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Abstract

Quasi-Monte Carlo (QMC) methods have begun to displace ordi-
nary Monte Carlo (MC) methods in many practical problems. It is nat-
ural and obvious to combine QMC methods with traditional variance
reduction techniques used in MC sampling, such as control variates.
There can, however, be some surprises. The optimal control variate
coefficient for QMC methods is not in general the same as for MC.
Using the MC formula for the control variate coefficient can worsen
the performance of QMC methods. A good control variate in QMC
is not necessarily one that correlates with the target integrand. In-
stead, certain high frequency parts or derivatives of the control variate
should correlate with the corresponding quantities of the target. We
present strategies for applying control variate coefficients with QMC,
and illustrate the method on a 16 dimensional integral from computa-
tional finance. We also include a survey of QMC aimed at a statistical
readership.

Keywords: digital nets, lattice rules, low discrepancy methods, stratifica-
tion, variance reduction

1 Introduction

We consider here the problem of computing the integral I of a function f
defined on the s dimensional unit cube [0, 1)s:

I =
∫
f(x)dx. (1)
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Here and elsewhere, integrals without explicit ranges are understood to be
over [0, 1)s. It is very common in applications that the integrals arise in a
form other than (1), but are translated into that form.

The basic form of Monte Carlo (MC) sampling simulates independent
random vectors X1, . . . , Xn having the U [0, 1)s distribution. Then the MC
estimate of I is

Î = Î(f) =
1
n

n∑
i=1

f(Xi). (2)

It is elementary that E(Î) = I and if we suppose that the variance of the
integrand σ2 =

∫
(f(x)− I)2dx satisfies 0 < σ2 <∞, then we can write the

mean square error as

E((Î − I)2) = Var(Î) =
σ2

n
.

Many techniques have been developed for improving the accuracy of MC
methods. Two such techniques are quasi-Monte Carlo (QMC) sampling,
which can be likened to a very intense multiple stratification, and the clas-
sical method of control variates. To employ both of these methods at once
is an obvious idea and one that is easy to implement. Less obvious is that
the control variate strategy for MC applied to QMC points can reduce the
accuracy of the QMC method. The optimal control variate coefficient de-
pends on the sampling strategy and even on the sample size. In MC a good
control variate is one that correlates with the integrand. In QMC methods
it can be better to have some other aspect of the control variate, such as
a derivative or a sum of high frequency Fourier components, correlate with
the corresponding aspect of the target integrand.

Monte Carlo variance reductions for QMC have been studied earlier.
Spanier and Maize (1994) discuss combinations of importance sampling with
QMC and mention some early work by Chelson (1976).

While our main contribution is on the interplay between QMC and con-
trol variates, we also present a brief survey of QMC methods. This survey
appears as Section 2. It presents some historical motivations of QMC, and
the main techniques in use today, for readers with a statistical background.
Section 3 records some basic results on control variates that we use. Sec-
tion 4 describes how estimating the control variate coefficient becomes a
challenge when we combine the two methods. Section 5 describes replica-
tion and related ideas that estimate a control variate coefficient for QMC,
though possibly tuned to a smaller sample size than the one in use. Section 6

2



considers the coefficient appropriate in the limit as the sample size tends to
infinity. Section 7 describes cases where the MC and QMC coefficients coin-
cide so that the MC coefficient can be estimated from QMC data. Section 8
presents a low dimensional example for which we can compute the variance
formulas of this paper. Section 9 illustrates these ideas on a 16 dimensional
integral arising as the value of an Asian call option. Section 10 summarizes
our conclusions.

1.1 Notation

We complete this introductory section by describing some notation. Some
additional notation is introduced at the point where it is used.

The integral I of f is the same over [0, 1]s or (0, 1)s or [0, 1)s. We employ
[0, 1)s only because it partitions easily into congruent sub-hypercubes.

A generic point in the unit cube is denoted by x = (x1, . . . , xs)T , while
a point used in an integration rule is Xi = (X1

i , . . . , X
s
i )T . For a function

g(x) on [0, 1)s the term Var(g) denotes
∫

(g(x)−
∫
g(x)dx)2dx, the variance

of g(X) when X ∼ U [0, 1)s. For a vector z, the usual Euclidean norm is
denoted ‖z‖2, and ‖z‖1 denotes the sum of absolute values of components
of z.

Let u ⊆ {1, . . . , s}. We use |u| for the cardinality of u and −u for the
complementary set {1, . . . , s} − u.

There is an ANOVA decomposition for functions on the unit cube that
is analogous to the ANOVA decomposition used in factorial experiments. A
square integrable function f can be written as a sum f =

∑
u fu(x) over 2s

subsets of {1, . . . , s}, where fu(x) depends on x only through xj for j ∈ u.
Then Var(f) =

∑
|u|>0 Var(fu). See Hoeffding (1948) and Sobol’ (1969),

and Efron and Stein (1981).
When s = 1, the derivative of g is denoted by g′. For s ≥ 1, the gradient

of g is ∇g, taken as an s dimensional row vector. For a column vector h of J
functions on [0, 1)s, the gradient ∇h is a J by s matrix of partial derivatives.

2 Quasi-Monte Carlo

The Monte Carlo estimate Î from (2) converges to I with probability one
by the strong law of large numbers. Quasi-Monte Carlo sampling may be
thought of as a way of getting a law of large numbers to hold without using
randomness. The rate at which |Î − I| converges to zero may be better for
QMC than for MC, at least for functions f with some spatial regularity.
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2.1 Uniformity and discrepancy

QMC grew out of the theory of uniformly distributed sequences initiated by
Weyl (1914, 1916). See Kuipers and Niederreiter (1974, Chapter 1). Let a
and b be two points of [0, 1)s for which a < b holds coordinate-wise, let [a, b)
be the s-dimensional box of points X ∈ [0, 1)s for which a ≤ X < b holds
coordinate-wise, and let vol([a, b)) be the s-dimensional volume of that box.
For Xi ∈ [0, 1)s with 1 ≤ i <∞, the sequence (Xi) is uniformly distributed
in [0, 1)s if limn→∞(1/n)

∑n
i=1 1a≤Xi<b = vol([a, b)) for all 0 ≤ a < b ≤ 1.

If the sequence (Xi) is uniformly distributed then limn→∞(1/n)
∑n

i=1 f(Xi) =∫
f(x)dx holds for every f that is Riemann integrable on [0, 1)s. Thus uni-

form distribution provides a deterministic analogue of the law of large num-
bers. Though Riemann integrability is a more stringent condition than the
Lebesgue integrability required for Monte Carlo sampling, Riemann integra-
bility is a very mild condition for applications.

The celebrated Weyl criterion is that (Xi) is uniformly distributed if and
only if limn→∞(1/n)

∑n
i=1 e

2π
√
−1 kTXi = 0 for every nonzero vector k ∈ Zs.

The Weyl criterion provides a way to establish that a given sequence is
uniformly distributed.

Given two or more uniformly distributed sequences, it is of interest to
decide which is better. Discrepancy measures are used to quantify the uni-
formity of a sequence of points.

The star discrepancy of a finite sequence X1, . . . , Xn is defined as

D∗n(X1, . . . , Xn) = sup
a∈[0,1)s

∣∣∣∣ 1n
n∑
i=1

10≤Xi<a − vol([0, a))
∣∣∣∣ (3)

The star discrepancy is an s-dimensional generalization of the Kolmogorov-
Smirnov distance between the discrete uniform distribution taking Xi with
probability 1/n for i = 1, . . . , n and the continuous uniform distribution
on [0, 1)s. Replacing the supremum over anchored boxes [0, a) in (3) by
the supremum over general axis parallel boxes [a, b) yields the extreme,
or unanchored, discrepancy Dn(X1, . . . , Xn). Because D∗n ≤ Dn ≤ 2sD∗n,
asymptotic rates in n, for fixed s, are identical for these discrepancies. Other
discrepancies have been defined by replacing the supremum over boxes by
suprema over other collections of subsets of [0, 1)s.

A different type of generalization of star discrepancy replaces the supre-
mum by an Lp norm as follows

Dp∗
n (X1, . . . , Xn) =

(∫ ∣∣∣∣ 1n
n∑
i=1

10≤Xi<x − vol([0, x))
∣∣∣∣pdx)1/p

(4)
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for p ≥ 1 with p = 2 the most widely studied. Beck and Chen (1987) and
Matoušek (1998a) provide book length treatments of discrepancy. In yet an-
other generalization, we may interpret the star discrepancy as the worst case
integration error over f in the class of indicator functions of anchored boxes.
Discrepancies defined with respect to classes of smooth functions appear in
Paskov (1993), who considers integrated indicators of anchored boxes, and
in Hickernell (1996), who considers functions in reproducing kernel Hilbert
spaces.

Measures of discrepancy can be related to the quadrature error |Î − I|.
The best known connection is the Koksma-Hlawka inequality

|Î − I| ≤ D∗n(X1, . . . , Xn)VHK(f) (5)

where VHK(f) denotes total variation of f in the sense of Hardy and Krause.
See Niederreiter (1992, Chapter 2) for a discussion of (5), Zaremba (1968)
for an analogous inequality based on D2∗

n , Sobol’ (1969, Chapter 8) for an
inequality involving Dp∗

n , and Hickernell (1996) for a treatment bounding
|Î− I| by a generalization of discrepancy times a generalization of variation.

Some infinite sequences (Xi) with D∗n(X1, . . . , Xn) = O(n−1(log n)s) are
known. It is suspected that D∗n cannot be o(n−1(log n)s), along an infinite
sequence, but it has only been proved for s = 1 and s = 2. It is known that
D∗n(X1, . . . , Xn) ≥ Csn−1(log n)s/2 for infinitely many n, for some Cs > 0.

The fast convergence ofD∗n combined with (5) shows that QMC is asymp-
totically superior to MC for functions of bounded variation. When s is large,
the quantity n−1(log n)s is not small at usual Monte Carlo sample sizes n.
In empirical investigations (Caflisch and Morokoff 1995; Sarkar and Prasad
1987; Schlier 2002), QMC is sometimes found to be much better than MC,
other times the methods are comparable.

There are also triangular array constructions Xni ∈ [0, 1)s for 1 ≤
i ≤ n < ∞ for which D∗n(Xn1, . . . , Xnn) attains the slightly better rate
O(n−1(log n)s−1). A disadvantage of triangular array schemes is that the
points of the n point quadrature rule are not necessarily present in the n+1
point rule. An infinite sequence, by constrast, is necessarily extensible.
There are many links between extensible rules in s dimensions and non-
extensible ones in s+ 1 dimensions. Matoušek (1998a, Chapter 1) discusses
this point.

Two QMC methods have dominated recent research and practice: digital
nets and lattice rules. Digital nets are constructed to integrate the indicator
functions of certain axis parallel boxes without error. Lattice rules integrate
a class of sinusoidal functions without error. Each method then integrates
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linear combinations of its ideal integrands without error. Functions that
are well approximated by such linear combinations are then integrated with
small errors.

In both settings we will write the integrand as f(x) = fG(x) + fB(x).
Here fG is a function on which the QMC method does a good job, integrating
it without error. The error of QMC is then determined by the function fB on
which it does badly. The definitions of fG and fB differ for nets and lattices
and depend on the sample size n. As n increases,

∫
(f(x)− fG(x))2dx→ 0.

For each method
∫
fG(x)fB(x)dx = 0 when f and g are in L2.

2.2 Digital nets

A thorough treatment of digital nets, also known as (t,m, s)–nets, is given
in Niederreiter (1992). This section presents brief formal definitions of
(t,m, s)–nets, (t, s)–sequences, and (λ, t,m, s)–nets.

The following geometric discussion may be helpful for the reader encoun-
tering these definitions for the first time. A (t,m, s)–net in base b is a form
of stratified sample wherein the number of simultaneously balanced strata
can be much larger than the sample size. The strata are hyperrectangular
cells called elementary intervals or b-ary boxes. The sides of these b-ary
boxes have endpoints that are b-adic fractions: integer multiples of b−k for
some integer k ≥ 0 and integer base b ≥ 2. Given n points X1, . . . , Xn in
an integration rule, we would like every b-ary box of volume b−K to contain
exactly nb−K of them. Nets manage to do this, at least for small enough K.

Definition 1 For integer b ≥ 2, a b-ary box in [0, 1)s is a set of the form

B =
s∏
j=1

[ `j
bkj

,
`j + 1
bkj

)
(6)

for nonnegative integers kj and `j < bkj .

Definition 2 A (t,m, s)–net in base b is a finite sequence X1, . . . , Xbm for
which every b-ary box of volume bt−m contains exactly bt points of the se-
quence.

It is clear that smaller values of t imply a better stratification. For given
values of b, m, and s, there may not exist a net with t = 0, and so nets with
t > 0 are also widely used.

Figure 1 shows the points of a (0, 3, 5)–net in base 5 projected onto two
coordinates. The unit square can be partitioned into 125 boxes of shape
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1/5 × 1/25. Each such box has exactly one point of the net. The same is
true for partitions of shape 1/25 × 1/5. Though the reference lines do not
show it, the 5-ary boxes of shape 1× 1/125 and 1/125× 1 also contain one
point of the net. Finally in any three dimensional projection, there are 125
boxes of shape 1/5× 1/5× 1/5 with one point each.

The net shown is extensible. One can adjoin another 125 points to it,
with the result that each b-ary box has 2 points of the extended sequence.
Further, some net constructions are extensible, not just two-fold but r-fold
for any integer r > 1. Finally, as some nets are extended, b-ary boxes of ever
smaller volume contain the proportional number of points. Such extensible
digital nets are defined through (t, s)–sequences:

Definition 3 A (t, s)–sequence in base b is an infinite sequence Xi for i ≥ 1
such that for all integers r ≥ 0 and m ≥ t, the points Xrbm+1, . . . , X(r+1)bm

form a (t,m, s)–net in base b.

If one samples a (t, s)–sequence with n increasing through values λbm for
1 ≤ λ < b andm ≥ t, then every b-ary box eventually contains a proportional
number of points from the sequence, and retains this balance thereafter. The
first λbm points of a (t, s)-sequence in base b are a (λ, t,m, s)–net in base b,
for any m ≥ t and 1 ≤ λ < b.

Definition 4 Let m, t, λ be integers with m ≥ t ≥ 0, and 1 ≤ λ < b. A
sequence of λbm points in [0, 1)s is called a (λ, t,m, s)–net in base b if every
b-ary box of volume bt−m contains λbt points of the sequence and no b-ary
box of volume bt−m−1 contains more than bt points of the sequence.

The prototypical digital sequences are radical inverse sequences in base
b, originating in the base 2 sequences of van der Corput (van der Corput
1935a; van der Corput 1935b). For integer base b ≥ 2, let the non-negative
integer n have base b expansion

∑∞
k=1 nkb

k−1 where nk ∈ {0, 1, . . . , b − 1},
and only finitely many nk are positive. The base b radical inverse function,
φb(n) =

∑∞
k=1 nkb

−k ∈ [0, 1), reflects the base b digits of n through the
base b decimal point. In any bm consecutive non-negative integers, all bm

possible trailing digits appear exactly once. Then the corresponding values
of φb contain all bm possible leading digits exactly once. It is customary to
start the radical inverse sequence at 0. Thus Xi = φb(i − 1) for i ≥ 1 is a
digital sequence with t = 0, s = 1 and base b.

Higher dimensional digital nets and sequences require number theory to
describe and construct, and are beyond the scope of an introductory survey.
Faure (1982) presents constructions of (0, p)-sequences in prime bases p,
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Figure 1: Shown are 125 points of a digital net in base 5 as described in the
text.

and Sobol’ (1967) constructs (t, s)–sequences in base 2 where the quality
parameter t depends on s. Niederreiter (1987) combined and extended these
constructions. Of all presently known (t, s)–sequence constructions, those
of Niederreiter and Xing (2001, Chapter 8) have the smallest values of t for
given values of b and s.

To see why nets are effective integration rules, consider the b-ary indica-
tor function 1B(x) that is 1 if x ∈ B and 0 otherwise, where B is the b-ary box
defined in (6). The volume of B is b−K where K =

∑s
j=1 kj . If X1, . . . , Xn
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are a (λ, t,m, s)–net in base b with m − t ≥ K, then (1/n)
∑n

i=1 1B(Xi) =∫
1B(x)dx. The points of a (λ, t,m, s)–net integrate without error any func-

tion that is a linear combination of the b-ary indicator functions of volume
bt−m. A combinatorial argument shows that there are

(
m−t+s−1

s−1

)
bm−t dif-

ferent b-ary indicator functions of volume bt−m correctly integrated by the
points of a (λ, t,m, s)–net in base b. For example the 625 points of a (0, 4, 5)–
net in base 5 correctly integrate the indicators of 43570 different 5-ary boxes
of volume 1/625.

Let fG be the linear combination of indicator functions of b-ary boxes
with volume bt−m that minimizes

∫
(f(x)−fG(x))2dx. A formula for fG can

be based on tensor products of base b Haar wavelets (Owen 1997a). The
integration error in a (λ, t,m, s)–net is the corresponding sample average of
fB = f − fG.

2.3 Integration lattices

Lattice methods for integration were introduced by Korobov (1959). Text-
books on the topic include Hua and Wang (1981), Sloan and Joe (1994),
and Fang and Wang (1994).

Definition 5 An s dimensional lattice is a set of the form
{∑s

j=1 αjvj |
αj ∈ Z

}
where v1, . . . , vs are linearly independent vectors in Rs.

Definition 6 An s dimensional integration lattice is an s dimensional lat-
tice that contains every member of Zs.

Definition 7 An s dimensional lattice rule is the intersection of an s di-
mensional integration lattice with [0, 1)s.

The simplest lattice rule method is that known as “good lattice points”.
There one selects a sample size n and a vector τ = (τ1, . . . , τs) of nonnegative
integers. Then for i = 1, . . . , n let

Xi =
(i− 1)τ

n
mod 1, (7)

where z mod 1 = z − bzc and bzc is the greatest integer less than or equal
to z. Integration lattices that can be written in the form (7) are known as
rank 1 lattices, because they have one generating vector τ . Lattice rules of
ranks 1 through s are described in Sloan and Joe (1994). We will emphasize
rank 1 rules here. The lattice rules of Korobov (1959) are rank 1 rules for
which τ = (1, η, η2, . . . , ηs−1) for some η ∈ Z.
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Figure 2: Shown are 144 points of an integration lattice.

The vectors (i − 1)τ/n are equally spaced on a ray from the origin to
(n − 1)τ/n. Taking them modulo 1 causes them to “wrap around” the
boundary of the unit cube. Careful choices of τ and n made by combinations
of algebra and computer search, lead to points that are very regularly spaced.
Figure 2 shows a lattice rule with τ = (1, 89) and n = 144.

Classical lattice rules have a fixed sample size n like a (t,m, s)–net. The
development of extensible lattice rules, analogous to digital sequences, is
fairly recent. The key insight is that one can replace (i − 1)τ/n mod 1
by φb(i − 1)τ mod 1 where φb is the radical inverse function. The result-
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ing points lie on a shifted lattice. Extensible shifted lattice rules allow the
sample size n to increase through a sequence of values of the form bm for in-
creasing integers m. It has been shown by Hickernell and Niederreiter (2003)
that there exist ∞-dimensional generating vectors τ = (τ1, τ2, . . . ) depend-
ing only on some base b ≥ 2, that give good lattice rules for all dimensions s
and for all n equal to a power of b. Computer searches for vectors τ that give
good lattices for a range of s and n have been made by Hickernell, Hong,
L’Ecuyer, and Lemieux (2000). The viability of component-by-component
constructions have been demonstrated by Sloan and Reztsov (2002), Sloan,
Kuo, and Joe (2002a), and Sloan, Kuo, and Joe (2002b).

Whereas nets are designed to integrate indicators of b-ary boxes, lat-
tice rules integrate certain sinusoidal functions without error. Consider
the multivariate trigonometric polynomials, e2π

√
−1 kT x, where k ∈ Zs is

an integer wave number vector. Suppose that k belongs to the dual lattice
L⊥ = {k : kT τ = 0 mod n} of a rank 1 lattice rule. Then the func-
tion e2π

√
−1 kT x is completely aliased with the constant function 1 on the

points of the lattice defined by (7). Lattice methods integrate trigonomet-
ric functions corresponding to k ∈ L⊥ − {0} with 100% error. However,
for k = 0 or k 6∈ L⊥, the function e2π

√
−1 kT x is integrated with zero error

by lattice methods. For lattices, fB is the sum of the functions e2π
√
−1 kT x

times the corresponding Fourier coefficients, taken over k in L⊥−{0}. Then
fG = f − fB is the corresponding sum of Fourier contributions for k 6∈ L⊥.

From the Weyl criterion we might expect that integrating trigonometric
polynomials well will lead to a good quadrature rule. On a good sequence
of lattice rules, the dual lattice L⊥ becomes sparser as n increases. The
star discrepancy can be shown to approach zero at the same rate found
for nets. The more rapidly the Fourier coefficients of f decay, the better
the asymptotic error rate for |Î − I|. For functions f with ∂rsf/

∏
j ∂(xj)r

continous on [0, 1)s, the error rate can be made O(n−r+ε) (Niederreiter 1992)
where nε hides powers of log n, though for large s it may take very large n
for this rate to be relevant.

2.4 Randomized QMC

The law of large numbers is used to justify Monte Carlo methods, but not
to compute error estimates. Practical error estimation is based on sample
based variance estimates, sometimes with a calibration via the central limit
theorem. Bounds like (5) justify the use of QMC, but they are poorly
suited to error estimation. Discrepancy is hard to calculate, total variation
is harder still, and the resulting bound on |Î − I|, while tight for some
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worst-case f , can be extremely conservative.
Randomized quasi-Monte Carlo (RQMC) methods have been developed

to combine QMC accuracy with the practical error estimation methods of
MC. Typical RQMC methods replace a QMC sequence A1, . . . , An by a ran-
domized version X1, . . . , Xn such that each Xi ∼ U [0, 1)s while the ensemble
X1, . . . , Xn still has a QMC property. Because Xi ∼ U [0, 1)s, it follows that
E(Î) = I. The variance of Î can be estimated through a small number of in-
dependent replications of the RQMC method. Studying RQMC also allows
us to make sharper comparisons with MC, because variances can be esti-
mated for both. Methods of randomizing nets and lattices are surveyed by
Owen (1998a) and by L’Ecuyer and Lemieux (2002). Hong and Hickernell
(2003) describe software to randomize nets.

A scrambled net is a randomization of the base b digits of the points
of a digital net A1, . . . , An. Let Aji =

∑∞
k=1 aijkb

−k where each aijk ∈
{0, 1, . . . , b − 1}. The points of a scrambled net are Xj

i =
∑∞

k=1 xijkb
−k,

where xijk are obtained through some random permutions of aijk. In the
scrambling method proposed in Owen (1995), xij1 = π1·(aij1), then xij2 =
π1·aij1(aij2), so that the permutation of the second digit depends on what
the first digit was, and generally xijk = π1·aij1···aij k−1

(aijk), where each π is
a uniform random permutation of 1 through b− 1. Each Xj

i has the U [0, 1)
distribution and if (Ai) are a digital net or sequence, then so are (Xi) with
probability one. These scrambling schemes require a lot of permutations,
and some derandomizations using fewer permutations have been proposed
by Matoušek (1998b) and Hong and Hickernell (2003).

For the scrambling method proposed in Owen (1995), as well as random
linear scrambling (Matoušek 1998b; Hong and Hickernell 2003), the variance
of scrambled (0,m, s)–net quadrature satisfies

Varrnet(Î) ≤ e

n

∫
fB(x)2dx ≤ eVarmc(Î),

where e = exp(1) .= 2.718. When t > 0 the variance bound e/n has to be
increased but we still find Varrnet(Î) ≤ C

∫
fB(x)2dx/n for a constant C.

See Owen (1998b) or Niederreiter and Pirsic (2001) or Yue and Hickernell
(2002). As m increases fG accounts for more of the structure of f . In the
limit

∫
fB(x)2dx→ 0 and so Varrnet(Î) = o(1/n) for any square integrable f .

Loh (2003) has proved a central limit theorem for the scramble proposed in
Owen (1995).

For smooth functions the rate at which
∫
fB(x)2dx→ 0 can be studied.

Owen (1997c) shows that scrambled net integration attains a variance of
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O(n−3(log n)s−1), so that |Î − I| = Op(n−3/2(log n)(s−1)/2), under a mild
smoothness condition on f , given in Section 6.3. Note that in this setting,
scrambling reduces the error of unscrambled nets by approximately a mul-
tiple of n1/2.

Yue (1999) studies the variance over randomized (λ, t,m, s)–nets. Hick-
ernell and Yue (2000), Matoušek (1998b), and Heinrich, Hickernell, and Yue
(2003) investigate the discrepancy of scrambled nets and sequences. Owen
(2002) studies the variance of scrambled net quadrature, finding that it can
depend in a strong way on the details of the scrambling.

The usual randomization of lattice rules is a form of rotation modulo 1,
due to Cranley and Patterson (1976). They take

Xi = U +
(i− 1)τ

n
(mod 1) (8)

where U ∼ U [0, 1)s. Rotated lattice rules are a form of cluster sampling.
They do not improve the error rate of lattice rules, but they do allow repli-
cation based error estimates. Rotation affects the aliasing: for k in the dual
lattice, e2π

√
−1 kTXi equals e2π

√
−1 kTU instead of 1.

To study randomized lattice rules, recall that some trigonometric poly-
nomials are integrated exactly by the lattice while the others are constant on
X1, . . . , Xn. For randomized lattice rules Varrnet(Î) = Var(fB) =

∫
fB(x)2dx.

As with nets, the part fG does not contribute to the error, but unlike nets,
there is no O(1/n) factor multiplying the contribution of the aliased part
fB. The decay of Varrlat(Î) with increasing n is due to increasing sparsity
of the dual lattice.

2.5 QMC and MCMC

Markov chain Monte Carlo (MCMC) is better known to statisticians than is
QMC. Both fields have a long history and both have grown tremendously in
recent years. We have found only a little overlap between the methods. Liao
(1998) reports some results using the Gibbs sampler in a QMC application.
Ostland and Yu (1997) apply QMC to estimation of marginal distributions.

One reason why QMC and MCMC are so disjoint is that the integrands
used in MCMC are often very spiky. For such problems, not much benefit
can be expected from more uniform sampling of the entire space. Even if
RQMC errors are like An−3/2 while MCMC errors are like Bn−1/2, the ratio
A/B for a spiky integrand could be much larger than any n we might be
able to use.
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In some applications a well chosen importance sampling scheme could
reduce the spikyness of the integrand to the point where QMC would be
beneficial at realistic sample sizes, but effective importance sampling is very
problem specific. It is also much more common in MCMC applications for
f(x) to be a product p(x)g(x) where p is a density function known only
up to a normalizing constant. Then MCMC generates approximate samples
from p while QMC would have to fall back on ratio estimation methods.

An important difference between MCMC and QMC algorithms is that
for MCMC the number of replications n is small, perhaps 1 long run, while
the dimension s is large, nominally infinite. For QMC n is usually large and
s can be small.

3 Control variates

The idea in control variates is to exploit known values of
∫
hj(x)dx for

j = 1, . . . , J to sharpen the estimate of I. The method is particularly
compelling when J = 1 and h1

.= f with θ1 =
∫
h1(x)dx known. Most books

on Monte Carlo methods consider control variates. See for example Bratley,
Fox, and Schrage (1987), Ripley (1987), or Fishman (1995). Essentially the
same method goes by the name of “regression estimators” in the survey
sampling literature. See Cochran (1977) and Lohr (1998). Here we simply
summarize some well known results.

Suppose that we know the values
∫
h(x)dx = θ for the vector h =

(h1, . . . , hJ)T of functions and the vector θ = (θ1, . . . , θJ)T of scalars. Then
for any vector β = (β1, . . . , βJ)T ∈ RJ the estimate

Îβ =
1
n

n∑
i=1

(
f(Xi)−

J∑
j=1

βj (hj(Xi)− θj)
)

(9)

satisfies E(Îβ) = I when Xi ∼ U [0, 1)s.
To avoid trivialities, we suppose that max1≤j≤J

∫
h2
j (x)dx <∞ and that

Var(
∑J

j=1 βjhj(X)) > 0 for X ∼ [0, 1)s, whenever β 6= 0. If Var(βTh(X)) =
0 for some nonzero β, then one or more of the functions hj is redundant and
can be dropped.

The MC variance of Îβ is Varmc(Îβ) = σ2
β/n where

σ2
β = E

(
[f(Xi)− I − βT (h(Xi)− θ)]2

)
, (10)
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a quadratic function of the vector β. The minimizing value of β is given by

βmc =
(∫

(h(x)− θ)(h(x)− θ)Tdx
)−1 ∫

(h(x)− θ)f(x)dx. (11)

It always holds that σ2
mc ≡ σ2

βmc
≤ σ2, because σ2 corresponds to β =

(0, . . . , 0)T . We assume that σ2
mc > 0 to rule out some trivial cases.

The value βmc is typically unknown, and is usually estimated by

β̂mc =
( n∑
i=1

(h(Xi)− Ĥ)(h(Xi)− Ĥ)T
)−1 n∑

i=1

(h(Xi)− Ĥ)f(Xi) (12)

where Ĥ = (Ĥ1, . . . , ĤJ)T and

Ĥj =
1
n

n∑
i=1

hj(Xi).

The known values θj could possibly be used in place of Ĥj , but typically
are not used. Instead β̂mc is the ordinary least squares estimator of the
regression coefficients relating f(Xi) to hj(Xi).

The control variate estimator is Îβ̂mc
obtained by substituting β̂mc for β

in (9). The resulting error is

Îβ̂mc
− I = Îβmc − I + Îβ̂mc

− Îβmc

= Îβmc − I + (β̂mc − βmc)T (Ĥ − θ). (13)

The second term in (13) does not ordinarily have mean zero, and so the
use of β̂mc typically introduces a small bias. It is ordinarily true that both
β̂mc − βmc and Ĥ − θ are Op(n−1/2), and then the last term in (13) is
Op(1/n). This small term and the associated bias are customarily ignored.
Cross-validatory methods can remove the bias in the estimate of I and also
in the variance estimate (Avramidis and Wilson 1993).

Control variate methods are forgiving of mild errors in the coefficient β.
Because σ2

β is a quadratic function of the vector β with a minimum at βmc,
it follows that σ2

β − σ2
βmc

= O(‖β − βmc‖22), and in particular σ2
β̂mc

/σ2
βmc

=

1 +Op(n−1).

4 Control variates with RQMC

Suppose that X1, . . . , Xn are generated by an RQMC rule. Let f be the
integrand of interest, and let h = (h1, . . . , hJ)T be a vector with

∫
h(x)dx =
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θ = (θ1, . . . , θJ)T . The estimate Îβ from (9) is still an unbiased estimate of
I, but now

Varrqmc(Îβ) = Varrqmc

(
Î −

J∑
j=1

βjĤj

)
(14)

where Ĥj = (1/n)
∑n

i=1 hj(Xi), as before. Equation (14) does not simplify
as in the IID case because the Xi are not independent. This variance is still
a quadratic in β, and the minimizing value is now

βrqmc = Covrqmc(Ĥ, Ĥ)−1Covrqmc(Ĥ, Î). (15)

There is always a control variate strategy that is at least as good as using
no control variates: Varrqmc(Îβrqmc) ≤ Varrqmc(Î) because Varrqmc(Î) corre-
sponds to using β = 0. A suboptimal or poorly estimated coefficient can
however lead to worse results than from not using the control variate. It is
also clear from (14) that a control variate hj for which Varrqmc(Ĥj) = 0 is
redundant.

As equations (14) and (15) show, an effective set of control variates
must be correlated with f under RQMC sampling. This is not necessarily
the same as correlation of h with f under IID sampling. In particular,
writing f = fG + fB and h = hG + hB, we find that fG and hG do not
contribute to (14), and we would rather have hB correlated with fB than
have h correlated with f .

Note that formula (12) for β̂mc applied to an RQMC sample will estimate
βmc not βrqmc. The use of RQMC sampling does not turn β̂mc into an
estimate of βrqmc but instead simply provides a more accurate estimate of
βmc than MC sampling would provide.

There is a further complication in that (15) is a moving target. It de-
pends on the sample size n. For n = 1 we have βrqmc = βmc. As the sample
size increases, more of the structure from f is integrated exactly, and βrqmc

is determined only by the parts of f and hj not integrated exactly.

4.1 Cautionary example

The following simple example highlights the possible differences between
βmc and βrqmc. Take s = 1, and for M > 0 let f(x) = (1+2bMxc−Mx)/M
be a sawtooth function with teeth of width 1/M . Figure 3 shows such a
function for M = 50. In ordinary Monte Carlo sampling, the linear function
h1(x) = x is an extremely good control variate for f . The optimal coefficient
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Figure 3: Shown are a sawtooth function f with tooth width 0.02 and a
linear function h1(x) = x.

can be shown to be βmc = 1 − 2M−2, and then σ2
mc = 4σ2(M−2 −M−4).

Thus for M = 50 the control variate reduces the variance by a factor of
625.25.

Now consider a randomized (0, 1, 1)–net in base b = n. This trivially
simple net reduces to a stratified sample in which 1 point is taken uniformly
from each of the n intervals [(i − 1)/n, i/n) for i = 1, . . . , n. For simplicity
suppose that M = n. The variance of Î for this f(x) under this stratified
sampling is 1/(12M3). Using the control variate with the coefficient βmc

approximately doubles the variance compared to RQMC without a control
variate.

The linear function h1(x) = x is in fact a good control variate for the
sawtooth integrand f . Taking βrqmc = −1 we find that Varrqmc(Îβrqmc) = 0.
In this case, using a coefficient β optimized for RQMC eliminates the vari-
ance while using the ordinary MC coefficient doubles the RQMC variance.
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5 Replication and internal replication

In this section we consider the use of R independent replicates of an ñ point
RQMC method. The total sample size is then n = Rñ and replication allows
us to estimate the vector βrqmc appropriate to a sample of ñ observations.
A related idea is to exploit an “internal replication” structure, wherein n
consecutive RQMC points can be broken into R consecutive blocks of ñ
points, in which each block constitutes a smaller RQMC rule. As described
below, there is a tradeoff in choosing R.

5.1 Replication estimates of βrqmc

For J control variates, let us take R > J + 1 independent replications of the
RQMC method with ñ points each, producing for r = 1, . . . , R the estimates
Îr and Ĥr = (Ĥ1r, . . . , ĤJr)T . These estimates depend on ñ but we suppress
that dependence here.

Define Î• = (1/R)
∑R

r=1 Îr and Ĥ• = (1/R)
∑R

r=1 Ĥr. The combined
replication estimate of I is

Îβ̂ = Î• − β̂T (Ĥ• − θ) (16)

where

β̂ =
( R∑

r=1

(Ĥr − Ĥ•)(Ĥr − Ĥ•)T
)−1( R∑

r=1

(Ĥr − Ĥ•)(Îr − Î•)
)
. (17)

is a sample version of (15). The sum of squares

SS(β0, β) =
R∑
r=1

(Îr − β0 − ĤT
r β)2 (18)

is minimized by taking the scalar β0 = Îβ̂ + β̂T θ and the vector β = β̂. A

natural estimate of Var(β̂) is then V̂ar(β̂) = SS(Îβ̂, β̂)/(R(R− J − 1)).

5.2 Choosing R

For a given budget of n = Rñ an important practical problem is to decide
whether to use a large R and small ñ or vice versa. The QMC error decreases
faster in ñ than in R, suggesting thatR should ordinarily be taken as small as
other considerations allow. If βrqmc is not being estimated from replications,
then taking R to be about 5 should give at least a reasonable number of
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degrees of freedom in a variance estimate. When there are J coefficients in
βrqmc to estimate as in Sections 5.1 and 5.3, then taking R = J + 5 might
suffice, taking note that control variate methods are forgiving of modest
errors in β. The tradeoff in picking small R is that R is the sample size for
subsidiary tasks of estimating β and the replication variance. To attempt
an optimal choice of R is a topic for further research.

5.3 Internal replication

QMC schemes can often be considered to be “internally replicated”. For
example a (λ, t,m, s)–net taken from a (t, s)–sequence can be decomposed
into R = λbm−m̃ consecutive (t, m̃, s)–nets for 0 ≤ m̃ ≤ m. Likewise,
an extensible shifted lattice with n = bm points can be decomposed into
R = bm−m̃ consecutive shifted lattices of ñ = bm̃ points each.

For nets scrambled as described in Owen (1995) the formulas from Sec-
tion 5.1 can ordinarily be used directly. As Owen (1997b) discusses, variance
estimates based on internal replication tend to be conservative. Each inter-
nal replicate tends to fill in spaces avoided by the others, and this tends
to induce negative correlations among quantities such as Îr from different
replications. Negative correlations among Îr reduce the variance of Î• while
simultaneously increasing the usual variance estimates.

Internal replication is more complicated for shifted lattice rules, owing to
the aliasing phenomenon. One consequence of aliasing is that Varrlat(Î) =
Var(fB), and similarly for Ĥ, so that equation (15) reduces to

βrlat =
(∫

hB(x)hTB(x) dx
)−1 ∫

hB(x)fB(x) dx. (19)

We discuss how to estimate
∫
hB(x)hTB(x) dx from (19) with similar com-

ments applying to
∫
hB(x)fB(x) dx. For lattices Ĥ = θ+ĤB where ĤB is the

quadrature rule applied to hB. Within replicate r we get Ĥñ,r = θ+ ĤB,ñ,r,
using notation that recognizes how the function hB,ñ depends on the within-
replicate sample size ñ.

The denominator matrix in (19) may then be estimated by

1
R

R∑
r=1

(Ĥr − Ĥ•)(Ĥr − Ĥ•)T =
1
R

R∑
r=1

ĤB,ñ,rĤ
T
B,ñ,r − ĤBĤ

T
B

=
1
n

n∑
i=1

hB,ñ(Xi)hTB,ñ(Xi)− ĤBĤ
T
B , (20)
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wherein the first equality follows because averages of h reduce to averages of
hB,ñ and the second follows from aliasing. Inspecting (20) we see that βrlat

from (19) depends on mean squares defined through fB and hB while the
internal replication estimate reduces to corresponding mean squares of fB,ñ
and hB,ñ. Thus the internal replication estimate β is seen to be a direct
estimate of βrlat,ñ for ñ < n.

6 Limiting values of β

The previous section considered estimates of βrqmc appropriate to sample
sizes ñ ≤ n. In some cases we can compute or approximate

β∞rqmc ≡ lim
n→∞

βrqmc = lim
n→∞

Covrqmc(Ĥ, Ĥ)−1Covrqmc(Ĥ, Î),

and the results provide qualitative insight, and suggest some methods for
choosing β.

We present three cases: stratified sampling of [0, 1), stratified sampling
of [0, 1)s, and randomized (0,m, s)–nets. For the first two cases the limit is
obtained by correlating certain differential operators applied to f and h. A
similar result in Owen (1992) shows that a good control variate h for Latin
hypercube sampling is one whose non-additive part correlates with that of
f . The variance expressions for nets do not provide an expression for β∞rqmc,
but do suggest a value that can be tested empirically. For extensible shifted
lattices it is not clear when β∞rqmc exists.

6.1 Stratified sampling of [0, 1)

Suppose that hj and f have Lipschitz continuous derivatives h′j and f ′ on
[0, 1]. That is for some ∆ ∈ (0, 1], some B < ∞, all x, x∗ ∈ [0, 1] both
|f ′(x)− f ′(x∗)| ≤ B|x− x∗|∆ and maxj |h′j(x)− h′j(x∗)| ≤ B|x− x∗|∆ hold.
In practice this condition may commonly hold with ∆ = 1.

We stratify [0, 1) into n intervals and sample independently and uni-
formly within each of them. Specifically, our sample has independent ran-
dom variables Xi uniformly distributed on [(i− 1)/n, i/n) for i = 1, . . . , n.

Let g be a function with Lipschitz continuous derivative g′ satisyfing
|g′(x) − g′(x∗)| ≤ B|x − x∗|∆ for all x, x∗ ∈ [0, 1]. Then from Section 3 of
Owen (1997c) we obtain

Varstrat

(
1
n

n∑
i=1

g(Xi)
)

=
1

12n3

∫ 1

0
g′(x)2dx+O(n−3−∆). (21)
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It is natural to substitute f − βTh for g in the lead term of (21) and then
minimize over β. Some care is required with the error term. We show below
that this minimization gives the right answer.

Lemma 1 Assume that f and hj have Lipschitz derivatives as described
above with common values of B and ∆, and that

∫
h′(x)h′(x)Tdx has full

rank J . Then the optimal control variate coefficient under stratified sampling
satisfies

lim
n→∞

βstrat ≡ β∞strat =
(∫ 1

0
h′(x)h′(x)Tdx

)−1 ∫
h′(x)f ′(x)dx. (22)

Proof: By equation (21) we get

Varstrat(Îβ) =
1

12n3

∫ 1

0

(
f ′ −

J∑
j=1

βjh
′
j

)2

dx+
(

1 +
J∑
j=1

|βj |
)
O(n−3−∆),

(23)

where the constant inside the O symbol is independent of β. Let that con-
stant be D/12 for 0 ≤ D <∞.

Because
∫ 1

0 h
′(x)h′(x)Tdx has full rank, the right side of (22) is the

unique minimizer of the first term in (23). Let δJ > 0 be the smallest
eigenvalue of

∫ 1
0 h
′(x)h′(x)Tdx. By a sequence of elementary bounds, for

large enough n we have

12n3
(
Varstrat(Îβ)−Varstrat(Îβ∞strat

)
)

≥ δ2
J‖β − β∞strat‖22 −Dn−∆(1 + ‖β‖1)

≥ δ2
J‖β − β∞strat‖22 −Dn−∆(1 + ‖β‖1)

≥ δ2
J‖β − β∞strat‖21/J −Dn−∆(1 + ‖β‖1 + ‖β − β∞strat‖1).

Suppose that ‖β − β∞strat‖1 > ε > 0. Then Varstrat(Îβ) > Varstrat(Îβ∞strat
)

holds for large enough n. The result follows.

Lemma 1 shows that the asymptotically optimal control variate coeffi-
cient is obtained through the expected cross-products of first derivatives of
the f and hj . Notice that the averages of f ′ and h′j are not first subtracted.

In practice we can estimate β∞strat from the stratified sample as

β̂∞strat =
( n∑
i=1

h′(Xi)h′(Xi)T
)−1 n∑

i=1

h′(Xi)f ′(Xi) (24)
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and replication is not necessary. Here β∞strat is obtained by least squares
regression, without an intercept term, of f ′ on h′.

A simple special case has h1(x) = x. Then h′1(x) = 1 and β∞strat =∫ 1
0 f
′(x)dx = f(1)− f(0), and so

Îβstrat =
1
n

n∑
i=1

f(Xi)− (f(1)− f(0))(Xi − 0.5)

with variance (12n3)−1Var(f ′(x))+O(n−3−∆) instead of (12n3)−1
∫ 1

0 f
′(x)2dx+

O(n−3−∆). If the variance of f ′(X) for X ∼ U [0, 1) is much smaller than
its mean square, then an appreciable variance reduction is obtained.

The stratification scheme above describes a simple special case of ran-
domized nets. A similarly simple special case of lattice rules has Xi =
(i − 1 + U)/n for i = 1, . . . , n, where the same random variable U ∼ [0, 1)
is used in all n random values. In this case we also find that (22) is the
best regression coefficient but the factor 1/(12n3) in the variance has to be
replaced by 1/(12n2). The stratified sample by using n independent uniform
deviations achieves an additional variance reduction factor of n from error
cancellation.

6.2 Stratified sampling of [0, 1)s

For small s it is feasible to stratify the unit cube into n = ms congruent
subcubes having side dimension 1/m and to sample one Xi uniformly within
each such cube. For f and hj smooth enough we find a similar result to the
one dimensional case.

If the real valued function g has two continuous derivatives, then the
variance of g(X) for X sampled uniformly within a hypercube of size 1/m
with center c is

1
12m2

‖∇g(c)‖22 +O(m−2),

where ∇g is the 1 by s gradient (row) vector of g.
The lead term Varstrat(Îβ) is then

1
12n1+2/s

∫
[0,1)s

∥∥∥∇(f(x)−
J∑
j=1

βjhj(x)
)∥∥∥2

2
dx. (25)

The variance rate n−(1+2/s) describes the well known deterioration of cubic
stratification in higher dimensions.
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Recalling our definition of ∇ from Section 1.1 we may write the asymp-
totically optimal coefficient as

β∞strat =
(∫

[0,1)s
∇h∇hTdx

)−1 ∫
[0,1)s

∇h∇fdx, (26)

and estimate it by

β̂∞strat =
( n∑
i=1

∇h(Xi)∇hT (Xi)
)−1 n∑

i=1

∇h(Xi)∇f(Xi). (27)

The results for s dimensional stratification generalize those of one dimen-
sional stratification by replacing the scalar first derivatives h′ and f ′ with
the corresponding gradients ∇h and ∇f . An argument along the lines of
Lemma 1 shows that optimizing the dominant term of (25) gives the asymp-
totically optimal coefficient.

6.3 Randomized nets

Finite sample variance formulas are available for randomized nets, but they
appear to be too cumbersome to help us choose β. The asymptotic variance
formulas are not sharp enough to allow us to derive the exact value of β∞rnet,
but they do suggest a way to compute a candidate value β̃∞rnet. This and other
candidates, such as estimates of βmc, can then be compared numerically in
applications.

Let ∂sf/∂x denote the order s mixed partial derivative of f taken once
with respect to each component of x. Let ∂|u|f/∂ux denote the mixed partial
derivative of f taken once with respect to each index in u. Owen (1997c)
defines smooth s dimensional functions as ones that satisfy∣∣∣∣ ∂s∂x(f(x)− f(x∗))

∣∣∣∣ ≤ B‖x− x∗‖∆2 (28)

for finite B ≥ 0 and ∆ ∈ (0, 1]. Then, under scrambled (0,m, s)–net
Varrnet(Î) equals[

(log n)s−1

n3

λ2

12s(s− 1)!

(
b2 − 1
log b

)s−1 ∫ (
∂sf(x)
∂x

)2

dx

](
1 +O(1)

)
(29)

as n → ∞, for the scrambling in Owen (1995), where the constant in O(1)
depends on B and ∆ only.
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If we replace f by f − βTh in (29) and minimize the integral there over
β we obtain

β̃∞rnet =
(∫

∂sh(x)
∂x

∂shT (x)
∂x

dx

)−1 ∫ ∂sf(x)
∂x

∂shT (x)
∂x

dx (30)

as the optimizer of an estimate of Varrnet(Îβ).
Equation (29) arises in the limit as n→∞ of a sum

1
n

∑
|u|>0

(Mu +O(1))
∫ (

∂|u|fu
∂ux

)2

dx.

The sum contains 2s − 1 terms, one for every nonconstant ANOVA term fu
in f . The coefficients Mu can be found from Owen (1997c). As n→∞ the
highest order ANOVA term dominates, having a coefficient M{1,...,s} that
is larger by powers of log(n) than any other terms. Equation (30) can be
written without an ANOVA component because ∂sf{1,...,s}/∂x = ∂sf/∂x.

Things simplify considerably if hj only has one nonzero ANOVA compo-
nent. If for example, J = 1 and h1(x) =

∏
`∈u(x`−0.5) then ∂|u|h1(x)/∂ux ≡

1 and then

β̃∞rnet =
∫
∂|u|fu(x)
∂ux

dx.

In special settings we might know this value or be able to approximate it
using sample values of the required partial derivative.

7 Orthogonal control variate coefficients

If we can show that βrqmc = βmc then we can expect Îβ̂mc
to be effective in

RQMC sampling. For a stratified sample, consider a function h such that the
average value of h is θ within every one of the strata. Then Covstrat(Ĥ, Ĥ) =
Covmc(Ĥ, Ĥ) and Covstrat(Ĥ, Î) = Covmc(Ĥ, Î) and so βstrat = βmc.

For a scrambled (λ, 0,m, s)–net in base b, there are some integrands
known to have exactly the Monte Carlo variance. For a (0,m, s)–net in base
b, it follows from Owen (1997a) that the indicator function of a sufficiently
fine b-ary box, one with

∑s
j=1 kj ≥ m, will be integrated with exactly the

Monte Carlo variance as will a linear combination of such fine b-ary boxes.
The variance of scrambled net integration is known to be a sum of contri-

butions from each nonconstant ANOVA term in the integrand. In examples
with smooth integrands (Owen 1997c; Caflisch, Morokoff, and Owen 1997)
one sees that the contribution from a given ANOVA term tends to decay
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at the MC rate 1/n until about n = b|u|+t. Then it declines more rapidly.
Thus we can expect control variates dominated by their higher dimensional
ANOVA contributions to have βrqmc close to βmc.

A good control variate for scrambled nets would be one that matched the
high dimensional and fine parts of the function leaving a difference f − βTh
that had primarily low dimensional, coarse parts. That is, the control variate
would leave an integrand of low effective dimension in the superposition sense
of Caflisch, Morokoff, and Owen (1997).

For shifted extensible lattices a good control variate is one whose aliased
part is strongly correlated with the aliased part of f . Aliasing makes it
harder to estimate the coefficient for such a control variate. If however we
know that βrlat = βmc then the strategy from Section 5.3 with a small value
of ñ, is reasonable.

8 Small numerical example

Here we present a two dimensional numerical example. Because the dimen-
sion is so low and the functions involved are smooth, we can expect the
asymptotic variance formulas to be reliable, even for modest sample sizes.

For x = (x1, x2)T ∈ [0, 1)2, let f(x) = sin(π(x1 + x2)). It is common to
select control variates having a qualitative similarity to the integrand. Here
we let J = 1 and take h1(x) = (x1 +x2−1)3− (x1 +x2−1) as such a similar
function. We know that

∫
h1(x)dx = θ1 = 0. We also know that I = 0,

but we’ll investigate the accuracy of estimates of I. The various integrals in
the asymptotic variance formulas have been computed by averaging over a
100 by 100 midpoint grid in [0, 1)2 and also by averaging over 65536 points
obtained from a scrambled (0, 15, 2)–net in base 2 and its antithetic points
of the form (1 − X1

i , 1 − X2
i )T . These two methods agree for the values

reported below.
The simple estimator (2) has variance 1/(2n) under MC sampling. The

variable h is highly correlated with f , and we find βmc = 2.675. Equation
(26) gives β∞strat = 2.809 and equation (30) gives β̃∞rnet = 2.547. Table 1
records the asymptotic sampling variances of Îβ for all three methods and all
four control variate coefficient values. Each method has its own asymptotic
rate in n. The coefficients are computed through equations (10), (25), and
(29), including the constants 1/12, and 12−2(22− 1)/ log(2) = 0.0301 in the
latter two.

Standard deviations found as square roots of the asymptotic variances
from Table 1 are plotted in Figure 4. The story for this example is that
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CV Coef → None βmc β∞strat β̃rnet

Method Rate ↓ 0 2.675 2.809 2.547 Gain
MC n−1 0.5 0.00594 0.00718 0.00707 84.2
Strata n−2 0.8245 0.0351 0.0333 0.0402 24.7
(0,m, 2)–net n−3 log(n) 1.464 0.297 0.307 0.294 4.98

Table 1: Shown are the asymptotic variances of MC, stratification, and
QMC, for a two dimensional problem from the text. The coefficients βmc

from (11), β∞strat from (27), and β̃∞rnet from (30) were computed numerically
and are displayed above the table. The asymptotic variance formulas (10),
(25), and (29) applied to f − βTh have rates in n given to the left of the
table with numerically determined constants given in the body of the table.
The rightmost column shows the variance reduction comparing the β = 0
variance to the smallest variance in the row.

nets work better than stratification which works better than IID sampling.
For all methods using the control variate brings an improvement and the
amount of improvement does not depend strongly on which coefficient was
used. The benefit from using this control variate diminishes as one uses
better sampling methods.

These asymptotic variances predict that stratification without control
variates will surpass MC with an optimal control variate at roughly n = 139,
which we ought to round to 144 because stratification requires that n be a
perfect square. Scrambled nets without control variates overtake MC with
the optimal control variate at roughly n = 29, which we round to 32 because
these nets require n to be a power of 2. For nets without the control variate
to overcome stratification with the control variate takes n = 241 which again
we round to 256.

For Monte Carlo sampling, the control variate in this example allowed
us to reduce the variance by a factor of 84.2. The corresponding factors
for stratified sampling and randomized nets are 24.7 and 4.98 respectively.
It happened that the better balanced sample points gained less from the
control variate, and what is almost the same thing, were more forgiving of
inaccurate control variate values.

Matching h1 to f we found that there was a lesser, but still useful,
correlation between certain derivatives of h1 and corresponding derivatives
of f . There was one surprise. Viewing stratification as intermediate between
MC and RQMC, we might have expected to find that β∞strat would lie between
βmc and β∞rqmc, but it did not.
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Figure 4: Shown are the asymptotic standard deviations of Îβ versus n
for the methods in Table 1. The solid lines are, top to bottom, for MC,
stratification, and randomized nets. Below these are parallel dotted lines
when control variates are employed. Lines for different control variate values
largely overlap on this plot.

Notice that the benefit from a variance reduction is higher for MC sam-
pling than it is for QMC. For example, in MC sampling a variance reduction
of 10 is the equivalent to a 10-fold increase in the effective sample size. In
settings where the variance decreases more quickly the gain translates into
smaller sample size multiples. When the variance decreases proportionally
to n−2 or n−3 then a 10-fold reduction in variance would equate to sample
size increases of 101/2 .= 3.16 and 101/3 .= 2.15 respectively. The rate n−3

corresponds to scrambled net variance ignoring logarithmic powers, while
n−2 is appropriate to bivariate stratification, and ignoring logarithmic pow-
ers, some other RQMC methods.
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9 Asian option

This section considers an example in s = 16 variables. There is no assurance
that asymptotic error rates for QMC are relevant for this dimension until
n is extremely large. There is however empirical evidence that QMC and
RQMC methods usually surpass MC methods, well before entering their
asymptotic regime.

The integral we study represents the value of an Asian call option. Valu-
ing Asian options is a problem of practical interest in financial applications
and is also a widely studied test problem for MC and QMC methods. In this
setting there is an underlying asset with price S(t) at time t. The option
pays an amount max(0, (1/s)

∑s
i=1 S(ti) − K), at time T , where K is the

strike price, and t1, . . . , ts are the dates at which the asset’s price is recorded.
Somebody planning to make regular purchases of the asset between times 0
and T might buy this option as a hedge against high future prices.

Under the Black-Scholes model, the value of this option, at time t = 0,
is the expected value of the payment, assuming that S(t) follows geometric
Brownian motion, times a discount factor that reflects the time value of
money. Geometric Brownian motion at s time points can be expressed
through a vector x ∼ U [0, 1)s as

S(ti) = S(ti, x) = S(0) exp
[
(r − σ2/2)ti + σ

√
T/s

i∑
j=1

Φ−1(xj)
]
,

where the drift parameter r is the risk-free rate, σ is the volatility of the asset
prices, and Φ−1 is the inverse of the standard normal cumulative distribution
function. Incorporating the discount we find the value is

∫
f(x)dx where

f(x) = e−rT max
(

0,
1
s

s∑
i=1

S(ti, x)−K
)
.

In our experiments, we use an initial price of S(0) = 100, an annualized
interest rate of r = 0.05, an expiration of T = 1 year, and s = 16 equispaced
times ti = i/16 for i = 1, . . . , 16. The volatility is σ = 0.3. The strike
price is K = 120 so that the option is initially out of the money. For
this option, the probability of a nonzero payout is roughly 0.17. When the
payout probability is much smaller than this, then some form of importance
sampling becomes helpful.

A widely used control variate for Asian options replaces the arithmetic
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option by a geometric one:

h1(x) = e−rT max
(

0,
s∏
i=1

S(ti, x)1/s −K
)
.

The geometric mean inside h1(x) has a lognormal distribution allowing∫
h1(x)dx to be found via a one dimensional integration reducing to the

Black-Scholes formula,∫
h1(x)dx = e−rT

[
ea+b2/2Φ(d1)−KΦ(d2)

]
where

a = ln(S(0)) + (r − σ2/2)T (s+ 1)/(2s),

b2 = σ2T (s+ 1)(2s+ 1)/(6s2),

d1 = (− lnK + a+ b2)/b,
d2 = d1 − b,

taking b ≥ 0, and where Φ is the standard normal CDF. See Ritchken,
Sankarasubramanian, and Vijh (1993).

The functions

A(x) = e−rT
(

1
s

s∑
i=1

S(ti, x)−K
)

(31)

G(x) = e−rT
( s∏
i=1

S(ti, x)1/s −K
)

(32)

are useful in a control variate strategy for QMC. The standard asymptotic
results for QMC assume integrands of bounded variation. The functions
f(x) and h1(x) are not of bounded variation on [0, 1)s, but f(x) − A(x)
and h1(x) − G(x) are of bounded variation. Note also that f − A and
h1−G represent the discounted payoff from the corresponding put options,
which pay max(0,K − (1/s)

∑s
i=1 S(ti)), and max(0,K −

∏s
i=1 S(ti)1/s),

respectively. Both
∫
A(x)dx and

∫
G(x)dx are easily obtainable. For this

problem∫
h1(x)dx = 1.916,

∫
A(x)dx = −16.454,

∫
G(x)dx = −17.191.

The Monte Carlo methods we consider are listed in Table 2. They all
use IID points Xi ∼ U [0, 1)s. MC0 is plain Monte Carlo with no control
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Name Estimate

MC0 Î(f)
MC1 Î(f − β1h1) + β1I(h1)
MC3 Î(f − β2h1 − β3A− β4G) + β2I(h1) + β3I(A) + β4I(G)
MCB Î(f −A) + I(A)
MCBB Î(f −A− β5(h1 −G)) + I(A) + β5I(h1 −G)

Table 2: Shown are the Monte Carlo methods used in the Asian option
example. In each estimate Î(g) is the sample average of g(Xi) and I(g) =∫
g(x)dx is assumed known. The Xi employed are IID from U [0, 1)s and

βj are estimated by least squares regression. The mnemonic underlying the
first three subscripts is that those methods use 0, 1, and 3 control variates.
MCB works directly with a bounded integrand and MCBB uses a bounded
integrand and a bounded control variate.

variates. MC1 uses one control variate, h1. MC3 uses three control variates,
h1, A, and G. MCB uses the bounded function f − A, and MCBB uses
the bounded function f − A with a bounded control variate h1 − G. The
coefficients βj required are estimated by least squares on the Monte Carlo
sample.

We also considered (randomized) QMC versions of all of these strategies.
For an out of the money option such as this, f(x) = 0 for most x and has
smaller variance than f(x)−A(x). It is reasonable a priori to expect MCB to
be worse than MC0 but QMCB might be better than QMC0 due to bounded
variation in f −A.

The RQMC strategies we investigated were based on (0,m, 16)–nets in
base 17 using the generalized Faure construction described in Tezuka (1995).
Our first version used R = 85 independent replicates of a randomized
(0, 2, 16)–net. Our second version used R = 5 replicates of a (0, 3, 16)–
net. Both versions require n = 5 × 173 = 24565 function evaluations, and
this is also the number of function evaluations used in the MC simulations.
The randomization was a random digital shift, as described in L’Ecuyer and
Lemieux (2002). We denote the methods QMC(2) and QMC(3). The super-
script shows m and the control variate method is specified through the same
list of subscripts used for MC.

For the 85 replicates of the (0, 2, 16)–net, the replication strategy in
Section 5.1 was used to estimate the control variates and the variance of
Îβ̂ . In each of the 5 replicates of the (0, 3, 16)–net the coefficients βj were
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Coef MC QMC(2) QMC(3)

β1 1.10 (4.9e−4) 1.08 (5.6e−3) 1.10 (1.1e−3)
β2 1.04 (2.3e−4) 1.01 (7.7e−3) 1.04 (4.0e−4)
β3 0.534 (1.5e−3) 1.33 (1.3e−1) 0.519 (2.7e−3)
β4 −0.525 (1.5e−3) −1.37 (9.7e−2) −0.510 (2.7e−3)
β5 0.988 (2.0e−4) 1.03 (9.0e−3) 0.987 (1.2e−4)

Table 3: Estimated control variate coefficients for MC and for QMC with
m indicated as a superscript 2 or 3. Standard errors are in parentheses.

MC QMC(2) QMC(3)

0 4.41e−2 2.05e−2 3.70e−3
1 2.99e−3 2.16e−3 1.34e−3
3 2.08e−3 1.48e−3 1.04e−3
B 9.05e−2 1.69e−2 2.94e−3
BB 2.81e−3 1.52e−3 7.35e−4

Table 4: Estimated root mean squared errors. The row labels describe the
control variate strategy as described in Table 2. The column labels describe
the sampling strategy: MC or QMC with m indicated as a superscript 2
or 3.

estimated using the formula for β̂mc applied to QMC data. These 5 values
were then averaged and the sample standard error was computed.

The results of the simulation are shown in Tables 3 and 4. The standard
errors in Table 3 were obtained by analyzing the MC and QMC(2) data as
85 replicate samples of size 289 and those for QMC(3) were obtained in an
analysis of 5 replicates of size 4913. As might be expected β3 is close to
−β4 while the other coefficients are close to 1. The values for β3 and β4

are quite different for QMC(2) than for the other methods. The reason is
that QMC(3), having only 5 replicates, used estimates of βmc while the 85
replicates in QMC(2) were sufficient to allow estimation of βrqmc.

In Table 4 we see that for each set of control variates, QMC(3) is more ac-
curate than QMC(2) which is in turn more accurate than MC. In particular,
while QMC(3) could only be used with estimates of suboptimal coefficients
it still outperformed QMC(2).

Without control variates the root mean square error (RMSE) for MC is
about 11.92 times that for QMC(3). For MC to attain that reduced error
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would require a sample size 11.922 .= 142 times as large. QMC(2) attained
a smaller improvement over MC.

The best control variate strategy for MC was to use all 3 variates. For
this function the control variates reduced RMSE by a factor of 21.2 cor-
responding to a sample size improvement of about 450. In this problem
control variates alone bring a better result than QMC alone.

With optimal coefficients, using all three variates would also be the best
strategy for QMC, because the other control variate strategies can be ob-
tained as choices of β2, β3 and β4. QMC(2) used 85 replicates and also had
its smallest error with all three control variates. For QMC(3) with QMC
estimates of βmc, the method QMC(3)

BB with just one control variate had
better accuracy than QMC(3)

3 .
The best combined strategy was QMC(3)

BB, with an efficiency gain of
(4.41/.0735)2 .= 3600 compared to MC0. The two best methods for this
problem are QMC(3)

1 and QMC(3)
BB. They gave option values of 2.162 and

2.163 respectively with the standard errors in Table 4.
As expected MCB was worse than MC0. For both QMC methods the

bounded function approaches QMC(m)
B were (slightly) better than the cor-

responding QMC(m)
0 methods. Similarly there were small advantages for

QMC(m)
BB using the bounded functions f −A and h1−G over QMC(m)

1 using
corresponding unbounded functions f and h1.

The results discussed above can be brought out in an ANOVA of the
logarithms of the numbers in Table 4. An additive model fits with an R2

of 90%. The fitted main effects may be interpreted as follows. Compared
to MC, QMC(2) and QMC(3) reduce variance by factors of 4.4 and 33 re-
spectively. Control variates reduce variance by factors of 53 for method 1,
103 for method 3, and 104 for method BB, while method B increases vari-
ance by about 1.2. The interaction effects, when exponentiated, result in
some synergies, most notably a further 5-fold variance reduction for B with
QMC(3) and about a 5.7-fold variance increase for B with MC.

10 Conclusions

In this paper we have investigated the consequences of combining QMC
with control variates. Replacing MC by QMC usually improves accuracy.
Applying this notion to f −βTh we ordinarily expect the combined method
to improve on MC with control variates. Incorporating control variates into
MC or QMC also improves accuracy in general, though for QMC it can be
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harder to select control variates.
Not surprisingly, in our examples we saw diminishing returns to employ-

ing both strategies: the improvement from control variates was smaller for
QMC than for MC. Equivalently, the improvement from QMC was smaller
with control variates than without. These results are consistent with Ameur,
L’Ecuyer, and Lemieux (1999) who report numerical examples in which con-
trol variates improve QMC but not as much as they improve simpler meth-
ods. Further, as remarked in Section 8, a given variance reduction factor
corresponds to a larger sample size reduction for MC than for QMC.

In our two numerical examples, using estimates of βmc with QMC gave
very good results, and this is reassuring. In the Asian option problem we
saw better results using estimated suboptimal coefficients βmc with our best
equidistribution strategy QMC(3) than we saw using a weaker equidistribu-
tion QMC(2) for which we could estimate the corresponding optimal βrqmc.
The tentative conclusion is that if one is using both QMC and control vari-
ates, the quality of the QMC method is more important than that of the
control variate coefficient.

In other problems, estimates of βmc could lead to poor performance. In
practice this can be tested by comparing standard errors for QMC with
and without control variates. Then, if necessary, replicates may be used
to estimate βrqmc, or what seems better, internal replicates can be used to
estimate the value of βrqmc appropriate to a smaller sample size than the
one in use.

We found theoretically that effective control variates for QMC are not
necessarily the same as for MC. For MC, a good control variate is one that
correlates with the integrand, while for QMC a good control variate is one
wherein certain derivatives or high frequency components correlate with the
corresponding aspects of the integrand.

In our derivations we explored control variates for RQMC instead of for
QMC per se. An alternative approach is to define the optimal βqmc as one
that minimizes an error bound, such as one proportional to the total varia-
tion of f−βTh. We found that alternative less attractive for several reasons.
First, the total variation is a factor in a bound on the error, and the value
of β that minimizes the bound is not necessarily the one that minimizes the
error itself. Second, the total variation is not as tractable to optimize as the
variance. For smooth enough functions the total variation may be written
as an L1 norm applied to the s dimensional mixed partial derivative ∂s/∂x,
suggesting that we should consider minimizing

∫
|∂s(f(x)−βTh(x))/∂x|dx.

Thus, qualitatively at least, effective control variates are again those for
which a certain derivative is approximately linearly related to the corre-
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sponding derivative of the target integrand.
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