
Monte Carlo and Quasi-Monte Carlo for
Statistics

Art B. Owen

Abstract This article reports on the contents of a tutorial session at MCQMC 2008.
The tutorial explored various places in statistics where Monte Carlo methods can be
used. There was a special emphasis on areas where Quasi-Monte Carlo ideas have
been or could be applied, as well as areas that look like they need more research.

1 Introduction

This survey is aimed at exposing good problems in statistics to researchers in Quasi-
Monte Carlo. It has a mix of well known and not so well known topics, which
both have their place in a research context. The selection of topics is tilted in the
direction of problems that I have looked at. That enables me to use real examples,
and examples are crucial to understanding statistics.

Monte Carlo methods are ubiquitous in statistics. Section 2 presents the boot-
strap. It is a method of resampling the observed data to judge the uncertainty in a
quantity. The bootstrap makes minimal assumptions about how the data were ob-
tained. Some efforts at bringing balance to the resampling process have brought
improvements, but they are not large enough to have made much impact on how the
bootstrap is used. Permutation tests, considered in Section 3 have a similar flavor to
the bootstrap, but there, efforts to impose balance can distort the results.

Markov chain Monte Carlo (Section 4) is used when we cannot directly sample
the quantity of interest, but are at least able to find a Markov chain from whose
stationary distribution the desired quantity can be sampled. Space limitations make
it impossible to cover all of the topics from a three hour tutorial in depth. The work
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Fig. 1 A measure of kidney damage is plotted versus age for 60 subjects in [34].

on QMC for MCMC has appeared in [31], [43] and in Tribble’s dissertation [42],
and so it is just sketched here.

Monte Carlo methods are used for search as well as for integration. Section 5
presents the method of least trimmed squares (LTS). This is the most effective
method known for highly robust regression model fitting. It uses an ad hoc Monte
Carlo search strategy. Quasi-Monte Carlo methods have been used in search prob-
lems [26, Chapter 6], usually to search over the unit cube [27]. The space to search
over in LTS is of a combinatorial nature. Finally, Section 6 points to two more im-
portant problems from statistics where QMC may be useful.

2 The bootstrap

Figure 1 plots a measure Yi of kidney damage against age Xi, for 60 subjects studied
in Rodwell et al. [34]. There is a clear tendency for older subjects to have greater
kidney damage. This may be quantified through the correlation coefficient, which
on this data takes the value 0.59. Since only 60 subjects were measured, we very
much doubt that the true correlation taken over all people is exactly 0.59. Using ρ

to denote a hypothetical true correlation and ρ̂ to denote the measured one, we may
just want to know the variance V (ρ̂) of our estimate.

The variance of the sample correlation is not hard to find in closed form, so long
as the data are a sample from the bivariate normal distribution. But we have no
reason to expect that assumption is good enough to use. The bootstrap, introduced
by Efron [5] provides a way out of that assumption. Operationally one does the
following:
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1. For b = 1, . . . ,B
2. Draw (X∗b

i ,Y ∗b
i ), 1 ≤ i ≤ 60 with replacement from the original data.

3. Compute ρ̂∗b = ρ̂
(
(X∗b

1 ,Y ∗b
1 ), . . . ,(X∗b

60 ,Y ∗
60)

)
.

4. Return the variance of ρ̂∗1, . . . ρ̂∗B.

Using B = 9999 the result came out to be 0.0081, so that the standard deviation
of the ρ̂∗ values is 0.090. What we actually got was a Monte Carlo estimate of the
variance of the bootstrapped correlations ρ̂∗ when resampling from the data. Even
if we let B→∞ this would not be the same as the variance we want, which is that of
ρ̂ when sampling from the unknown true distribution of (X ,Y ) pairs. But bootstrap
theory shows that the two variances become close quickly as the number n of sample
values increases [7].

First impressions of the bootstrap are either that it is obviously ok, or that it is
somehow too good to be true, like pulling oneself up by the bootstraps. The for-
mal justification of the bootstrap begins with a statistical functional T defined on
distributions F . In this case T (F) gives the variance of the correlation measured on
60 pairs of data drawn from the distribution F on R2. Let F0 be the unknown true
distribution and F̂n be the distribution that puts equal probability 1/n on all n data
points. As n increases F̂n approaches F0. Then a continuity argument gives T (F̂n)
approaching T (F0). The continuity argument holds in great generality but there are
exceptions, as well as remedies in some of those cases [32].

The bootstrap can also be used to estimate and correct for biases in statistics.
Let E(ρ̂ | F) denote the expected value of ρ̂ when sampling n data pairs from F .
Typically E(ρ̂) 6= ρ , so that the sample correlation is biased. The bootstrap estimate
of the bias B(F)≡ E(ρ̂ | F)−ρ(F) is B(F̂n)≡ E(ρ̂∗ | F̂n)−ρ(F̂n). We can estimate
this bias by resampling. In the present example we find that the average value of
ρ̂∗− ρ̂ in resampling is −0.0047. If we are worried that ρ̂ is too small by 0.0047
we can add 0.0047 (i.e. subtract the estimated bias) and get 0.594 instead of 0.589.
Here the bias adjustment is very small. That is typical unless the method used has a
large number of parameters relative to the sample size.

Figure 2 shows a histogram of the 9,999 bootstrap samples used in this anal-
ysis. The histogram is skewed, centered near the original correlation, and is quite
wide. The resampled correlations cut the real line into 10,000 intervals. A bootstrap
95% confidence interval is formed by taking the central 9500 of those intervals. If
the values are sorted ρ̂∗(1) ≤ ρ̂∗(2) ≤ ·· · ≤ ρ̂∗(9999), then the 95% confidence in-
terval goes from ρ̂∗(250) to ρ̂∗(9750). In this example we have 95% confidence that
0.391≤ ρ ≤ 0.755. Similarly there is 99% confidence that ρ̂∗(100) ≤ ρ ≤ ρ̂∗(9900), or
0.346≤ ρ ≤ 0.765. Bootstrap confidence levels are not exact. They are approximate
confidence intervals. Typically they have coverage probability equal to their nomi-
nal level plus O(n−1). See [13]. The intervals presented here are known as percentile
intervals. They are the simplest but not the only bootstrap confidence interval. See
[7] for other choices.

The balanced bootstrap [4] is an attempt to improve on bootstrap re-sampling.
Instead of sampling n observations with replacement B times, it forms a large pool
of nB observations, with B copies of each original data point. Then it randomly par-
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Fig. 2 This figure shows 9999 bootstrap resampled correlations for the kidney data. There is
a reference point at the sample correlation. Solid vertical lines enclose the central 95% of the
histogram. Dashed lines enclose the central 99%.

titions them into B subsets of equal size n. Those groups are treated as the bootstrap
samples. Now each original observation appears the same number B of times among
the sampled data. The balanced bootstrap is similar to QMC. Higher order balanc-
ing, based on orthogonal arrays, was proposed by [12], but that proposal requires
the number n of observations to be a prime power.

To apply QMC, it helps to frame the bootstrap problem as an integral over [0,1]n,
as discussed in [28] and thoroughly investigated by Liu [21]. We may write X∗

i as
XdnUie where Ui ∼ U(0,1) are independent. Then X∗ = (X∗

1 , . . . ,X∗
n ) is a function of

U ∼U(0,1)n. The bootstrap estimate of bias is a Monte Carlo estimate on B samples
of

∫
[0,1]n Q(U)dU for

Q(U) = T (X∗(U))−T (X), (1)

where T (X) is a shorthand for T (n−1
∑

n
i=1 δXi) with δx the point mass distribution

at x. The bootstrap estimate of variance has integrand

Q(U) =
(

T (X∗(U))−
∫

[0,1]n
T (X∗(U))dU

)2

. (2)

The upper end of a bootstrap 95% confidence interval is the solution T 0.975 to∫
[0,1]n Q(U)dU = 0.975 where

Q(U) = 1T (X∗(U))≤T 0.975 , (3)



MC and QMC for Statistics 5

while the lower end uses 0.025 instead of 0.975.
To implement the ordinary bootstrap we take points Ub = (Ub1, . . . ,Ubn) ∼

U(0,1)n for b = 1, . . . ,B and use ordinary Monte Carlo estimates of the integrals
in (1), (2) and (3). To get a QMC version, we replace these points by a B point QMC
rule in [0,1]n.

The integrands Q are generally not smooth, because XdnUie is discontinuous in Ui,
apart from trivial settings. Smoothness is important for QMC to be effective. Fortu-
nately, there is a version of the bootstrap that yields smooth integrands, at least for
estimating bias and variance. The weighted likelihood bootstrap (WLB), proposed
by Newton and Raftery [24] uses continuous reweighting of the data points instead
of discrete resampling. It is a special case of the Bayesian bootstrap of Rubin [38].
Where the ordinary bootstrap uses T (n−1

∑
n
i=1 δX∗

i
), the WLB uses T (∑n

i=1 wiδXi)
for certain random weights wi. To generate these weights put vi = − log(Ui) and
wi = vi/∑

n
j=1 v j. Then for uniform Ui we find that vi has the standard exponential

distribution, while w = (w1, . . . ,wn) = w(U) has a Dirichlet distribution. We sub-
stitute smooth reweighting for resampling, by using T (∑n

i=1 wi(U)δXi) in place of
T (X∗(U)) in equations (1), (2), and (3). In a QMC version of the WLB, we take
B points with low discrepancy in [0,1]n and use them as the uniform numbers that
drive the reweighting.

The WLB does not give the same answers as the original bootstrap. But the orig-
inal bootstrap is not exact, only asymptotically correct as n → ∞. The same is true
of the WLB.

In her dissertation, Ruixue Liu [21] compared various QMC methods for boot-
strap problems. The underlying problem was to measure the correlation over law
schools, of the average LSAT score and grade point average of newly admitted stu-
dents.

In addition to the methods described above, she considered several QMC and
QMC-like constructions, as follows. Latin hypercube sampling (LHS)[22] provides
a sample in which each of the sample coordinates U1i, . . . ,UBi for i = 1, . . . ,n is si-
multaneously stratified into intervals of width 1/B. Randomized orthogonal array
sampling [29] stratifies the bivariate or trivariate margins of the distribution of Ub.
When the array has strength t, then all

(n
t

)
of the t–dimensional margins are strati-

fied, typically into cubical regions of width B−1/t . Orthogonal array based LHS [41]
has both the LHS and the orthogonal array stratifications. Scrambled nets [30] are a
randomization of a QMC method (digital nets).

Some numerical results from Liu [21] are shown in Tables 1 and 2. Bootstrap
estimates of the bias, variance and 95’th percentile were repeatedly computed and
their variance was found. Those variances are based on 2000 replications of each
method, except for scrambled nets for which only 100 replications were used. The
variances are presented as variance reduction factors relative to the variance of the
plain resampling bootstrap. For example, we see that the LHS version of resam-
pling is about 10 times as efficient as the ordinary bootstrap on the bias estimation
problems.

Several trends are apparent in these results. Better variance reductions are ob-
tained via reweighting than resampling, as one would expect because the former
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Resampling Reweighting
Method Bias Var Perc Bias Var Perc

Plain bootstrap 1.0 1.0 1.0 1.4 1.4 1.2
Balanced bootstrap 10.8 1.2 1.2
Latin hypercube sampling 10.7 1.2 1.3 16.4 2.3 1.6
Randomized orthogonal array 15.7 3.1 1.7 105.2 8.3 2.9
OA-based LHS 36.0 3.2 1.6 126.1 9.0 2.7
Scrambled (0,612,15)–net in base 61 30.0 3.1 1.8 116.9 8.8 3.3

Table 1 This table shows variance reduction factors attained from applying QMC methods to
the three bootstrap problems described in the text. The values are normalized so that the ordinary
bootstrap gets a value of 1.0 in each problem. Each bootstrap method used B = 612 = 3721 resam-
ples. The quantity being bootstrapped was a sample correlation. Both reweighting and resampling
bootstraps were used to estimate bias, variance and 95’th percentile. The orthogonal arrays had
strength 2. The balanced bootstrap is only defined for the resampling approach.

has smoother integrands. It is easiest to improve on bootstrap bias estimates, harder
for variance estimates, and hardest for confidence intervals. Again we would expect
this. In the von Mises expansion (e.g. [8]) the statistic T is approximated by a sum
of functions of one observation at a time. When that approximation is accurate, then
the bias integrands are more nearly additive in the n inputs while the variance inte-
grands are nearly the square of an additive approximation and we might expect the
resulting statistical function to be of low effective dimension in the superposition
sense [2]. Unfortunately, the interest in usual applied settings is in the reverse or-
der, percentiles, then variance then bias. Finally orthogonal array methods with high
strength and few levels do poorly

3 Permutation tests

Newborn babies have a walking reflex, in which their feet start a walking motion
when placed in contact with a surface. Zelazo et al. [44] conducted an experiment
to test whether regular daily encouragement of this reflex would result in babies

Resampling Reweighting
Method Bias Var Perc Bias Var Perc

Plain bootstrap 1.0 1.0 1.0 1.4 1.4 1.1
Balanced bootstrap 9.9 1.2 1.1
Latin hypercube sampling 10.2 1.2 1.3 15.7 2.5 1.5
Randomized orthogonal array 3.3 0.6 0.4 8.5 0.7 0.3
OA-based LHS 7.5 0.6 0.4 8.8 0.7 0.3
Scrambled (0,173,15)–net in base 17 60.7 6.5 2.2 756.0 33.6 2.9

Table 2 This table shows the same quantities as Table 1, except that now B = 173 = 4913 and the
orthogonal arrays had strength 3.
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Fig. 3 Shown are ages at which babies learned to walk in each of 4 subject groups.

learning to walk at an earlier age, than without the encouragement. Figure 3 shows
the results of this experiment.

There were twenty-four babies in the experiment. The age at which they could
walk alone was reported for twenty-three of them. One group (active) had their re-
flex stimulated daily for eight weeks. Another (passive) had gross-motor stimulation
of a different kind. A third group (none) got neither stimulation but was regularly
tested for walking ability. The fourth group (control) was not even tested until a
greater age.

For illustration, we will focus on the simple problem of testing whether the active
group learned to walk sooner than the ’none’ group. For differing statistical analyses
of all four groups see [1, Chapter 10] and [44].

The active group learned to walk at an average age of X̄ = 10.125 months com-
pared to Ȳ = 11.7 months for the none group. They were faster on average by 1.58
months, but perhaps this difference can be attributed to chance.

A permutation test can be used to judge the difference. The two groups combined
have 12 babies. We could select 6 of them to be the active group in any of

(12
6

)
= 924

ways. If there really is no difference in the distribution of walking age between the
groups, then we could permute the active versus none labels without changing the
distribution of the outcome. After such a permutation of the labels, we get new
averages X̄∗ and Ȳ ∗. The original permutation has a 1 in 924 chance of giving the
largest mean difference of them all, if the two groups are identical.

Figure 4 shows a histogram of all 924 permuted group mean differences X̄∗−Ȳ ∗.
There is a vertical reference line at the observed value of X̄−Ȳ =−1.58. There were
only 49 values less than or equal to −1.58. By symmetry there were 49 values at
least +1.58 and so there were 98 values as or more extreme than that observed.



8 Art B. Owen

924 permutations of group labels

Mean group difference

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
10

20
30

40
50

60

●

Fig. 4 The histogram shows all 924 values of X̄∗−Ȳ ∗ obtainable by permuting the labels (control
versus none) for 12 of the babies learning to walk. The vertical reference line is at the observed
value X̄ − Ȳ .

This permutation test allows one to claim a two-tailed p-value of 98/924 .= 0.106
for the difference. A difference this large could arise by chance with probability
about 10.6%. The observed difference is not at all unusual. Some statisticians (not
including the author) would claim a p-value of 49/924 here, which is closer to 5%,
the conventional line at which results begin to be taken seriously.

In balanced permutations [6] we compare the two groups in a more carefully
controlled way. Each time the labels are reassigned, we ensure that three members
of the new treatment group come from the old treatment group and that three come
from the old control group. The other six babies are similarly balanced, and they
become the relabeled control group. There are

(6
3

)2
= 400 balanced permutations

for this data. It is customary to include the original sample, from an identity permu-
tation, in an MC based permutation analysis. This avoids the possibility of p = 0.
The identity permutation is not a balanced permutation, and so adding it in to the
reference set here gives a histogram of 401 values.

The intuitive reason for balancing the permutations is as follows. If there is no
difference between the groups, then the balanced permutations still give rise to the
same distribution of the treatment difference as the real sample has. But when there
is a difference, for example the treatment group learn to walk two months earlier
on average, then things change. In relabeling we get X̄∗ for treatment and Ȳ ∗ for
control. In some unbalanced permutations all or most of X̄∗ came from the original
control group while in others few or none came from there. In balanced permutations
exactly half of the values contributing to X̄∗ are at the high level and half at the low
level. A mean difference between the two original groups will mostly cancel for the
relabeled groups. As a result, the histogram of X̄∗− Ȳ ∗ for balanced permutations
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can be expected to be narrower than the one for full permutations, when there is a
treatment difference. Narrower histograms lead to smaller reported p-values. In the
baby walking data, we find that |X̄∗− Ȳ ∗| ≥ |X̄ − Ȳ | holds for only 27 points in the
reference set, yielding a p-value of 27/401 = 0.067, which is smaller than for the
full permutation set.

While balanced permutations have the potential to sharpen inferences, they have
been applied without theoretical support. In simulations they have been found to
give p–values that are too permissive. The problem with balanced permutations is
that they do not form a group under composition. The group property is a key ingre-
dient in the permutation argument [17]. Some results in [40] show that the chance
of the original permutation beating all

(n
2

)2 balanced permutations is much larger

than (1 +
(n

2

)2)−1 even when two groups of size n have identical distributions. The
p values are too small by a factor that grows quickly with n and is already over 100
for n = 10.

It may be possible to repair balanced permutations, although this looks difficult
at present. One approach is to try to compensate by adjusting the reported p values.
Another is to search for a suitable subgroup of permutations to use.

4 MCMC

Usually in QMC problems, we write the desired answer as an integral µ =
∫
[0,1]d f (x)dx.

The function f takes independent uniformly distributed quantities, transforms them
into the desired ones, such as dependent non-uniform values, and then computes
whatever it is we want to average as a function of those values. As is well known [26],
QMC methods achieve better rates of convergence than MC on such problems, mak-
ing only modest smoothness assumptions on f .

In some applications however, we seek a value µ =
∫
X f (x)π(x)dx where there is

no practical way to turn uniform random variables into the desired ones from π on
the state space X. We might be able to get x∼ π by rejection sampling but with such
an unfavorable acceptance rate that the method would be useless. This issue arises
commonly in Bayesian computations, for statistics [10] and machine learning, as
well as in the physical sciences [23].

In MCMC we generate xi = φ(xi−1,vi) where vi ∼ U(0,1)d . The distribution of
xi depends on xi−1,xi−2, . . . only through the immediate predecessor xi−1, and so it
has the Markov property. With some skill and care, one can often choose φ so that
the Markov chain has π as its stationary distribution. Sometimes it is also important
to choose a good starting point x0. Under reasonable conditions there is a law of
large numbers for MCMC, so that

µ̂n =
1
n

n

∑
i=1

f (xi)→ µ
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and there are also central limit theorems for MCMC. The theory and practice of
MCMC in statistics is presented in several books, including Liu [20] and Robert
and Casella [33].

The quantity µ̂n depends on n values vi ∼ U(0,1)d . Its expectation is thus an nd
dimensional integral which approximates, but does not equal, the desired one. Un-
like crude Monte Carlo, there is a bias in MCMC. Under reasonable conditions it
decays exponentially with n and so is often very small. Some other times the expo-
nential decay is still too slow for practically useful problems, and so the constant in
the exponent matters. For some studies of the bias, see Rosenthal [35].

There have been some efforts to replace n vectors vi by quasi-Monte Carlo points.
The key idea is to open up the vectors vi into one long sequence u1,u2,u3, . . . ,und
where vi = (ud(i−1)+1,ud(i−1)+2, . . . ,udi). Then one replaces the independent and
identically distributed (IID) points ui for i = 1, . . . ,nd by some alternative points
with good equidistribution properties. Naive substitution of QMC points vi into
MCMC can fail very badly.

An early effort by Liao [19] has proven effective. Liao’s approach is to take a
QMC point set a1, . . . ,an ∈ [0,1]d and randomly reorder it getting vi = aτ(i) where
τ is a random permutation of {1, . . . ,n}. Then the reordered points v1,v2, . . . ,vn
are concatenated into a single vector of nd values in [0,1] with which to drive the
MCMC.

The thesis of Tribble [42] has an up to date account, extending the work published
in [31] and [43], and giving methods that do even better than Liao’s, in numerical
examples.

What is known so far is that a completely uniformly distributed (CUD) sequence
u1,u2, . . . can be used in place of IID points. In that case the QMC answer converges
to the correct result, at least for Markov chains with finite state spaces. The main
theoretical technique is a coupling argument first made by Chentsov [3] for sampling
Markov chains by inversion but then extended by Owen and Tribble [31] to handle
Metropolis-Hastings sampling. As of 2008 the continuous state space case had not
been handled. (It is now covered in a technical report by Chen, Dick and Owen.)

A CUD sequence is one that can be grouped into overlapping d-tuples zi =
(ui, . . . ,ui+d−1) such that the d dimensional star–discrepancy of z1, . . . ,zn−d+1 tends
to 0. This must hold for all d. Extensions for random sequences and for limits of
finite length sequences are given in [43]. If points ui are independent U(0,1) then zi
have discrepancy that converges to 0 with probability one. But specially constructed
sequences can have smaller discrepancies and hence may be more accurate.

Using a CUD sequence can be likened to using the entire period of a pseudo-
random number generator. This is an old suggestion of Niederreiter [25]. Quite a
different approach is to drive multiple copies of Markov chains by QMC, with re-
ordering between steps. See for example L’Ecuyer, Lécot and Tuffin [16] and earlier
work by Lécot [15].

The best numerical results for MCQMC so far used some small linear feedback
shift registers, in Tribble [42]. He gets variance reduction factors well over 1,000
for the posterior means of parameters using the Gibbs sampler on the well known
pump failure data set. For a higher dimensional vasorestriction data set of [9]. he
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Fig. 5 This plot shows phone calls versus year. Some data values (plotted as open circles) were
corrupted by counts of minutes instead of calls. From top to bottom at the right, the three fitted
lines are least squares regression (dots), L1 regression (dashes), and least trimmed squares (solid).

obtains variance reduction factors up to 100. In both cases the variance reduction
factors increase with sample size. Switching from IID to CUD to randomized CUD
points brings the best improvements when the function φ(x,v) is smooth. This oc-
curs for the Gibbs sampler, which randomly updates components of x one at a
time given the others. More general Metropolis-Hastings sampling methods typi-
cally have acceptance-rejection steps which make for discontinuous integrands and
lessened improvements. Still, the Gibbs sampler is important enough that improve-
ments of it are worth pursuing.

The theoretical results so far may be likened to the strong law of large numbers.
They indicate that for large enough n, the answer converges. What is missing is an
analogue of the central limit theorem, or of the Koksma-Hlawka inequality, to say
how fast the convergence takes place. Furthermore, not enough is known about the
speed with which discrepancies (for varying d) of CUD sequences can vanish. A
survey of CUD constructions is given by [18].

5 Least trimmed squares

Figure 5 shows the Belgian telephone data of [37]. The data were supposed to por-
tray the number of calls per year (in millions) as a function of the year (minus
1900). As it turned out minutes, and not calls, were counted for a period starting in
late 1963 and ending in early 1970. The errors in the data make a big difference to
the regression line, fit by least squares.
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Errors or other data contamination of this nature are not as rare as we would like.
In the present setting we can clearly see that something is amiss, but in problems
where dozens or even thousands of explanatory variables are used to make predic-
tions, gross errors in the data might not be easy to see.

A robust line would be better suited to this problem. Robust methods are those
that are less affected by bad data. An old, but still very good reference on robust
statistical methods is the book by Huber [14].

The least squares regression line shown Figure 5 was found by minimizing
∑

n
i=1(Yi −β0 −β1Xi)2 over β0 and β1, where Yi is the i’th phone measure and Xi is

the i’th year. The largest errors dominate the sum of squares, and so least squares is
far from robust. A natural alternative is to minimize the L1 error ∑

n
i=1 |Yi−β0−β1Xi|

instead. It can be fit by quantile regression, where it generalizes the sample median
to the regression context. As such, this choice is less affected by outliers. It brings
a big improvement for this data, but it is still not robust, and gets fooled badly on
other data.

The current state of the art in robust fitting is to sum most of the squared errors,
but not the large ones. This is the Least Trimmed Squares (LTS) method of [37].
For any β = (β0,β1) let ei(β ) = |Yi−β0−β1Xi|, and then sort these absolute errors:
e(1)(β )≤ e(2)(β )≤ ·· · ≤ e(n)(β ). We choose β to minimize

f (β ) =
bαnc

∑
i=1

e(i)(β )2.

If we were confident that fewer than 20% of the data were bad, we could take α =
0.8. The smallest workable value for α is (n + p + 1)/(2n), which allows for just
under half the data to be bad.

Figure 5 shows the least trimmed squares fit. It goes through the good points and
is oblivious to the bad ones.

Figure 6 shows residuals Yi − β̂0 − β̂1Xi for estimates β̂ fit by least squares and
by least trimmed squares. In least squares, the good observations have residuals of
about the same size as the bad ones. For least trimmed squares, the residuals from
bad points are much farther from zero than those from good ones. A data analyst
could then easily decide that those points need further investigation.

When there is only one explanatory variable, then there are fast algorithms to
find the least trimmed squares estimates. But when there are many such variables
then the best known fitting strategy is a Monte Carlo search of Rousseeuw and van
Driessen [36]. Their search is guided by some theory.

Consider a general linear model, which predicts Yi by ∑
p
j=1 β jXi j = β ′Xi for p≥ 2

and n ≥ p. It is known that the LTS solution β̂ solves Yi = β̂ ′Xi for p of the points
i = 1, . . . ,n. Thus the solution can be found by checking

(n
p

)
interpolating models.

The cost of checking all those models though is often too high. They use instead a
Monte Carlo strategy.

One of their Monte Carlo search methods is presented in Figure 7. It is the one
recommended when n ≤ 600.
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Fig. 6 The left panel shows the residuals from least squares. The good points get errors of about
the same size as the bad ones. The right panel shows residuals from least trimmed squares. The
bad points get very large residuals, making them numerically conspicuous.

The search in Figure 7 has clearly been tuned empirically, for speed and effective-
ness. For example the C–step brings an improvement, but they found diminishing
returns to fully iterated C-steps. It is better to generate many candidates and then
follow up only the best ones.

The algorithm makes numerous choices that seem arbitrary. There is clearly room
for a better understanding of how to search for an optimum.

1. Sample p points: (Yi,Xi1, . . . ,Xip) i ∈ I ⊂ {1, . . . ,n} |I|= p
2. While linear interpolation of Yi to Xi is not unique, add one more sample point
3. Find β̂ to interpolate Yi = X ′

i β̂ on sampled points.
4. Find points with smallest h = bαnc absolute residuals (among all n points)
5. C-step: Fit LS to the h points and find newest h points with smallest absolute residuals
6. Do 2 more C-steps
7. Repeat steps 1 through 6, 500 times, keeping 10 best results
8. Run C-steps to convergence for these 10
9. Select best of those 10 end points

Fig. 7 This is an outline of the Monte Carlo search algorithm of [36] for solving the least trimmed
squares regression problem, when n ≤ 600.
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6 Other methods

Some other uses of MC and QMC in statistics are very important but were not
described here. Notable among the gaps is the problem of fitting generalized linear
mixed models. Some efforts at this problem via QMC are reported in [39]. This
problem is very important in statistical applications. It features integrands which
can become very spiky in even moderately high dimensions and practical problems
can involve quite high dimension. Another classical quadrature problem arising in
statistics is that of integrating a probability density function of dependent random
variables, (e.g. Gaussian or multivariate t) over a rectangular region. For recent work
in this area see [11].
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