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Abstract

Motivated by customer loyalty plans, we study tie-breaker designs which are hybrids
of randomized controlled trials (RCTs) and regression discontinuity designs (RDDs).
We quantify the statistical efficiency of a tie-breaker design in which a proportion ∆
of observed customers are in the RCT. In a two line regression, statistical efficiency
increases monotonically with ∆, so efficiency is maximized by an RCT. That same
regression model quantifies the short term value of the treatment allocation and this
comparison favors smaller ∆ with the RDD being best. We solve for the optimal
tradeoff between these exploration and exploitation goals. The usual tie-breaker design
experiments on the middle ∆ subjects as ranked by the running variable. We quantify
the efficiency of other designs such as experimenting only in the second decile from the
top. We also consider more general models such as quadratic regressions.

1 Introduction

Airlines, hotels and other companies may offer incentives such as free upgrades to their most
loyal customers in the expectation that those customers will respond favorably with future
business. The companies wish to measure the impact of those incentives while also trying
to get the greatest benefit from them. An e-commerce company might want to offer some
analytic tools to the customers most likely to benefit from them, while also measuring the
impact of offering those tools.

These companies can rank their customers, offer the incentive to the highest ranked
ones, and then measure impact with a regression discontinuity design (RDD). Or they can
run a randomized controlled experiment (RCT) and measure impact by comparing results
from customers with and without the incentive. The RDD is expected to have the greatest
immediate payoff while the RCT is known to be more statistically efficient.

This tradeoff is naturally handled in a tie-breaker design. For a running variable x,
subjects in a tie-breaker design are allocated to a control condition if x 6 A, to a test
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part of his Stanford responsibilities
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condition if x > B and their treatment (test or control) is randomized if A < x < B. If
A = B then no subjects are randomized and the data follow an RDD as introduced by
Thistlethwaite and Campbell (1960). The treatment effect is estimated as the extent to
which the regression has a jump discontinuity where x = A = B. At the other extreme, if
all the x values are above A and below B, then the design is an RCT as described in texts
on causal inference (Imbens and Rubin, 2015) or on experimental design (Box et al., 1978;
Wu and Hamada, 2011). Tie-breaker designs are also called cutoff designs (Cappelleri and
Trochim, 2003) and the running variable is also called an assignment variable or a forcing
variable. Sometimes we refer to subjects getting the treatment or not, in place of getting
test and control levels of the treatment.

Angrist et al. (2014) use a tie-breaker design to evaluate the effects of post secondary aid
in Nebraska. In that setting, x was a student ranking. Students were triaged into top, middle
and bottom groups. The top students received aid, the bottom ones did not, and those in
the middle group were randomized to receive aid or not. Aiken et al. (1998) report on a
study about allocation of students to remedial English classes where the running variable is
a measure of students’ reading ability before they matriculate.

Our interest is in optimizing the size of the RCT within a tie-breaker experiment. The
RCT is well known to be more statistically efficient than the RDD. See for instance Jacob
et al. (2012a, Section 6). However the positive impact from the test condition is ordinarily
going to be better in an RDD. Companies may have more to gain by increasing business
from their best customers. Similarly, merit-based scholarships are used when one wants to
get academically stronger students into a class. There is thus an exploration-exploitation
tradeoff here; the RCT is better for measuring impact while the RDD is expected to have
more positive impact on the subjects under study.

It is possible to study this tradeoff via extensive Monte Carlo simulations or similar
numerical exploration. While that approach can be used with very detailed assumptions
about the distribution of x and flexible models for the response of interest, it does not
provide much insight into the general nature of the tradeoff. We consider a special case
where the running variable has been rescaled to have a symmetric distribution centered at
x = 0, and the experimental range is from A = −∆ to B = ∆. We will use a linear
regression model for the response with a separate slope and intercept for test and control.
In this setting, Jacob et al. (2012a, Section 6) found the RCT to be 4 times as efficient as
the RDD when x is uniformly distributed.

Figure 1 illustrates tie-breaker designs for four values of ∆. The assignment variable there
has a Gaussian distribution, that we assume has been centered and scaled. The outcome
variable is simulated from a linear model with a constant treatment effect. For instance,
in the third panel, the top 1/6 of customers get the treatment, the bottom 1/6 do not and
a fraction ∆ = 2/3 of the data in the middle have randomized allocation. For a Gaussian
allocation variable, the experimental region in the middle of the data is where the data are
most densely packed, which will typically be desirable.

This paper is organized as follows. Section 2 introduces a two-line regression relating
an outcome to the assignment variable. The slope and intercept vary between treatment
and control. The assignment variable will not always be Gaussian, but we can always rank
order it, so that section is based on the ranks. Section 3 shows that the statistical efficiency
of incorporating ∆ > 0 experimentation versus the plain regression discontinuity design at
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∆ = 0 is 1 + 3∆2(2−∆2). Thus, statistical efficiency is a monotone increasing function of
the amount of experimentation. At the extreme, a pure RCT with ∆ = 1 is 4 times as
efficient as the RDD. We ordinarily expect that our outcome variable will show the greatest
gains if we give the treatment to the highest ranked customers. Section 4 quantifies that cost
in the two-line regression model and trades it off against statistical efficiency. The optimal
∆ is then dependent on the ratio between the value per customer of the short term return
and the value of the information per customer that we get for a given ∆. Although an
experiment might be designed for a linear model, once the data are collected there may be
nonlinearities that warrant a more flexible model. Section 5 repeats our analysis of the linear
model for a pair of quadratic regression models. In this case, regression discontinuity design
has a much higher variance than the experiment does. This is in line with recent findings
of Gelman and Imbens (2017). Section 6 revisits the Gaussian case that we illustrate in
Figure 1. It is similar to the uniform case. Here a full RCT is π/(π − 2)

.
= 2.75 times

as efficient as the RDD. It is qualitatively similar to the uniform case. Section 7 describes
a numerical version of our approach that does not require a simplistic regression model.
One can always use brute force optimization of a Monte Carlo simulation. We show how
to replace the simulation inner loop by matrix algebra allowing faster and more thorough
optimization. The tie-breaker literature has emphasized experiments in the middle range of
the running variable x. Section 8 looks at off center experiments, such as experimenting in
just the second decile from the top. In our motivating applications, the incentive might only
be offered to a small fraction of customers. Section 9 contains a short discussion of how to
use the findings.

We close this introduction with some additional references. Since Thistlethwaite and
Campbell (1960), there have been many applications of regression discontinuity designs,
particularly in economics and political science. Textbook treatments and surveys may be
found in Angrist and Pischke (2009), Angrist and Pischke (2014), Jacob et al. (2012b),
Imbens and Lemieux (2008), Jacob et al. (2012a), Klaauw (2008), and Lee and Lemieux
(2010).

It is well known in the literature that experiments are more efficient than regression dis-
continuity designs. Section 6 of Jacob et al. (2012a) discusses this point in depth. They
include the four-fold efficiency improvement we get for uniformly distributed running vari-
ables and a factor of 2.75 for normal running variables. The latter goes back to Goldberger
(1972).

For an historical note, a tradeoff of this kind appeared in the Lanarkshire milk experiment,
described by Student (1931). The goal was to measure the effect of a daily ration of milk
on the health of school children. Among many complications was the fact that some of the
schools chose to give the rations to the students that they thought needed it most. While that
may have been the most beneficial way to allocate the school’s milk, it was very damaging
to the process of learning the causal impact of the milk rations. A tie-breaker experiment
might have been a good compromise.
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Figure 1: Illustrative data for tie-breaker designs with ∆ ∈ {0, 1/3, 2/3, 1}, and a stan-
dardized Gaussian assignment variable. The regression discontinuity design has ∆ = 0, the
randomized controlled trial has ∆ = 1. Treated points are plotted in red, control in black.
Allocation is deterministic for x outside the blue lines.

2 Setup

We begin with a simple setting where there are an even number N of customers i = 1, . . . , N ,
and exactly N/2 of them will receive the treatment. There is an “assignment variable” xi ∈ R
that measures the suitability of the customer for the program. The assignment variable might
be the output of a statistical machine learning model based on multiple variables, or it could
be based on a subjective judgment of one or more experts or stakeholders.

We will simplify the problem by transforming xi to be equispaced in the interval [−1, 1].
That is, after sorting the customers in increasing order of xi, we make a rank transformation
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to xi = (2i − N − 1)/N . If N = 6, the assignment variable is (−5,−3,−1,+1,+3,+5)/6.
Let zi indicate the treatment status; subjects that receive the treatment have zi = +1 and
subjects that do not receive the treatment have zi = −1.

We denote the experimental interval by (−∆,+∆) for ∆ in [0, 1]. In our hybrid design
the treatment assignment takes the form:

zi =


1, xi > ∆

random, |xi| < ∆

−1, xi 6 −∆

(1)

If ∆ = 0, then we have a classic RDD with the discontinuity at x = 0. If ∆ = 1, then
we have a classic RCT. If 0 < ∆ < 1, then we have a tie-breader design with ∆ measuring
amount of the randomization.

The random allocation in equation (1) will make half of the zi for |xi| < ∆ equal 1 and
the other half will be −1. One way to do this is to choose zi = 1 for a simple random sample
of half of the elements in R = {i | |xi| < ∆}. Stratified schemes, setting zi = 1 for exactly
one random member of each consecutive pair of indices in R are also easy to implement.

The impact of the treatment is measured by a scalar outcome Y where Yi is a measure of
the benefit derived from customer i. We suppose that the delay time between setting zi and
observing Yi is long enough to make bandit methods (see for instance, Scott (2015)) unsuit-
able. We will instead compare experimental designs using the following two-line regression
model:

Yi = β0 + β1xi + β2zi + β3xizi + εi, (2)

where εi are IID random variables with mean 0 and finite variance σ2 > 0. Our analysis is
based on the regression model (2) instead of the randomization because the treatment for
subjects with x outside (−∆,∆) is not random.

The effect of the treatment averaged over customers i = 1, . . . , N is 2β2. The factor of 2
comes from comparing zi = 1 to zi = −1. We can also estimate whether the effect increases
or decreases with x, through the coefficient β3. The quantity 2β2 is also the magnitude of
the treatment effect on a (hypothetical) average customer with x = 0.

Under model (2), we can distinguish customers for whom the treatment is effective from
those for whom it is not. Suppose that τ is the incremental cost of offering the treatment to
one customer. If β3 > 0, then there is a cutpoint x∗ = (τ −β2)/β3 with E(Y | z = 1)−E(Y |
z = 0) > τ for customers with xi > x∗. If x∗ 6∈ [−1, 1] then the treatment either pays off on
average at all x, or pays off on average for no x. If β3 < 0, then the treatment only pays off
for customers with xi 6 x∗. We discuss that case further in Section 4.

3 Efficiency in the two-line model

We will analyze the data (xi, Yi) for i = 1, . . . , N by fitting model (2) by least squares. The
parameter of interest is β = (β0, β1, β2, β3)T and we assume that Yi are independent random
variables with Var(Yi) = σ2. The design matrix is X ∈ RN×4 with i’th row (1, xi, zi, xizi),

5



and Var(β̂) = (X TX )−1σ2. Because σ2 does not depend on ∆, we can compare designs
assuming that σ = 1.

Next, we look at how X TX depends on ∆. For large N we can replace
∑

i x
2
i by

N
∫ 1

−1
x2 dx/2 = N/3. Similar integral approximations yield

1

N
X TX ≈


1 0 0 φ(∆)
0 1/3 φ(∆) 0
0 φ(∆) 1 0

φ(∆) 0 0 1/3

 , (3)

where where φ(∆) is the average value of z × x over the design. We let

z(x) =


−1, x 6 −∆

0, |x| < ∆

1, x > ∆

and find

φ(∆) =
1

2

∫ 1

−1

xz(x) dx =
1

2

∫ −∆

−1

(−x) dx+
1

2

∫ 1

∆

x dx =
1−∆2

2
. (4)

The approximation error in (3) is Op(1/
√
N) when the random zi are assigned by simple

random sampling and it is much smaller under stratified sampling. We will work with (3)
as if it were exact.

We can reorder the rows and columns of (3) to make it block diagonal,


1 zx z x

1 1 φ 0 0
zx φ 1/3 0 0
z 0 0 1 φ
x 0 0 φ 1/3


where the labels on the matrix above refer to the variables that the βj multiply and φ = φ(∆).
It follows that

N × Var



β̂0

β̂3

β̂2

β̂1


 =

1

1/3− φ2


1/3 −φ 0 0
−φ 1 0 0
0 0 1/3 −φ
0 0 −φ 1

 . (5)

Thus the variances scale by (1/3−φ2)−1. The individual component variances are Var(β̂0) =
Var(β̂2) = 1/(1 − 3φ2) and Var(β̂1) = Var(β̂3) = 3/(1 − 3φ2). These variances are smallest
for small values of φ, corresponding to large values of ∆. That is, the more randomized
experimentation there is in the data, the less variance there is in the estimates. Therefore,
the regression discontinuity design is worst and the randomized experiment is best. Larger
values of φ also induce stronger correlations among the β̂j.
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Figure 2: The top curve is the limiting value of NVar(β̂3) plotted versus the fraction ∆ of
experimental data in the hybrid. Here β3 is the regression coefficient of xz. The bottom
curve corresponds to NVar(β̂2) where β2 is the coefficient of z.

The estimated gain from the intervention for a customer with a given x is Ê(Y | x, z =
1)− Ê(Y | x, z = −1) = 2(β̂2 + xβ̂3). Next

Var(2(β̂2 + xβ̂3)) = 4× 1/3 + x2

1/3− φ2
=

16(1 + 3x2)

1 + 3∆2(2−∆2)
(6)

after some algebra. The relative efficiency of the experiment versus regression discontinuity
is

Var
(
2(β̂2 + xβ̂3); ∆ = 0

)
Var
(
2(β̂2 + xβ̂3); ∆ = 1

) =
1 + 3(2− 1)

1 + 3× 0
= 4 (7)

for all x. That is, the randomized experiment with N/4 observations is as informative as the
regression discontinuity with N observations and this holds uniformly over all levels of the
assignment variable x. This factor of 4 is given by Jacob et al. (2012a).

Figure 2 shows the variance of the treatment effect parameters as a function of ∆. Some
values from the plot are shown in Table 1. The regression discontinuity design has four times
the variance of the experiment as we saw in equation (7). The slope coefficent for treatment
always has three times the variance of the intercept coefficient as follows from (5). Figure 3
show the variance of the estimated impact versus x for several choices of ∆.
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Method ∆ Var(β̂2) Var(β̂3)

Regression discontinuity 0 4/N 12/N
Experiment 1 1/N 3/N

Table 1: Variance of β̂2 (treatment effect intercept) and β̂3 (treatment effect slope) under
regression discontinuity (∆ = 0) and randomized experiment (∆ = 1). It assumes that
Var(Y | x, z) = 1.
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Figure 3: Variance of 2(β̂2 + xβ̂3) versus x in the two-line model (2), for ∆ between 0 and 1
in steps of 0.1. Note that the vertical axis is logarithmic.

4 Cost of experimentation

We ordinarily expect the value of the incentive to increase with the variable x. In that
case the greatest return on the N customers in the experiment arises from the regression
discontinuity design with ∆ = 0. The information gain from ∆ > 0 comes at some cost in
the present sample. This section quantifies that cost.

For a deterministic allocation of z = 1 or z = −1 we have E(Y | x, z) = β0 + β1x+ β2z+
β3zx. When z is chosen randomly with Pr(z = 1) = Pr(z = −1) = 1/2, then E(Y | x) =
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β0 + β1x. It follows that the expected gain per customer in the hybrid design is

g(∆) ≡ 1

2

∫ −∆

−1

(β0 + β1x− β2 − β3x) dx+
1

2

∫ ∆

−∆

(β0 + β1x) dx

+
1

2

∫ 1

∆

β0 + β1x+ β2 + β3x dx

= β0 + β3(1−∆2)/2.

Neither β1 nor β2 appear in this gain and the value of β0 does not affect our choice of ∆.
Only β3 which models how the payoff from the incentive varies with the assignment variable
x makes a difference. Compared to the regression discontinuity design with ∆ = 0, the cost
of incorporating experimentation is

N(g(0)− g(∆)) = Nβ3∆2/2,

which grows slowly as ∆ increases from zero and then rapidly as ∆ approaches one.
If β3 > 0, then as expected, we gain the most from the regression discontinuity design

and the least from the experiment. This is a classic exploration-exploitation tradeoff.
It is also possible that some settings have β3 < 0. This might happen if the incentive

is additional free tutoring in the educational context, or if it is advice on how to best use
an e-commerce company’s products in a context where higher performing customers already
knew about the advice. In these cases the minimal cost is to give the incentive to the bottom
N/2 customers and not the top N/2 customers. The analysis of this paper goes through by
reversing the customer ranking, thereby replacing x by −x and also changing the sign of β3.

Now we turn to optimizing the choice of ∆ given some assumptions on the relative value
of the information in the data for future decisions and the expected gain on the experiment.
The precision (inverse variance) of our estimate of β̂ is a linear function of N and so is the
expected gain. We can therefore trade off precision per customer with gain per customer.
We think that β3 is the most important parameter so we take the precision gain per customer
to be

p(∆) ≡ 1

NVar(β̂3)
=

1

3
− φ2 =

1

3
− (1−∆2)2

4
. (8)

Alternatively, we could focus on 2β2 which is both the average gain per customer and the
gain for the customer at x = 0. The precision for 2β2 turns out to be p(∆)/4 so it perfectly
aligned with precision on β3. More generally the gain from the incentive at any specific x
has a variance given by (6). Any weighted average of precision of 2(β2 + β3x) over points
x ∈ [−1, 1] is a scalar multiple of p(∆) from (8).

We trade off gain per customer and precision per customer with the value function

v(∆) = g(∆) + λp(∆) = β0 + β3
1−∆2

2
+ λ
(1

3
− (1−∆2)2

4

)
, (9)

where λ > 0 measures the value for future decisions of having greater precision on β3.

9



0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Present / future value

O
pt

im
al

 D
el

ta

Figure 4: The horizontal axis has β3/λ where β3 affects immediate gain per customer of the
treatment allocation and λ quantifies the value of precise slope estimation. The vertical axis
gives the optimal ∆ in our hybrid experiment.

Proposition 1. Let v(∆) be given by equation (9) with λ > 0 and β3 > 0. Then the
maximum of v over ∆ ∈ [0, 1] occurs at

∆∗ =


1, β3/λ 6 0√

1− β3/λ, 0 6 β3/λ 6 1

0, 1 6 β3/λ.

(10)

Proof. Let γ = ∆2. We will first maximize v = c − β3γ/2 − λ(1 − γ)2/4 over 0 6 γ 6 1,
where c does not depend on γ. Now v has a unique maximum over γ ∈ R at γ∗ = 1− β3/λ.
The maximizing γ is γ∗ when 0 6 γ∗ 6 1, it is 0 when γ∗ < 0 and it is 1 when γ∗ > 1.
Equation (10) translates these results back to the optimal ∆.

We see from equation (10) that the decision depends on the critical ratio β3/λ. The
numerator reflects the value of more efficient allocation and the denominator captures the
value of improved information gathering. When β3 > λ then the discontinuity design with
∆ = 0 is optimal. The full experiment, ∆ = 1, is never optimal unless β3 = 0 or the value λ
of information to be used in future decisions is infinite.

Figure 4 shows the value ∆∗ from equation (10) versus the ratio r = β3/λ of the short
term to long term value coefficients. The function is nearly equal to 1− r/2 near the origin
and has negative curvature on 0 6 r 6 1. If future uses are important enough that r 6 1/10,
then one should use ∆ > 1 − 0.1/2 = 0.95. That is, when the future is very important the
optimal hybrid is very close to an RCT.
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5 Quadratic regression

A quadratic regression model

E(Y ) = β0 + β1x+ β2z + β3xz + β4x
2 + β5x

2z (11)

allows a richer exploration of the treatment effect. For instance, model (11) allows for the
possibility that the treatment pays off if and only if x is in some interval. It also allows
for a situation where the payoff only comes outside of some interval. This model has even
(symmetric) predictors 1, xz, x2 and odd (antisymmetric) predictors x, z, zx2. As in the
linear case, the even and odd predictors are orthogonal to each other.

Now (1/N)X TX is a 6× 6 block diagonal matrix. Some of the entries are

φ3 ≡ φ3(∆) =
1

2

∫ 1

−1

zx3 =

∫ 1

∆

x3 dx =
1−∆4

4

as well as φ(∆) from Section 3 that we call φ1(∆) here. We find that

1

N
X TX =



1 zx x2 z x zx2

1 1 φ1 1/3 0 0 0

zx φ1 1/3 φ3 0 0 0

x2 1/3 φ3 1/5 0 0 0

z 0 0 0 1 φ1 1/3

x 0 0 0 φ1 1/3 φ3

zx2 0 0 0 1/3 φ3 1/5


. (12)

Once again we get a block diagonal pattern with two identical blocks. This is a consequence
of z2 = 1, and it will happen for more general models with odd and even predictors.

Proposition 2. For N > 0, let X TX be given by (12). Then

(X TX )−1 =
1

ND(∆)

(
M(∆) 0

0 M(∆)

)
(13)

for a 3× 3 symmetric matrix

M(∆) =



1

15
− φ2

3

φ3

3
− φ1

5
φ3φ1 −

1

9

′′ 4

45

φ1

3
− φ3

′′ ′′ 1

3
− φ2

1

 ,

and a determinant D(∆) = 4/135− φ2
1/5− φ2

3 + (2/3)φ1φ3.

Proof. Multiplying M(∆) above by the upper left 3 × 3 submatrix in (12) yields I3 times
D(∆), after some lengthy manipulations.
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Figure 5: Variance of 2(β̂2 +xβ̂3 +x2β̂5) versus x in the quadratic model (11), for ∆ between
0 and 1 in steps of 0.1.

Figure 5 show the variance of the estimated impact versus x for several choices of ∆.
Notice that the variance is given on a logarithmic scale there. The regression discontinuity
design ∆ = 0 in the top curve there, has extremely large variances especially where |x| is
close to 1. The randomized design at the bottom has much smaller variance. Even the
maximum variance in the experiment (at x = 1) is smaller than the minimum variance in
the regression discontinuity model (at x = 0).

6 Gaussian case

The original assignment variable might have a nearly Gaussian distribution. Or we might
believe that the two-line linear model fits better if we have transformed the assignment vari-
able rank to normal scores xi = Φ−1((i− 1/2)/N), where Φ(·) is the cumulative distribution
of the N (0, 1) distribution.

We will experiment on the central data with |xi| 6 τ choosing τ to get a fraction ∆ of
data in the experiment. That leads to τ = Φ−1((1 + ∆)/2). After reordering the variables
we find in this case that

1

N
X TX ≈


1 zx z x

1 1 φG 0 0
zx φG 1 0 0
z 0 0 1 φG
x 0 0 φG 1

.
12



Compared to the uniform scores case, the diagonal has changed from (1, 1/3, 1, 1/3) to
(1, 1, 1, 1). The value of φ from the uniform case changes to

φG =

∫ −τ
−∞

(−x)ϕ(x) dx+

∫ ∞
τ

xϕ(x) dx = 2

∫ ∞
τ

xϕ(x) dx

= 2ϕ(τ) = 2ϕ(Φ−1((1 + ∆)/2)).

Now

N × Var



β̂0

β̂3

β̂2

β̂1


 =

1

1− φ2
G


1 −φG 0 0
−φG 1 0 0

0 0 1 −φG
0 0 −φG 1

 . (14)

For this Gaussian case, all 4 estimated coefficients β̂j have the same variance, equal to
1/(1 − φ2

G). The variances for uniform assignment variables were not all the same. The
difference stems from the points xi having variance 1/3 in the uniform case instead of variance
1 here. As before as ∆ increases, φG also increases and so Var(β̂j) decreases.

Now we work out the efficiency of the RCT compared to the RDD. For the RCT, ∆ = 1
yields τ = ∞ and then φG = 0. For the RDD, ∆ = 0 yields τ = 0 and then φG = 2ϕ(0).
Thus the efficiency of the RCT compared to the RDD is

1

1− [2ϕ(0)]2
=

π

π − 2
.
= 2.75

as reported by Goldberger (1972). This is somewhat less than the efficiency gain of 4 in the
uniform case. The efficiency versus ∆ (not shown) has a qualitatively similar shape to the
black curve for the coefficient of z in the uniform case (Figure 2).

7 General numerical approach

The two line model for a running variable x with a symmetric distribution made it simple
to study central experimental windows of the form (−∆,∆). In that setting the means of
xi and zi were both zero, and the variance of parameter estimates depended simply on just
one quantity ∆. We may want to use a more general regression model, allow experimental
windows that are not centered around the middle value of x, have x values that are not
uniform or Gaussian, and we might also want to use models other than two regression lines.
There might even be more than one running variable as in Abdulkadiroglu et al. (2017). The
price for this flexibility is high; users have to answer some hard questions about their goals,
and then do numerical optimization over parameters with a potentially expensive Monte
Carlo inner loop. In this section we show that the inner loop can be done algebraicly.

We suppose that prior to treatment assignment, customer i has a known feature vector
Fi ∈ Rd which includes an intercept variable equal to 1, but not the treatment variable zi.
For instance in the linear and quadratic models, the features Fi are (1, xi)

T and (1, xi, x
2
i )

T,
respectively. In the regression model

Yi = FT
i β + ziF

T
i γ + εi,

13



we have E(Yi) = FT
i (β+γ) for the treated customers i and E(Yi) = FT

i (β−γ) for the others.
Here γ ∈ Rd models the effect of treatment.

The generalized tie-breaker study works with a vector θ ∈ Rd and sets

zi =


1, θTFi > ∆

random, |θTFi| < ∆

−1, θTFi 6 −∆.

In the random case, we suppose that zi = 1 with probability p and is −1 with probabilty
1 − p where p need not be 1/2. Because Fi contains an intercept term, the experimental
window |θTFi| < ∆ need not be centered on a central value of θTFi. The analyst must now
choose ∆ > 0, θ ∈ Rd and p ∈ (0, 1).

The analogue of our previous approach is to find the matrix (X TX )−1 where

X TX =

(
A B
B A

)
, A =

∑
i

FiF
T
i , B =

∑
i

wiFiF
T
i ,

for

wi = E(zi | Fi) =


1, θTFi > ∆,

2p− 1, |θTFi| < ∆,

−1, θTFi 6 −∆.

The lower right corner of X TX is A because it is using E(z2
i | Fi) = 1. Averaging over the

outcomes of zi this way is statistically reasonable when n � d. If εi are independent with
mean zero and variance σ2, then

Var

((
β̂
γ̂

))
= (X TX )−1σ2.

This averages over the outcomes εi so that they do not have to be simulated.
One can now do brute force numerical search for good values of θ and p and ∆. A

good choice would yield a favorably small Var(γ̂). A bad choice will yield a larger variance
covariance matrix. A very bad choice would lead to singular X TX and one would of course
reject the corresponding triple (θ,∆, p). For instance, such a singularity would happen if
maxi θ

TFi < −∆ which is an obviously poor choice because then no customers would be in
the treatment group.

Using a formula for the inverse of a block matrix we get

Var(γ̂) = Var(β̂) = (A−BA−1B)−1

and Cov(β̂, γ̂) = −A−1B(A − BA−1B)−1. In an RCT with p = 1/2 we have B = 0. For
∆ < 1 certain components of B become nonzero (they were φ values off the main diagonal
in the two line regression) increasing BA−1B and hence increasing Var(γ̂).
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8 Non-central experimental regions

Our treatment of the two line model assumed that the experimental region was in the center
of the range of the running variable. For a loyalty program one might prefer instead to
allocate the benefit in a different way. Perhaps the top 10% get the benefit, and the next
10% are randomized to receive the benefit or not, while the bottom 80% do not get the
benefit. For a less expensive incentive, the company might want to offer it to the top 50% of
customers and then randomize it to the bottom 50%. We can model these options by taking

zi =


1, xi > b

random, a < xi < b

−1, xi 6 a

(15)

for a 6 b.
Let the running variable x ∈ R be random with E(x4) <∞. Let x ∈ R be random with

a finite value of E(x4). Let z = 1 with probability p(x) and z = −1 otherwise. Then letting
X be the design matrix in the two line regression, and noting that z2 = 1, we have

1

n
X TX =


1 E(x) E(z) E(xz)

E(x) E(x2) E(xz) E(x2z)
E(z) E(xz) 1 E(x)
E(xz) E(x2z) E(x) E(x2)

+Op

( 1√
n

)

under random sampling of xi and zi given xi for i = 1, . . . , n. The Op(n
−1/2) error holds

because E(x4) < ∞. The error could be less than Op(1/
√
n) if p(x) is a simple enough

function to make stratification tractable.
We can center x so that E(x) = 0 and then

Var(β̂)
.
=

1

n

(
D C
C D

)−1

, for C =

(
E(z) E(xz)
E(xz) E(x2z)

)
and D =

(
1 0
0 E(x2)

)
.

We can scale x to get E(x2) = 1 so that D = I2. We retain more general scaling because
x ∼ U [−1, 1] has E(x2) = 1/3 and rescaling would require working with the less convenient
distribution U [−

√
3,
√

3].
We need the inverse of a block diagonal matrix containing just two unique square blocks.

The following proposition specializes block matrix inversion to our case.

Proposition 3. Let D be an invertible matrix and C be a square matrix with the same
dimensions as D. If D − CD−1C is invertible, then(

D C
C D

)−1

=

(
A B
B A

)
for A = (D − CD−1C)−1 and B = −ACD−1.

Proof. Multiplying, (
A B
B A

)(
D C
C D

)
=

(
AD +BC AC +BD
BD + AC BC + AD

)
.

Now AC +BD = AC − ACD−1D = 0 and AD +BC = A(D − CD−1C) = I.
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Method a b Var(β̂3)

Experiment −1.00 1.00 3.00/N
RDD 0.00 0.00 12.00/N
Bottom 50% −1.00 0.00 13.09/N
Second 10% 0.60 0.80 137.56/N
Middle 10% −0.10 0.10 11.32/N
Tiny (median) −0.01 0.01 11.99/N
Tiny (90th) 0.79 0.81 739.96/N
Skew RDD (90th) 0.80 0.80 751.03/N
Tiny (80th) 0.59 0.61 94.86/N
Skew RDD (80th) 0.60 0.60 95.21/N

Table 2: Variance of β̂3 (treatment effect slope) for some central and non-central experimental
regions.

Using Proposition 3 we get

Var(β̂)
.
=

1

n

(
(D − CD−1C)−1 −(D − CD−1C)−1CD−1

−(D − CD−1C)−1CD−1 (D − CD−1C)−1

)
.

Our primary interest is in Var(β̂3), for the coefficient of xz. This is the lower right element
of (D − CD−1C)−1. Now

D − CD−1C =

(
1− E(z)2 − E(xz)2/E(x2) −E(xz)E(z)− E(x2z)E(xz)/E(x2)

−E(xz)E(z)− E(x2z)E(xz)/E(x2) E(x2)− E(xz)2 − E(x2z)2/E(x2)

)
≡
(
M11 M12

M12 M22

)
,

and so

Var(β̂3) =
M11

M11M22 −M2
12

.

The asymptotic value of nβ̂3 depends on certain integrals. For the case of primary interest
to us with x ∼ U [−1, 1], and p(x) = 1/2 in the experimental region, these are

E(x2) =
1

2

∫ 1

−1

x2 dx =
1

3
,

E(xz) =
1

2

∫ a

−1

(−x) dx+
1

2

∫ 1

b

x dx =
1

2
− a2 + b2

4
,

E(z) = −1

2
(a+ 1) +

1

2
(1− b) = −a+ b

2
, and

E(x2z) =
1

2

∫ a

−1

(−x2) dx+
1

2

∫ 1

b

x2 dx = −a
3 + b3

6
.

Table 2 shows Var(β̂3) for various designs. The first two are the full experiment and the
RDD discussed previously. Next is an experiment on just the bottom half of x. This strategy
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is inadmissible by our criteria. It has more variance than the RDD and also lower allocation
efficiency.

Next, the table shows Var(β̂3) for an experiment on just the second 10% of the running
variable, from the 80th to the 90th percentiles of the U [−1, 1] distribution. Just below it is
an equal sized experiment in the middle. We see that experimenting in the middle is much
more informative. Shifting the experimental region to one side reduces the sample size for
either the treatment or control level of z. It also affects the correlations among predictors
in the two line model.

The variance for experimenting on the second decile looks large compared to the central
experiments. It has within it a central experiment on just the middle third of the data
from the 70th to the 100th percentiles of x. Experimenting on the middle third of [−1, 1]
involves taking a = −1/3 and b = 1/3 which yields Var(β̂3)

.
= 7.36. However if we had only

experimented over the range 0.4 to 1.0 (with cut points at 0.6 and 0.8) then N would be
only 0.3 times as large as it is in the second decile experiment. Furthermore, reducing the
range of x by a factor of 0.3 multiplies β3 by 1/0.3 and Var(β̂3) by 1/0.32. To adjust for
these factors we divide 7.36/N by 0.33 and get 272.72/N . As a result doing the experiment
on the second 10% really is better than just doing a central 1/3 experiment on the top 30%.

One tiny experiment involves just randomizing for one percent of the data centered on
the median of x. We get a variance of 11.99/N for this compared to 12/N for the RDD,
so the tiny experiment is almost identical to the RDD. We can move the location of the
tiny experiment. Table 2 shows the results for a tiny experiment near the 80’th and 90’th
percentiles of x. These are quite similar to skewed RDDs where the cutpoint is off center.

9 Discussion

In an incentive plan, a regression discontinuity design rewards the a priori best customers
but it has severe disadvantages if one wants to follow up with regression models to measure
impact. There is a tradeoff between estimation efficiency and allocation efficiency. Propo-
sition 2 provides a principled way to translate estimates or educated guesses about the
present value of the incentives and future value of information into a choice of ∆ in a hybrid
experiment.

In industrial settings, the incentive under study will change over time. Experience with
similar though perhaps not identical prior incentive plans then gives some guidance for
making the tradeoff.

We have examined a simple linear model because it is easiest to work with and is a
reasonable starting point in many contexts. Analysts have many more models at their
disposal when the data come in. Section 5 on the quadratic model provides a warning: the
RDD becomes very unreliable already with this model which is only slightly more complicated
than the two-line model.

In some applications, the allocation variable may be the output of a scoring model based
on many customer variables. We expect that incorporating randomness into the design will
give better data for refitting such an underlying scoring model, but following up that point
is outside the scope of this article. The effects are likely to vary considerably from problem
to problem.
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