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Abstract

In a geographic experiment to measure advertising e↵ectiveness, some
regions (hereafter GEOs) get increased advertising while others do not.
This paper looks at running B > 1 such experiments simultaneously on B
di↵erent brands in G GEOs, and then using shrinkage methods to estimate
returns to advertising. There are important practical gains from doing this.
Data from any one brand helps to estimate the return of all other brands.
We see this in both a frequentist and Bayesian formulation. As a result,
each individual experiment could be made smaller and less expensive when
they are analyzed together. We also provide an experimental design for
multibrand experiments where half of the brands have increased spend in
each GEO while half of the GEOs have increased spend for each brand. For
G > B the design is a two level factorial for each brand and simultaneously
a supersaturated design for the GEOs. Multiple simultaneous experiments
also allow one to identify GEOs in which advertising is generally more
e↵ective. That cannot be done in the single brand experiments we consider.

1 Introduction

It is di�cult to measure the impact of advertising even in the online setting
where responses of individual users can be linked to conversion activities such as
visiting a website or buying a product. Regression models are often fit to such
rich observational data. While insights from observational data are suggestive,
they seldom establish causal relations.

Google has expertise in using geographical experiments to measure the causal
impact of increased advertising, as decribed by Vaver and Koehler (2011, 2012).
Advertising is increased in some regions and left constant or decreased in others
(the control regions). Then the corresponding values of some key performance
indicator (KPI) are measured and related to the spending level. We will call the
regions GEOs. The Nielsen company has designated market areas (DMAs) and
television market areas (TMAs). GEOs are similar but not necessarily identical
to these.

Other things being equal, it is easier to measure the impact of a large adver-
tising change than a small one. Having two widely separated spend levels makes
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for a more informative experimental design. There are however practical and or-
ganizational constraints on the size of an experimental intervention. Advertising
managers may be reluctant to experiment with large spend changes. Also, in a
small GEO, there may not be enough inventory of ad impressions to sustain a
large spending increase.

Both of these problems can be mitigated by experimenting on several brands
at once. The experimental design is like the one sketched below.

GEO 1 GEO 2 GEO 3 GEO 4 · · · GEO G
Brand 1 + � + � · · · +
Brand 2 � � + + · · · �

...
...

...
...

...
. . .

...
Brand B � + � + · · · +

Here the experiment gives Brand 1 an increased spending level in GEOs 1 and 3
and the control level of spending in GEOs 2 and 4. Every brand gets increased
spend in half of the GEOs, with each GEO being in the test group for some
brands and the control group for others. The combined information from all B
brands can then be used to get a good measure of the overall e↵ectiveness of
advertising. Using shrinkage methods it is also possible for the data from one
brand to improve estimation for another one. Because the multibrand experiment
pools information, it can be run with smaller spending changes than we would
need in single brand experiments.

An outline of this note is as follows. Section 2 presents regression models for
single brands and multiple brands. Section 3 gives a scrambled checkerboard
experimental design in which half of the GEOs are treatment for each brand
and half of the brands get the treatment level in each GEO. Subject to these
constraints, there may be weak correlations among pairs of brands or among
pairs of GEOs. Section 3 also shows that certain classical designs (balanced
incomplete blocks and Hadamard matrices) that might seem appropriate are,
in fact, not well suited to this problem. Section 4 simulates a single brand
experiment 1000 times over 20 GEOs. The true return to advertising in those
simulations is � = 5. There is reasonable power to detect � 6= 0 when advertising
is increased by 1% of prior period sales, but not when it is increased by only
0.5% of prior sales. In either case the standard error of the estimated return is
quite large. Section 5 describes a multibrand simulation with 30 brands in 20
GEOs. The advertising return for brand b is �

b

⇠ N (5, 1). The estimator of Xie
et al. (2012) that shrinks each brand’s parameter estimate towards their common
average is about 3.2 times as e�cient at estimating �

b

than using only that
brand’s data, when the treatment is 1% of sales. For smaller treatments, 0.5% of
sales, shrinkage is about 7.8 times as e�cient as single brand experiments. Some
simulation details are placed in Section 6. Section 7 simulates a fully Bayesian
analysis. The simulation there has G = 160 GEOs but only B = 4 brands and
it also shows a strong benefit from pooling. The Bayesian method has similar
accuracy to Stein shrinkage and comes with easily computed posterior credible
intervals. Section 8 has some conclusions and discussion.
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2 Single- and multi-brand models

We target an experiment comparing an 8 week background period followed by
a 4 week experimental period. To prepare for this project, data from 5 very
di↵erent advertisers was investigated. The industries represented were: hair care,
cosmetics, outdoor clothing, photography and baked goods. There were strong
similarities in the data for all of these industries.

If one plots the 8 week KPI for a brand versus the prior 4 week KPI for that
brand, using one point per GEO the resulting points fall very close to a straight
line on a log-log plot, in all 5 data sets. The linear pattern is so strong because
the GEOs vary immensely in size.

Inspecting all of that data it became clear that the following model was a
good description of a single brand’s data

Y post

g

= ↵
0

+ ↵
1

Y pre

g

+ �Xpost

g

+ "post
g

, g = 1, . . . , G. (1)

Here Y post

g

is the KPI for GEO g in the experimental period, Y pre

g

is the
corresponding value in the pre-experimental period and Xpost

g

is the amount
spent on advertising in GEO g in the post period. The basic linear regression ↵

0

+
↵
1

Y pre

g

is strongly predictive, because the underlying GEO sizes are very stable
and the KPI is roughly proportional to size. There was not an appreciable week
to week autocorrelation for sales data within GEOs. What little autocorrelation
there was would be greatly diminished for multi-week aggregates such as an 8
week prior period followed by a 4 week experimental one.

Model (1) is the one used by Vaver and Koehler (2011). The parameter of
greatest interest is �. When Xpost

g

is the dollar amount spent on advertising,
and the KPI Y post

g

is the revenue in the experimental period, then � is simply
the number of incremental dollars of revenue per dollar spent on advertising.
The interpretability of � as a return to advertising is the reason why we work
with model (1). Modeling the logarithm of the KPI would have some statistical
advantages, but it makes for a less directly interpretable �.

In simulations, the value of Xpost

g

is proportional to Y pre

g

. We take Xpost

g

=
�Y pre

g

in the treatment group and Xpost

g

= 0 in the control group. Our default
choice is � = 0.01, representing di↵erential spend equal to one percent of prior
sales. This need not mean setting advertising to 0 in the control group. Here
Xpost

g

is the level of additional spending above the historic or pre-planned level
for that GEO. In an experiment that reduced spend in some GEOs to o↵set
increases in others, Xpost

g

would be negative in some GEOs and positive in
others.

In model (1), it is not reasonable to suppose that the errors "post
g

are inde-
pendent and identically distributed. In all five real data sets it was clear that
the standard deviation of the KPI is larger for larger GEOs. To a very good
approximation, the standard deviation was proportional to the KPI itself. When
simulating model (1), Gamma random variables were used instead of Gaussian
ones. The standard deviation in a Gamma random variable is proportional to
its mean. See Section 6.
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Now suppose that a single advertiser has multiple brands b = 1, . . . , B. It
then pays to experiment on all B brands at once. In a multibrand setting we
can fit the regression model

Y post

gb

= ↵
0b

+ ↵
1b

Y pre

gb

+ �
b

Xpost

gb

+ "post
gb

, b = 1, . . . , B, g = 1, . . . , G. (2)

The brands should be distinct enough that advertising for one of them does
not a↵ect sales for another. For instance, two di↵erent diet sodas might be too
closely related for this model to be appropriate.

The overall return to advertising is measured by

�̄ =
1

B

BX

b=1

�
b

.

A combined experiment will be very informative about �̄. By using Stein
shrinkage, the combined experiment can also give more accurate estimates of
individual �

b

than we would get from just an experiment on brand b.

2.1 Di↵erential GEO responsiveness

A multibrand experiment can address some issues that are impossible to address
in a single brand experiment. Suppose for instance that advertising is more
e↵ective in some GEOs than it is in others. In a single experiment an unusually
responsive or unresponsive GEO might generate an outlier, but we would not
know the reason. From a multibrand experiment we can fit the model

Y post

gb

= ↵
0b

+ ↵
1b

Y pre

gb

+ (�
b

+ �
g

)Xpost

gb

+ "post
gb

. (3)

The new parameter �
g

measures the extent to which advertising is especially
e↵ective in GEO g. In a single brand experiment with G responses we could not
estimate these per-GEO parameters. It would amount to fitting 3+G regression
parameters to G responses. In a multibrand experiment we get G⇥B responses
and model (3) has only 3B +G regression parameters. If one consistently sees
that some GEOs have better responses to ads than others then it would be
reasonable to focus more advertising in those GEOs. The parameter �

g

can still
be practically important even when it is not large enough to generate outliers.

3 Scrambled checkerboard designs

For each brand, we should have half of the GEOs in the control group and half
in the treatment group. This necessitates an even number G of GEOs which is
not di�cult to arrange. Similarly, with an even number B of brands, each GEO
should be in the treatment group for half of the brands and in the control group
for the other half. We would want to avoid a situation where a large GEO like
Los Angeles was the control group for most of the brands, or in the treatment
group for most of the brands.
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A second order concern is that we would not want any pair of brands to always
be treated together or in the control group together. For two brands the four
possibilities {TT, TC,CT,CC} describe GEOs where the first brand is treatment
or control based on the first letter (T or C) and the second brand’s state is
given by the second letter. Ideally we would like all four of these possibilities to
arise equally often for all pairs of brands and an analogous condition to hold for
GEOs.

This second order concern brings to mind balanced incomplete block (BIB)
designs (Cochran and Cox, 1957), but that is a di↵erent concept and a BIB
does not actually solve the problem. See Section 3.1. There is also potential for
submatrices of Hadamard matrices to be good designs but that imposes unwanted
restrictions on the numbers B and G of brands and GEOs. See Section 3.2.

Theorem 1. Suppose that there are G � 1 GEOs and B � 1 brands where each
GEO has the treatment for half of the brands and each brand is in the treatment
group for half of the GEOs. Then it is impossible to have all four combinations
{TT, TC,CT,CC} arise equally often for each distinct pair of GEOs as well as
for each distinct pair of brands.

Proof. If we represent our design by a G ⇥ B matrix Z of ±1s with +1 for
treatment and �1 for control, then each row and column of Z must sum to
zero. The second order consideration about pairs TT through CC requires the
columns of Z to be orthogonal. Since they are orthogonal to a column of 1s
there can only be G� 1 of them at most, so B  G� 1. The same argument
applied to rows yields G  B � 1 We cannot have both G < B and B < G, so it
is impossible to exactly satisfy the second order conditions.

Because the second order considerations cannot possibly be satisfied, we
compromise on them while still insisting on balance within every row and every
column.

A practical approach is to start with a G⇥B checkerboard pattern like that
in Figure 1, and randomly perturb it. Each brand gets the treatment in half of
the GEOs and conversely each GEO is in the treatment group for half of the
brands. Then we use random swaps to break up the checkerboard pattern. The
second order criteria are then treated via random balance (Satterthwaite, 1959).

The swaps are based on a Markov chain studied by Diaconis and Gangolli
(1995). Their setup uses 0s and 1s where we have ±1s, but results translate
directly between the two encodings. We sample two distinct rows and two
distinct columns of the grid. If the pattern in the sampled 2 ⇥ 2 submatrix
matches ✓

+ ·
· +

◆
or

✓
· +
+ ·

◆

then we switch it to the other of these two. Here and below we use · in place of
� where that would improve clarity. Diaconis and Gangolli (1995) show that
this sampler yields a connected symmetric aperiodic Markov chain on the set of
binary G⇥B matrices with row sums equal to B/2 and column sums equal to
G/2. The stationary distribution is uniform on such matrices.
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Multibrand design after 0 steps

Brand

G
EO

Figure 1: A design where half of the 20 GEOs are treatment (black) for each
of the 30 brands and the others are control (white). Conversely, half of the
30 brands are treatment group for each of the 20 GEOs and half are control.
This design is unsuitable because any pair of brands either always get the same
allocation or always get an opposite allocation. We address that problem via
scrambling.

Their setting was more general: the matrix contained nonnegative integers
with specified row and column sums, not just 0s and 1s. A verbatim translation
of their algorithm would actually make the proposed switch with probability
1/2. Raising the acceptance probability to 1 for binary matrices still satisfies
detailed balance with respect to the uniform distribution, so the Markov chain
still uniformly samples the desired set of matrices.

Figure 2 shows the design after 100 attempts to flip a 4-tuple of elements.
The original checkerboard pattern is still clearly visible and so 100 attempts are
not enough.

There are 16 possibilities for any 2⇥ 2 submatrix of the design and 2 of these
possibilities are flippable. So we should expect that after the algorithm has been
running a while that the chance of a flip is about 1/8. The algorithm starts
with a 100% flippable checkerboard and so it is reasonable to suppose that the
flipping chance starts above 1/8 and decreases to that level. Each flip flips 4
pixels in the image. Therefore we reverse about 1/2 pixels per attempt. Figure 3
shows the result after 30,000 attempts so that the average number of flips per
pixel is about 25.
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Multibrand design after 100 steps

Brand

G
EO

Figure 2: Design from Figure 1 after 100 attempted flips, showing that more
than 100 attempts are needed.

The algorithm is very fast. To do 90,000 steps on a larger 60⇥ 30 grid takes
just over 7 seconds in R on a commodity PC. It is possible to do many more
flips, but that seems unnecessary.

We can look at the correlations among brands as the sampling proceeds.
There are B brands and hence B(B � 1)/2 di↵erent o↵-diagonal correlations.
The minimum, maximum and root mean squared correlations among brands
are plotted in Figure 4. The same quantities for GEOs are plotted in Figure 5.
These correlations are remarkably stable after a short warm-up period. The
stability has set in before BG/2 = 300 successful flips have been made.

There is a relationship among the sum of squared GEO correlations and the
sum of squared brand correlations at every step of the algorithm. For brands b, b0

their correlation is ⇢
bb

0 = (1/G)
P

G

g=1

X
bg

X
b

0
g

. For GEOs g, g0 their correlation

is ⇢
gg

0 = (1/B)
P

B

b=1

X
bg

X
bg

0 . Then counting cases g = g0 and b = b0,

X

gg

0

⇢2
gg

0 =
S

B2

, and
X

bb

0

⇢2
bb

0 =
S

G2

, where

S =
X

g

X

g

0

X

b

X

b

0

X
bg

X
b

0
g

X
bg

0X
b

0
g

0
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Multibrand design after 30000 steps

Brand

G
EO

Figure 3: Design from Figure 1 after 30,000 attempted flips.

which can be rearranged to get

X

b 6=b

0

⇢2
bb

0 =
B2

G2

X

g 6=g

0

⇢2
gg

0 +
1

G
.

This phenomenon was noted by Efron (2008) in some work on doubly standardized
matrices of microarray data. The mean squared correlation is comparable in
size to what we would get with independent sampling. That is, we are able to
balance all GEOs and all brands exactly without paying a high cost on these
correlations.

The rest of this section considers classical designs that do not apply to our
situation and then considers when designs that meet our secondary goals can be
constructed. Some readers might prefer to skip to Section 4 which discusses a
simulated example.

3.1 Designs derived from a BIB

In a BIB, one compares B quantities in blocks of size s < B and every pair of
quantities appears together in the same number of blocks. A BIB with block
size s = B/2 and one block per GEO might be repurposed for multi-brand
experiments by making the B/2 elements of each block correspond to brands
given the treatment level. A small example with B = 4 brands and G = 6 GEOs
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0

Min, max and rms brand correlations

Flips

Figure 4: Interbrand correlations as the number of successful flips increases.

looks like this

2

6666664

B1 B2 B3 B4

G1 + + · ·
G2 + · + ·
G3 + · · +
G4 · + + ·
G5 · + · +
G6 · · + +

3

7777775

where a + indicates that the given brand gets the treatment in the given GEO.
The problem is that GEOs 1 and 6 are exact opposites as are GEOs 2 and 5 and
GEOs 3 and 4. Similarly, for any pair of brands the matrix

 + ·

+ 1 2
· 2 1

�

gives the number of GEOs at each treatment combination. We know from
Theorem 1 that equal numbers in all four configurations cannot be attained.
Here we see that for this BIB any two brands are more likely to be at opposite
treatment versus control settings than at the same level.

3.2 Designs derived from a Hadamard matrix

A Hadamard matrix (Hedayat et al., 2012) H is an n⇥ n matrix with elements
±1 satisfying HTH = HHT = I

n

. An example Hadamard matrix with n = 8 is

9
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Figure 5: InterGEO correlations as the flips proceed.

depicted here:

2

66666666664

+ + + + + + + +
+ · + · + · + ·
+ + · · + + · ·
+ · · + + · · +
+ + + + · · · ·
+ · + · · + · +
+ + · · · · + +
+ · · + · + + ·

3

77777777775

.

Suppose that we use + for treatment and · for control, and use columns of
the design for brands and rows for GEOs. Column 1 is not suitable because it
describes a brand that is at the treatment level in all GEOs. In applications,
the first column of a Hadamard matrix corresponds to the intercept term, not
one of the treatment variables, and so we might use the last n� 1 columns.

Row 1 of the matrix above is not suitable as it describes a GEO that is in
the treatment group for all brands. We can always reverse the sign in 3 of the
7 columns and get a new design. If we reverse columns 2,3,4 then row 5 will
be all �1’s (after the intercept column). Certain other reversal choices will not
produce a degenerate row but will a↵ect the number of +1s in the rows.

Hadamard matrices are potentially useful but require special conditions.
They only exist for n = 1, 2 (which are unsuitable) or n = 4m for certain positive
integers m. There are only 12 integers m < 500 for which no Hadamard matrix
of order n = 4m is known. See Djoković et al. (2014) who shortened that list
from 13 integers by solving the case m = 251.
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A more serious problem is that dropping the first column of a Hadamard
matrix and toggling the signs of some columns is only useful if B�1 = G = 4m for
some m. One could drop the first row too, yielding a design for B = G = 4m� 1
which has near balance for each brand and each GEO. But both of these choices
impose unwanted restrictions on B and G. In principal one could take a G⇥B
submatrix of the last n� 1 rows and columns of a Hadamard matrix but then
the result is even farther from the desired balance of having each brand get the
control treatment in G/2 GEOs and each GEO delivering the control treatment
to each of B/2 brands.

3.3 Constraints

When B � 2 and G � 2 are both even then the design matrix we want is B ⇥G
binary matrix with B/2 ones in each column and G/2 ones in each row. Such
matrices always exist. We would also like, when possible, to have no two rows
or columns be identical, or to be opposite of each other.

Definition 1. Two vectors v
1

, v
2

2 {�1, 1}k have a collision if either v
1

= v
2

or v
1

= �v
2

. A matrix X 2 {�1, 1}n⇥p has no collisions if no two of its rows
have a collision and no two of its columns has a collision.

Definition 2. A matrix X 2 {�1, 1}n⇥p is balanced if each row sums to 0 and
each column sums to 0.

Our design uses balanced binary matrices. Ideally we would like our design
matrix to be free of collisions. This secondary constraint cannot always be met.
For any even number B there are only

�
B

B/2

�
di↵erent binary vectors having

exactly B/2 ones. Because we don’t want duplicates or opposite pairs we must
have G 

�
B

B/2

�
/2, and conversely B 

�
G

G/2

�
/2.

First, if B = 2 then any pair of GEOs must get either the exact same
or exact opposite treatment, and similarly for brands when G = 2. So when
min(B,G) = 2 collisions will occur.

Theorem 2. Let B � 2 and G � 2 be even numbers. If min(B,G)  4 then
there is no balanced binary G⇥ B matrix without collisions. If B = G = 6 or
B = G = 8, then there is such a matrix.

Proof. If G = 2 then the result is obvious because the second row must then
be the opposite of the first one. Similarly if B = 2, and so no such matrix is
available when min(B,G) = 2.

For G = B = 4, consider a 4 ⇥ 4 matrix of + and · with exactly two +
symbols in each row and each column. We can sort the columns so that the
first row is

�
+ + · ·

�
. If the matrix has no collisions, then each subsequent

row must have exactly one + in the first two columns and one + in the last two
columns. Because each column has two +’s, only one of the next three rows can
have a + in column 1 and only one of those rows can have a + in column 2.
There is therefore no way to put three more rows into the matrix without having
a collision. As a result there is no collision free balanced 4⇥ 4 matrix. There
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cannot be a collision free balanced binary G⇥4 matrix with G � 6 either. There
are only

�
4

2

�
= 6 distinct such rows and using them all would bring collisions.

Similarly, there are no B ⇥ 4 collision free balanced binary matrices.
When B = G = 6, it is possible to avoid collisions. For instance, we could

use the matrix
0

BBBBBB@

+ + + · · ·
+ + · + · ·
+ · · · + +
· + · · + +
· · + + + ·
· · + + · +

1

CCCCCCA
, (4)

which has no collisions. For B = G = 8 we could use
0

BBBBBBBBBB@

+ + + + · · · ·
+ + · · · · + +
+ · + · + + · ·
+ · · + · + + ·
· + + + + · · ·
· + · · + + · +
· · + · + · + +
· · · + · + + +

1

CCCCCCCCCCA

. (5)

The first three columns of the matrix in (5) are the same as in a classical 23

factorial design. That matrix is not such a design, and indeed that design would
not have balanced rows.

Next we consider how to create larger G⇥B balanced binary collision free
matrices from smaller ones.

Theorem 3. Let X 2 {�1, 1}B⇥G be a balanced binary matrix with no colli-
sions. Then there is a balanced binary matrix X̃ 2 {�1, 1}(B+4)⇥(G+4) with no
collisions.

Proof. Let r
1

and r
2

be the first two rows of X, let c
1

and c
2

be the first two
columns of X and choose z 2 {�1, 1}. Now let

X⇤ =

0

BBBB@

X c
1

�c
1

c
2

�c
2

r
1

z z �z �z
�r

1

z z �z �z
r
2

�z �z z z
�r

2

�z �z z z

1

CCCCA
. (6)

Every row and every column of X⇤ is balanced by construction. There are no
collisions among the first B rows or first G columns of X⇤ because there are
none in X.
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Now we consider the last four rows of X⇤. Row B + 1 does not collide with
the last two rows because r

1

does not collide with r
2

. Rows B +1 and B +2 are
opposite in their first G columns but they agree in the next 4 columns so they
do not collide. By symmetry, this argument shows that there are no collisions
among the last four rows of X⇤ or among the last four columns.

It remains to check whether any of the new rows (or columns) collide with
any of the old ones. Row B + 1 of X⇤ cannot collide with row k of X⇤ for any
1 < k  B because r

1

does not collide with any of the corresponding rows of X.
Rows B + 1 and 1 of X⇤ agree in the first G columns but di↵er in exactly two
of the last 4 columns of X⇤ so they do not collide. Therefore row B + 1 of X⇤

does not collide with any of the first B rows. Row B + 2 of X⇤ equals r̃
1

in its
first G columns. Therefore it cannot collide with row k of X⇤ for any 1 < k  B.
By construction it matches row 1 in two of the new columns and is opposite row
1 in the other two. It follows that none of the last four rows of X⇤ collide with
any of the first B rows. By symmetry there are no collisions among any of the
last four columns of X⇤ and any of the first G columns.

The Theorem above gives an approach to creating design matrices. We start
with a small matrix and grow it by repeatedly applying equation (6). It is not
necessary to grow X via the first two rows and columns. It would work to choose
any two distinct rows or columns. For instance they could be chosen randomly
or chosen greedily to optimize some property of the resulting matrix.

Repeatedly applying equation (6) will give a nearly square matrix because
it keeps adding 4 to both the number of rows and the number of columns. We
might want to have G � B.

We can grow the matrix by 4 rows and 8 columns via

X⇤ =

0

BBBB@

X c
1

�c
1

c
2

�c
2

c
3

�c
3

c
4

�c
4

r
1

z
1

z
1

�z
1

�z
1

z
2

z
2

�z
2

�z
2

�r
1

z
1

z
1

�z
1

�z
1

z
2

z
2

�z
2

�z
2

r
2

�z
1

�z
1

z
1

z
1

�z
2

�z
2

z
2

z
2

�r
2

�z
1

�z
1

z
1

z
1

�z
2

�z
2

z
2

z
2

1

CCCCA
, (7)

for any z
1

, z
2

2 {�1, 1} where r
1

and r
2

are any two rows of X and c
1

, . . . , c
4

are any four columns of X. Equation (7) adds four rows and eight columns. The
same idea could extend a G⇥B matrix to a 3G⇥ (B + 4) matrix, tripling the
number of columns (GEOs) while adding only four rows (brands).

The methods of this section show that there are some large collision free
designs. We find that starting with the matrix (4) or (5) and growing it by
repeatedly applying (6) yields designs that include some correlations very close to
±1. The scrambled checkerboard approach tends to produce designs with smaller
maximum absolute correlation than the growth approach. Also, numerically
searching with that algorithm turns up 8⇥8 designs but not 6⇥8 designs, which
we suspect do not exist.
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Figure 6: One realization of a single brand simulation. Treatment GEOs are in
red, control in black. The reference line is at y = x/2 because the test period
has half the length of the prior period.

4 Regression results

The regression model (1) was simulated with advertising e↵ectiveness � = 5.0
in 20 GEOs of which 10 had increased spend equal to 1% of the prior period’s
sales. Further details are in Section 6. Figure 6 shows one realization. The
simulation was done 1000 times in total. Then, using the same random seeds,
the simulation was repeated with increased spend of 0.5% instead of 1%.

For each simulated data set, weighted least squares regression was used. The
weights were proportional to (1/Y pre)2, making them inversely proportional to
variance. Unweighted regression does not give reliable confidence intervals and
p-values in this setting.

Some results are plotted in Figure 7 and some numerical summaries are in
Table 1. The top panels of Figure 7 show histograms of 1000 two-sided p-values
for H

0

:� = 0. This null was rejected 28.6% of the time for the experiment with a
smaller treatment size, and 81.3% of the time for the one with a larger treatment
size. The middle panels show histograms of twice the standard error of �̂, roughly
the distance from �̂ to the edge of a 95% confidence interval. At 0.5% treatment
this uncertainty averaged 6.68 while at 1% it averaged 3.34, just over 66% of the
true value 5. The root mean squared error in �̂ was 3.21 for small treatment
di↵erences and 1.61 for large ones. The bottom panels show histograms of the
estimates �̂ for only those simulations in which H

0

was rejected at the 5% level.
The average estimated e↵ect was 8.64 for the smaller treatment size and 5.51 for
the larger one.

The smaller treatment size has very low power, very wide confidence intervals,
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Figure 7: Results from repeated single brand simulations.

and in those instances where it detects an advertising e↵ect, it gives a substantial
overestimate of e↵ectiveness. The larger treatment size has greater power and
only slight overestimation of � when it is significant. But it still yields a wide
confidence interval for �.

5 Multibrand experimental results

The multibrand setting was simulated with B = 30 brands over G = 20 GEOs.
Treatment versus control was assigned with scrambled checker designs from
Section 3. The e↵ectiveness of brand b was generated from �

b

⇠ N (5, 1), so
advertising returns are usually in the range from 3 to 7.
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Trt cPr(p  0.05) 2se(�̂) Ê((�̂ � �)2)1/2 Ê(�̂ | p  0.05)

0.5% 0.29 6.68 3.21 8.64
1.0% 0.81 3.34 1.61 5.51

Table 1: Output summary of 1000 simulations of the single brand experiment.

5.1 Shrinkage estimation of βb

We write �̂
b

for the least squares estimate of �
b

from brand b data and set
ˆ̄� = (1/B)

P
B

b=1

�̂
b

. We can estimate �
b

by a shrinkage estimator formed as a

weighted average of �̂
b

and ˆ̄�. Xie et al. (2012, Section 4) propose estimators of
the form

�̃
b

=
�

var(�̂
b

) + �
�̂
b

+
var(�̂

b

)

var(�̂
b

) + �
ˆ̄� (8)

for a parameter � that must be chosen. The larger � is, the more emphasis we
put on brand b’s own data instead of the pooled data. For brands with large

var(�̂
b

), more weight is put on the pooled estimate ˆ̄�. Xie et al.’s (2012) main
innovation is in shrinkage methods for data of unequal variances as we have here.
To use their method we replace var(�̂

b

) by unbiased estimates cvar(�̂
b

) taken
from the linear model output, and choose �.

Xie et al. (2012) give theoretical support for choosing � to minimize the
following unbiased estimate of the expected sum of squared errors

SUREG(�) =
1

B

BX

b=1

var(�̂
b

)2

(var(�̂
b

) + �)2
(�̂

b

� ˆ̄�)2

+
1

B

BX

b=1

var(�̂
b

)

var(�̂
b

) + �

⇣
�� var(�̂

b

) +
2

B
var(�̂

b

)
⌘
.

(9)

This function is not convex in � but a practical way to choose � is to evaluate
SUREG on a grid of, say 1001, � values. Letting the typical weight on �̂

b

take
values u 2 {0, 1/1000, 2/1000, . . . , 1} we use

� =
1

B

BX

b=1

var(�̂
b

)⇥ u

1� u

where u = 1 means � = 1 which simply means �̃
b

= �̂
b

.
We can measure the e�ciency gain from shrinkage via

E↵ =
1

B

P
B

b=1

(�̂
b

� �
b

)2

1

B

P
B

b=1

(�̃
b

� �
b

)2
.

Figure 8 shows a histogram of this e�ciency measure in 1000 simulations. On
average it was about 3.17 times as e�cient to use shrinkage when the experimental
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Figure 8: Relative e�ciency of shrinkage estimates compared to single brand
regressions.

treatment is to increase advertising by 1% of prior sales. For smaller experiments,
at 0.5% of sales, the average e�ciency gain was 7.82. For each given brand
b, the information from B � 1 other brands’ data yields a big improvement in

accuracy. Recall that �
b

iid⇠ N (5, 1). The gain from shrinkage would be less if
the underlying �

b

were less similar and greater if they were more similar.

5.2 Average return to advertising

The quantity �̄ measures the overall return to advertising averaged over all
brands. Although individual returns �

b

are more informative, their average can
be estimated much more reliably. In small experiments where some individual

�̂
b

’s are not well determined it may be wiser to base decisions on ˆ̄�.

We can estimate �̄ by ˆ̄� = (1/B)
P

B

b=1

�̂
b

and then using the individual

regressions compute cvar( ˆ̄�) = B�2

P
B

b=1

cvar(�̂
b

). Figure 9 shows histograms of

2(cvar( ˆ̄�))1/2. Table 2 compares average values of twice the standard error for �̂

in a single brand experiment with twice the standard error for ˆ̄� in a multibrand
experiment. As we might expect the multibrand standard errors are roughlyp
B =

p
30 times smaller. Similarly, doubling the spend roughly halves the

standard error.

6 Simulation details

In each simulation, the design was generated by the scrambled checker algo-
rithm described in Section 3. Then the data were sampled from the Gamma
distributions described here.
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Figure 9: Two standard errors of ˆ̄�.

1% spend 0.5% spend

Single Multiple Single Multiple

3.34 0.62 6.68 1.23

Table 2: Average over simulations of two standard errors for �̂ (single brands)

and ˆ̄� (multiple brands).

6.1 Gamma distributions

The Gamma distribution has a standard deviation proportional to its mean,
matching a pattern in the real sales data. When the shape parameter is  > 0
the Gamma probability density function is x�1e�x/�() for x > 0. To specify
a scale parameter, we multiply X ⇠ Gam() by the desired scale ✓.

The random variable ✓X has mean ✓ and variance ✓2, leading to a coe�cient
of variation equal to 1/

p
 for any ✓. The shape  = 1/cv2 yields a Gamma

random variable with the desired coe�cient of variation.
The coe�cient of variation for the average of n observations from one GEO

(e.g., n
post

= 4 in the test period and n
pre

= 8 in the background period) is
approximately 1/

p
n times the coe�cient of variation of a single observation.

The coe�cient of variation for single observations from a set of 8 week trial
periods was about 0.15 while that for 4 week followup periods was about 0.1.
These figures are based on aggregates over GEOs that were very similar for all
of the di↵erent brands. An 8 week trial period has within it more seasonality
than a 4 week period has, and so it is reasonable that we would then measure a
larger coe�cient of variation.

To simulate with a specific coe�cient of variation we use  = n/cv2. This
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leads to 
pre

= 8/0.152
.
= 356 and 

post

= 4/0.12 = 400.
Gamma random variables are never negative which gives them a further

advantage over simulations with Gaussian random variables. For the specific
parameter choices above, the shape parameters are large enough that the Gamma
random variables are not strongly skewed (their skewness is 2/

p
). A Gaussian

distribution might give similar results. The Gamma distribution is useful because
it can be used to simulate either strongly or mildly skewed data that are always
nonnegative.

6.2 Data generation

For a single brand experiment, the data are generated as follows. First the
underlying sizes of the GEOs were sampled as S

g

= 107�Ug where U
g

⇠ U(0,�),
for g = 1, . . . , G. The quantity S

g

is interpreted as a size measure for GEO g.
We will use it as the expected prior sales, which is then roughly proportional to
the number of customers in GEO g. Choosing � = 1 means that we consider
GEOs ranging in size by a factor of about 10 from largest to smallest.

The prior KPIs are generated as

Y pre

g

ind⇠ S
g

⇥Gam(
pre

)/
pre

,

where 
pre

= n
pre

/cv2
pre

. Then E(Y pre

g

) = S
g

. Let the spending level in the
experimental period be Xpost

g

in GEO g. Then the KPI in the experimental
period is generated as

Y post

g

ind⇠ n
post

n
pre

⇥ S
g

⇥Gam(
post

)/
post

+Xpost

g

�,

where 
post

= n
post

/cv2
post

. The factor n
post

/n
pre

adjusts for di↵erent sizes of
prior and experimental observation windows. The term Xpost

g

� is the additional
KPI attributable to advertising.

6.3 Checkerboard designs

The scrambled checkerboard design was run for 2⇥G⇥B ⇥ 25 = 30,000 steps.
The expected number of flips for each pixel in the image is 25. This is much
more than the number at which the root mean squared correlations stabilize.

7 A fully Bayesian approach

Stein shrinkage is an empirical Bayes approach. Here we consider a fully Bayesian
alternative. When it comes to pooling information together from observations
that arise from a common model but corresponding to di↵erent sets of parameters,
Bayesian hierarchical models arise as a natural solution.

One advantage of the Bayesian approach is that it allows us to present the
uncertainty in our estimates. For each brand b, we can get an interval (L

b

, U
b

)

19



such that Pr(L
b

 �
b

 U
b

| data) = 0.95 without making any (additional)
assumptions. These posterior credible intervals are easier to compute than
confidence intervals from Stein shrinkage. We can also use posterior credible
intervals at the planning stage. To do that, we simulate the data several times
and record how wide the posterior credible intervals are. If they are too wide we
might add more GEOs or increase the di↵erential spend �.

7.1 A hierarchical model

We consider model (2) in a Bayesian context, which translates as follows:

µ
gb

:= ↵
0b

+ ↵
1b

Y pre

gb

+ �
b

Xpost

gb

, b = 1, . . . , B, g = 1, . . . , G (10)

Y post

gb

⇠ N
⇣
µ
gb

,
�
�
b

/Y pre

gb

�
2

⌘
, b = 1, . . . , B, g = 1, . . . , G (11)

�2

b

⇠ IG(10�3, 10�3), b = 1, . . . , B (12)

�
b

⇠ N (�,�2

�

), b = 1, . . . , B (13)

�2

�

⇠ IG(0.5, 0.5), and, (14)

� ⇠ 1R. (15)

Definitions (10), (11) and (12) the mirror model (2) that we described earlier.
Notice that we signal the weighted regression explicitly in (11). The hierarchical
Gaussian prior (13) on the coe�cients �

b

involves two new hyperparameters �
and �2

�

which respectively represent the overall mean and variance of all returns
�
b

. Since we assumed in the beginning that all brands had somewhat similar
returns, we choose a semi-informative prior (14) on �2

�

that favors plausible, not
too large, values. For our simulations we use a flat prior (15) on � relying on the
data to drive the inference. One could also use a Gaussian prior for �, crafting
its mean and variance based on the prior knowledge of the brands at hand.

7.2 Simulation details

The data were generated according to the procedures described in Section 6.
Samples were collected from the posterior distribution using STAN software
(Stan Development Team, 2016).

We simulated many di↵erent conditions and consistently found that the Stein
and Bayes estimates were close to each other. In this section we present just
one simulation matching parameters of interest to some of our colleagues at
Google. We consider G = 160 GEOs, only B = 4 brands and we take advertising
e↵ectiveness �

b

to be N (1, 1). Using E(�
b

) = 1 produces a setting where a
dollar of advertising typically brings back a dollar of sales in the observation
period. That implies a short term loss with an expected longer term benefit
from adding or retaining customers. Taking the standard deviation of �

b

to one
implies very large brand to brand variation. We still see a benefit from pooling
only 4 brands as diverse as that. The amount of extra spend is set to 1% of
prior sales (� = 0.01). We repeated this simulation 1000 times.
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In this setting with 160 GEOs and 4 brands there will always be some GEOs
that get the exact same treatment for all 4 brands.

7.3 Agreement with shrinkage estimates

Figure 10 compares the RMSE [(1/B)
P

B

b=1

(�̂
b

� �
b

)2]1/2 for Stein and Bayes
estimation in 1000 simulations with B = 4. The methods have very similar
accuracy. For high brand to brand standard deviation �

b

= 1.0, there is a slight
advantage to Bayes. For lower brand to brand standard deviation �

b

= 0.25,
there is a small advantage to Stein. The Bayesian estimate was at a disadvantage
there because the prior variance was 1/Gamma(0.5, 0.5) giving �

b

a median of
about 1.48. This shows that the Bayesian estimate is not overly sensitive to our
widely dispersed prior distribution on �

b

.

7.4 Posterior credible intervals

To investigate what power can be gained pooling data together using a multibrand
experiment over conducting multiple single-brand experiments independently, we
simulated datasets following the same procedure as before, using G = 160 GEOs
with either B = 1 (no pooling) or B = 4 (pooling) brands, the e↵ectivenesses
of which were drawn from a Gaussian distribution N (1,�2

b

) with �
b

= 0.25.
Now the brands return on average one dollar of incremental revenue per dollar
spent, and the standard deviation of 0.25 represents substantial brand di↵erences.
The relative incremental ad-spend we made varies from 0.5% to 2% to show
how it impacted the results. Figure 11 displays the estimated densities (over
10,000 replications) of the half-width of 95% credible intervals around the brands’
e↵ectivenesses, the solid lines representing the 95% quantile of these densities,
in each scenario.

While the half-width of credible intervals does not quite display an inverse
relationship with the extra spend when pooling multiple experiments together as
it does when conducting experiments separately (doubling the incremental spend
lets us detect twice as small an e↵ectiveness in the single-brand scenario), it is
clear that pooling experiments together does bring improvement to the power of
the geoexperiments.

It is best if posterior credible intervals have frequentist coverage levels close
to their nominal values. Table 3 shows empirical coverage levels for B = 4
brands and G = 160 GEOS for a range of average returns � and brand to brand
standard deviations �

b

. On the whole the coverage is quite close to nominal.
There is slight over coverage, probably due to the prior being dominated by large
values of �

b

.

8 Conclusions and discussion

In our examples we see that combining data from multiple brands at once leads
to more accurate experiments than single brand experiments would yield. This
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Figure 10: Comparison of Bayes and Stein RMSEs on two simulations of 1000
replicates with B = 4 brands.

happens for both Bayes and empirical Bayes (Stein shrinkage) estimates. The
estimate for any given brand gets better by using data from the other brands.

This e�ciency brings practical benefits. An experiment on multiple brands
might need to use fewer GEOs, or it might be informative at smaller, less
disruptive, changes in the amount spent.

Ordinary Stein shrinkage towards a common mean is advantageous when
B � 4 by the theory of Stein estimation (Efron and Morris, 1973). The method
of Xie et al. (2012) is further optimized to handle unknown and unequal variances.

We have simply plugged in unbiased estimates of variance. Hwang et al.
(2009) propose a di↵erent method that begins with shrinkage applied to the
variance estimates themselves. They also develop confidence intervals that could
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�
✏
�
b

0.10 0.25 0.50 0.75 1.00

0.25 0.974 0.974 0.967 0.953 0.950
0.50 0.975 0.967 0.962 0.954 0.946
0.75 0.974 0.968 0.967 0.959 0.952
1.00 0.978 0.975 0.969 0.964 0.954
1.25 0.975 0.968 0.966 0.960 0.958
1.50 0.978 0.968 0.966 0.954 0.954

Table 3: Observed coverage levels of 95% Bayesian credible intervals. Six values
of average gain � and five values of brand standard error �

b

.

be used for our �
b

. Stein shrinkage is a form of empirical Bayes estimation. We
found that by using a Bayesian hierarchical model we could get posterior credible
intervals with good frequentist coverage.

For planning purposes it is worthwhile to consider what parameter values
are realistic in a specific setting. By simulating several choices we can find an
experiment size that gets the desired accuracy at acceptable cost.

The most di�cult quantity to choose for a simulation is �2

b

, the variance
of the true returns �

b

to advertising for di↵erent brands. That is di�cult
because one often starts from a position of not having good causal values for
any individual brand. One more values for this parameter must then be chosen
based on intuition or opinion. Because the true response rate to advertising
can be expected to drift it is reasonable to suppose that multiple experiments
will need to be made in sequence. Estimates of �2

b

from one experiment will be
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useful in planning the next ones.
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