c,e∈{x,y,z}
a,c,e distinct

∑
b,d∈{x,y,z}

b�d

g(a, b, c,d, e)

is τ2u.

Each of the g(a, b, c,d, e) on its own attains the better convergence rate
when xu is unimportant (in that τ2u is small). Therefore averaging these 18
quantities also attains that rate.

This method generates 18 bilinear terms per triple. It costs 9 function eval-
uations of which 3, namely f(xi), f(yi) and f(zi) can be reused with different
u while up to 6 new evaluations may be needed for a new subset u.

When many sets u are being considered we get essentially 18 bilinear terms
for 6 function evaluations, or an average cost of 1/3. The original method
has a corresponding cost of 2. The new method could potentially be 6 times as
efficient, but this is unlikely because the multiple bilinear terms for a given triple
can be correlated. Indeed for product functions many of the 18 are identical.

Six fold

This method is similar to the nine fold strategy except that z−u is not to be
used. In the notation above, that forces b = x and d = y. The result is that
we get 6 bilinear terms per triple. We make 6 function evaluations per triple of
which 2 can be reused (f(x) and f(y)) while the other 4 may have to be new
evaluations.

2



Proposition 2 The expected value of

1

6

∑
a,c,e∈{x,y,z}
a,c,e distinct

g(a,x, c,y, e)

is τ2u.

A crude analysis does not favor this method. It gets 6 new bilinear terms
for 4 new evaluations, so the cost is 2/3 or double what the nine fold method
costs. Like the nine fold method it is very efficient when τ2u is small.

Large indices

All of the methods considered here work very well when τ2u is small. It would be
interesting to have a method that works well whether or not τ2u or τ2u is small.

Suppose instead that xu is very important. At the extreme we may suppose
that x−u is irrelevant. Then the nine fold method has 18 bilinear terms but
they are identical in groups of three corresponding to the three ways to make
the now irrelevant choice of (d, e) ∈ {(x,y), (x, z), (y, z)}. In that limit the
nine fold method scores 6 bilinear terms but still requires up to 6 new function
evaluations for a cost of 1. As a result the six fold method may outperform the
nine fold method when xu is very important.

Examples

Equation (1) was compared with the six fold and nine fold strategies on a few
functions on [0, 1]2:

f1(x1, x2) = x1,

f2(x1, x2) = x2,

f3(x1, x2) = cos(x1/(10−100 + x2)),

f4(x1, x2) = x1x2,

f5(x1, x2) = x1 + x2, and

f6(x1, x2) = 2(x1 − 1/2)(x2 − 1/2),

with u = {1} and uc = {2}. The 10−100 in f3 is to prevent difficulties with
x2 rounded down to 0. That is quite unlikely with a good random number
generator in Monte Carlo sampling, but might occur in some other quadrature
techniques.

The table following this paragraph presents cost times variance for three
methods on these 6 functions. The costs are 2 for the original method, 6 for
nine fold and 4 for six fold. These are the incremental costs required to add
another subset u to an existing list of sets. They are based on R = 10,000

3



independent simulations. The nine fold method generates 18 estimates which
were turned into 18 variance estimates then averaged to get the variance for the
original method.

C × V Original Nine Six
f1 0.0531 0.02532 0.0169
f2 0 0 0
f3 0.5191 0.1727 0.1948
f4 0.0065 0.0035 0.0032
f5 0.0531 0.0253 0.0169
f6 0.0075 0.0025 0.0051

On this small set of examples the original method was never more efficient
than either of the methods that employed recycling. For f2 all three methods are
exact. Functions f1 and f5 give identical results because the model is additive
(no x1–x2 interaction) and the estimators filter out the main effect of x2, leaving
a function of x1 alone. Indeed f1 may stand in for any linear function of x1 and
x2 having a nonzero coefficient on x1. Function f6 is a pure interaction having
no main effects for x1 or x2.

Efficiency ratios for functions other than f2 where it is not well defined and
f5 (which matches f1) are tabulated below taking the original method to be of
unit efficiency.

Efficiency f1 f3 f4 f6
Nine 2.10 3.01 1.84 3.04
Six 3.14 2.66 2.03 1.47

Estimates for uc

The estimator

1

n

n∑
i=1

f(xi)(f(xi,u :yi,−u)− f(yi)) (2)

is widely used for τ2u. See Sobol et al. (2007). This estimator does not do as well
as (1) in the limit of very small τ2u but it has some desirable properties. Adding
a new set u to the list of desired sets requires only one additional function
evaluation. Furthermore if the estimate is available for u, the same function
values can be used to estimate τ2−u by interchanging x and y:

1

n

n∑
i=1

f(yi)(f(xi,u :yi,−u)− f(xi)). (3)

In the very common case where τ2{j} and τ2{j} = σ2 − τ2−{j} are both needed
for j = 1, . . . , d this feature essentially cuts the needed number of function
evaluations in half.

Their estimator uses the function values in this matrix

4



x−u y−u z−u
xu • •
yu •
zu

Switching u to −u corresponds to transposing the matrix of bullets, which then
becomes lower triangular. Interchanging x and y amounts to a permutation
applied to both rows and columns bringing the bullet back above the diagonal.

The function values for (1) cannot be re-arranged to get an analogous doubly
centered estimator for τ2−u, but the elements of the nine fold estimator can be so
arranged. To see this, revisit the 3× 3 matrix on page 1 containing 5 bullets. If
we have all 9 function values then we can interchange u and −u for any pattern
of bullets and still find we have all the necessary function evaluations.

For the original method, the 4 function values we need lie inside a 3 × 2
submatrix. To interchange the roles of u and uc we transpose the matrix of
bullets and blanks. The bullets now lie within a 2×3 submatrix. No permutation
applied to both rows and columns will yield three non-empty rows for this
matrix. Similarly, the six fold method cannot be reversed to yield an analogous
estimator for τ2−u.

The original matrix does however contain a triangle of bullets that allow the
singly centered estimator (2) to be computed for uc from the same data used to
compute (1). Alternatively, given the sampling pattern for (2) if one then wants
to apply the estimator (1) it requires one more function value per sample.

References

Owen, A. B. (2012). Better estimation of small Sobol’ sensitivity indices. ACM
transactions on mathematical software, (to appear).

Sobol, I. M., Tarantola, S., Gatelli, D., Kucherenko, S. S., and Mauntz, W.
(2007). Estimating the approximation error when fixing unessential fac-
tors in global sensitivity analysis. Reliability Engineering & System Safety,
92(7):957–960.

5


