Infinitely Imbalanced Logistic Regression

Art B. Owen

Stanford University owen@stat.stanford.edu

12th annual winter workshop January 2010 University of Florida

Setting:

ullet Data are (X,Y) pairs,

- ullet Data are (X,Y) pairs,
- Predictors $X \in \mathbb{R}^d$

- Data are (X,Y) pairs,
- Predictors $X \in \mathbb{R}^d$
- \bullet Binary response variable $Y \in \{0,1\}$

- Data are (X,Y) pairs,
- Predictors $X \in \mathbb{R}^d$
- ullet Binary response variable $Y \in \{0,1\}$
- ullet Sample has lots of Y=0,

- Data are (X,Y) pairs,
- Predictors $X \in \mathbb{R}^d$
- ullet Binary response variable $Y \in \{0,1\}$
- Sample has lots of Y = 0, very few Y = 1

Setting:

- Data are (X,Y) pairs,
- Predictors $X \in \mathbb{R}^d$
- ullet Binary response variable $Y \in \{0,1\}$
- Sample has lots of Y = 0, very few Y = 1

Examples, Y = 1 for:

- active drug
- ad gets clicked
- rare disease
- war/coup/veto
- citizen seeks elected office
- non-spam in spam bucket

(Why) does imbalance matter?

Irony:

```
500 \text{ 1s and} \qquad 500 \text{ 0s} \implies \text{OK} 500 \text{ 1s and } 500,000 \text{ 0s} \implies \text{trouble}
```

(Why) does imbalance matter?

Irony:

```
500 \text{ 1s and} \qquad 500 \text{ 0s} \implies \text{OK} 500 \text{ 1s and } 500,000 \text{ 0s} \implies \text{trouble}
```

Issues:

- 1. It is hard to beat the rule that predicts Y = 0 always
- 2. Few Y=1 cases constitute a low effective sample size

(Why) does imbalance matter?

Irony:

```
500 \text{ 1s and} \qquad 500 \text{ 0s} \implies \text{OK} 500 \text{ 1s and } 500,000 \text{ 0s} \implies \text{trouble}
```

Issues:

- 1. It is hard to beat the rule that predicts Y = 0 always
- 2. Few Y=1 cases constitute a low effective sample size

Approaches:

- So take account of priors and/or loss asymmetry (assuming implicit/explicit probability estimates)
- 2. Effective sample size really is # of Y=1s

How to deal with imbalanced data:

Coping strategies:

- 1. Downsample the 0s (adjust prior accordingly)
- 2. Upsample the 1s:
 - Repeat some (or upweight them)
 - Add synthetic 1s
- 3. One class prob.: find small ellipsoid holding the x_i for $y_i=1$

How to deal with imbalanced data:

Coping strategies:

- 1. Downsample the 0s (adjust prior accordingly)
- 2. Upsample the 1s:
 - Repeat some (or upweight them)
 - Add synthetic 1s
- 3. One class prob.: find small ellipsoid holding the x_i for $y_i = 1$

Workshops on imbalanced data:

- AAAI 2000
- ICML 2003

They prefer "imbalanced" to "unbalanced"

Suppose data are

```
 \begin{split} \text{For } y = 1 \colon & \quad x_{1i}, \quad i = 1, \dots, n_1 \equiv n \\ \text{For } y = 0 \colon & \quad x_{0i}, \quad i = 1, \dots, n_0 \equiv N \quad & \quad N \gg n \end{split}
```

Suppose data are

For
$$y = 1$$
: x_{1i} , $i = 1, ..., n_1 \equiv n$
For $y = 0$: x_{0i} , $i = 1, ..., n_0 \equiv N$ $N \gg n$

Fit logistic regression

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + x'\beta}}{1 + e^{\alpha + x'\beta}}$$

Suppose data are

For
$$y=1$$
: x_{1i} , $i=1,\ldots,n_1\equiv n$
For $y=0$: x_{0i} , $i=1,\ldots,n_0\equiv N$ $N\gg n$

Fit logistic regression

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + x'\beta}}{1 + e^{\alpha + x'\beta}}$$

Let $N \to \infty$ with n fixed

Expect
$$\hat{\alpha} \to -\infty$$
 like $-\log(N)$

But $\hat{\beta}$ can have a useful limit and $\hat{\beta}$ is of most interest

Suppose data are

For
$$y=1$$
: x_{1i} , $i=1,\ldots,n_1\equiv n$
For $y=0$: x_{0i} , $i=1,\ldots,n_0\equiv N$ $N\gg n$

Fit logistic regression

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + x'\beta}}{1 + e^{\alpha + x'\beta}}$$

Let $N \to \infty$ with n fixed

Expect $\hat{\alpha} \to -\infty$ like $-\log(N)$

But $\hat{\beta}$ can have a useful limit and $\hat{\beta}$ is of most interest

 $N/n \to \infty$ not necessarily so bad (for logistic regression).

Main result

Suppose

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{1i} \in \mathbb{R}^d$$
 & $x \sim F_0$ when $Y = 0$

Let $\alpha(N)$ and $\beta(N)$ be logistic regression estimates

Main result

Suppose

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{1i} \in \mathbb{R}^d$$
 & $x \sim F_0$ when $Y = 0$

Let $\alpha(N)$ and $\beta(N)$ be logistic regression estimates

Under mild conditions

$$Ne^{\alpha(N)} \to A \in \mathbb{R}$$
 and $\beta(N) \to \beta \in \mathbb{R}^d$

Main result

Suppose

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{1i} \in \mathbb{R}^d$$
 & $x \sim F_0$ when $Y = 0$

Let $\alpha(N)$ and $\beta(N)$ be logistic regression estimates

Under mild conditions

$$Ne^{\alpha(N)} \to A \in \mathbb{R}$$
 and $\beta(N) \to \beta \in \mathbb{R}^d$

where β solves

$$\bar{x} = \frac{\int x e^{x'\beta} dF_0(x)}{\int e^{x'\beta} dF_0(x)}$$

Interpretation

We have

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

 β is the *exponential tilt* to take $E_{F_0}(X)$ onto \bar{x}

Interpretation

We have

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

 β is the *exponential tilt* to take $E_{F_0}(X)$ onto \bar{x}

For
$$F_0 = N(\mu_0, \Sigma_0)$$

$$\beta = \Sigma_0^{-1}(\bar{x} - \mu_0)$$

Interpretation

We have

$$\bar{x} = \frac{\int x e^{x'\beta} dF_0(x)}{\int e^{x'\beta} dF_0(x)}$$

 β is the *exponential tilt* to take $E_{F_0}(X)$ onto \bar{x}

For
$$F_0 = N(\mu_0, \Sigma_0)$$

$$\beta = \Sigma_0^{-1}(\bar{x} - \mu_0)$$

Compare

$$\beta = \Sigma^{-1}(\mu_1 - \mu_0)$$
 for
$$X \sim N(\mu_j, \Sigma) \text{ given } Y = j \in \{0, 1\}$$

Surprise!

Suppose β solves

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

Then only $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and F_0 matter Clearly n is the effective sample size

Surprise!

Suppose β solves

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

Then only $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and F_0 matter Clearly n is the effective sample size

We could:

```
replace (x_{1i},1) for i=1,\ldots,n by just one point (X,Y)=(\bar{x},1) and get the same \beta as N\to\infty
```

Surprise!

Suppose β solves

$$\bar{x} = \frac{\int x \, e^{x'\beta} \, dF_0(x)}{\int e^{x'\beta} \, dF_0(x)}$$

Then only $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and F_0 matter Clearly n is the effective sample size

We could:

replace $(x_{1i},1)$ for $i=1,\ldots,n$ by just one point $(X,Y)=(\bar{x},1)$ and get the same β as $N\to\infty$

Upshot:

IILR downsamples the rare case to a single point Whether logistic works well or badly on given problem Other classifiers (e.g. CART) would be different

The predictions are trivial

$$\Pr(Y = 1 \mid X = x) \to 0 \quad \text{for all} \quad x \in \mathbb{R}^d$$

The predictions are trivial

$$\Pr(Y=1\mid X=x)\to 0\quad \text{for all}\quad x\in\mathbb{R}^d$$

But ratios are informative and simple

$$\frac{\Pr(\widetilde{Y} = 1 \mid X = \widetilde{x})}{\Pr(Y = 1 \mid X = x)} \to e^{(\widetilde{x} - x)'\beta}$$

The predictions are trivial

$$\Pr(Y=1\mid X=x)\to 0\quad \text{for all}\quad x\in\mathbb{R}^d$$

But ratios are informative and simple

$$\frac{\Pr(\widetilde{Y}=1\mid X=\widetilde{x})}{\Pr(Y=1\mid X=x)} \to e^{(\widetilde{x}-x)'\beta}$$

For fraud or active learning, obtain Y corresponding to largest

• $e^{x'\beta}$ (best chance to see a 1)

The predictions are trivial

$$\Pr(Y=1\mid X=x)\to 0\quad \text{for all}\quad x\in\mathbb{R}^d$$

But ratios are informative and simple

$$\frac{\Pr(\widetilde{Y}=1\mid X=\widetilde{x})}{\Pr(Y=1\mid X=x)} \to e^{(\widetilde{x}-x)'\beta}$$

For fraud or active learning, obtain Y corresponding to largest

- $e^{x'\beta}$ $v e^{x'\beta}$ (best chance to see a 1)
- (when case has value v)

The predictions are trivial

$$\Pr(Y = 1 \mid X = x) \to 0 \quad \text{for all} \quad x \in \mathbb{R}^d$$

But ratios are informative and simple

$$\frac{\Pr(\widetilde{Y}=1\mid X=\widetilde{x})}{\Pr(Y=1\mid X=x)}\to e^{(\widetilde{x}-x)'\beta}$$

For fraud or active learning, obtain Y corresponding to largest

- $\begin{array}{ll} \bullet \ e^{x'\beta} & \text{(best chance to see a 1)} \\ \bullet \ v \ e^{x'\beta} & \text{(when case has value } v \text{)} \\ \bullet \ v \ e^{x'\beta}/c & \text{(and investigative cost } c \text{)} \\ \end{array}$

Logistic regression

Log likelihood (with $x_i \equiv x_{1i}$)

$$\sum_{i=1}^{n} \left\{ \alpha + x_i' \beta - \log(1 + e^{\alpha + x_i' \beta}) \right\} - \sum_{i=1}^{N} \left\{ \log(1 + e^{\alpha + x_{0i}' \beta}) \right\}$$

Logistic regression

Log likelihood (with $x_i \equiv x_{1i}$)

$$\sum_{i=1}^{n} \left\{ \alpha + x_i' \beta - \log(1 + e^{\alpha + x_i' \beta}) \right\} - \sum_{i=1}^{N} \left\{ \log(1 + e^{\alpha + x_{0i}' \beta}) \right\}$$

For large N

$$\sum_{i=1}^{N} \left\{ \log(1 + e^{\alpha + x'_{0i}\beta}) \right\} \approx N \int \log(1 + e^{\alpha + x'\beta}) dF_0(x)$$

Centering data

With foresight, center data at \bar{x}

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}}$$

Centering data

With foresight, center data at \bar{x}

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}}$$

Centered log likelihood $\ell(\alpha, \beta)$

$$n\alpha - \sum_{i=1}^{n} \log\left(1 + e^{\alpha + (x_i - \bar{x})'\beta}\right) - N \int \log\left(1 + e^{\alpha + (x - \bar{x})'\beta}\right) dF_0(x)$$

Centering data

With foresight, center data at \bar{x}

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}}$$

Centered log likelihood $\ell(\alpha, \beta)$

$$n\alpha - \sum_{i=1}^{n} \log\left(1 + e^{\alpha + (x_i - \bar{x})'\beta}\right) - N \int \log\left(1 + e^{\alpha + (x - \bar{x})'\beta}\right) dF_0(x)$$

Because
$$\sum_{i=1}^{n} (\alpha + (x_i - \bar{x})'\beta) = n\alpha$$

Sketch of the proof

Set
$$\frac{1}{N} \frac{\partial}{\partial \beta} \ell(\alpha, \beta) = 0$$

$$0 = -\frac{1}{N} \sum_{i=1}^{n} \frac{(x_i - \bar{x}) e^{\alpha + (x_i - \bar{x})'\beta}}{1 + e^{\alpha + (x_i - \bar{x})'\beta}} - \int \frac{(x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}} dF_0(x)$$

Sketch of the proof

Set
$$\frac{1}{N} \frac{\partial}{\partial \beta} \ell(\alpha, \beta) = 0$$

$$0 = -\frac{1}{N} \sum_{i=1}^{n} \frac{(x_i - \bar{x}) e^{\alpha + (x_i - \bar{x})'\beta}}{1 + e^{\alpha + (x_i - \bar{x})'\beta}} - \int \frac{(x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}} dF_0(x)$$

 $N \to \infty$, so ignore the first sum:

$$0 = \int \frac{(x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}} dF_0(x)$$

Sketch of the proof

Set
$$\frac{1}{N} \frac{\partial}{\partial \beta} \ell(\alpha, \beta) = 0$$

$$0 = -\frac{1}{N} \sum_{i=1}^{n} \frac{(x_i - \bar{x}) e^{\alpha + (x_i - \bar{x})'\beta}}{1 + e^{\alpha + (x_i - \bar{x})'\beta}} - \int \frac{(x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta}}{1 + e^{\alpha + (x - \bar{x})'\beta}} dF_0(x)$$

 $N \to \infty$, so ignore the first sum:

$$0 = \int \frac{(x-\bar{x}) e^{\alpha + (x-\bar{x})'\beta}}{1 + e^{\alpha + (x-\bar{x})'\beta}} dF_0(x)$$

If $\alpha \to -\infty$, denominator $\to 1$, and so β solves:

$$\int (x - \bar{x}) e^{\alpha + (x - \bar{x})'\beta} dF_0(x) = 0 \quad \Box$$

Example:
$$F_0 = N(0,1)$$
, $\bar{x} = 1$, $n = 1$, $N \to \infty$

$$x_{0i} \sim N(0,1)$$

Rare value

$$n = 1$$
$$x_{11} = 1$$

Example:
$$F_0 = N(0,1)$$
, $\bar{x} = 1$, $n = 1$, $N \to \infty$

$$x_{0i} \sim N(0,1)$$

Rare value

$$n = 1$$
$$x_{11} = 1$$

Gaussian x0 and x1 = 1

Example:
$$F_0 = N(0,1)$$
, $\bar{x} = 1$, $n = 1$, $N \to \infty$

$$x_{0i} \sim N(0,1)$$

Rare value

$$n = 1$$
$$x_{11} = 1$$

Gaussian x0 and x1 = 1

We should see $\beta \to \Sigma_0^{-1}(\bar{x} - \mu_0) = 1^{-1}(1 - 0) = 1$

Example:
$$F_0 = N(0,1)$$
, $\bar{x} = 1$, $n = 1$, $N \to \infty$

For Y = 0 and i = 1, ..., N take

$$x_{0i} = \Phi^{-1} \left(\frac{i - 1/2}{N} \right)$$

We should see $\beta \to \Sigma_0^{-1}(\bar{x} - \mu_0) = 1^{-1}(1 - 0) = 1$

Logistic regression results

N	α	Ne^{α}	β
10	-3.19	0.4126	1.5746
100	-5.15	0.5787	1.0706
1,000	-7.42	0.6019	1.0108
10,000	-9.71	0.6058	1.0017
100,000	-12.01	0.6064	1.0003
∞			1

Next: two counterexamples

We will need conditions for the exponential tilting to work. One counterexample has a Cauchy distribution. The other a uniform.

Example: now $F_0 = Cauchy$

$$f_0(x) = rac{1}{\pi} rac{1}{1+x^2}$$
 $x_{0i} = F_0^{-1} \Big(rac{i-1/2}{N}\Big), \quad i = 1, \dots, N$ $x_{1i} = 1, \quad i = 1 \quad ext{only}$

Example: now $F_0 = Cauchy$

$$f_0(x) = \frac{1}{\pi} \frac{1}{1+x^2}$$

$$x_{0i} = F_0^{-1} \left(\frac{i-1/2}{N}\right), \quad i = 1, \dots, N$$

$$x_{1i} = 1, \quad i = 1 \quad \text{only}$$

Logistic regression results

Ν	α	Ne^{α}	β	Ne^{β}
10	-2.36	0.94100	0.1222260	1.2222
100	-4.60	0.99524	0.0097523	0.9752
1,000	-6.90	0.99953	0.0009537	0.9536
10,000	-9.21	0.99995	0.0000952	0.9515
100,000	-11.51	0.99999	0.0000095	0.9513

Example: now $F_0 = Cauchy$

$$f_0(x) = rac{1}{\pi} rac{1}{1+x^2}$$
 $x_{0i} = F_0^{-1} \Big(rac{i-1/2}{N}\Big), \quad i = 1, \dots, N$ $x_{1i} = 1, \quad i = 1$ only

Logistic regression results

N	α	Ne^{α}	β	Ne^{β}
10	-2.36	0.94100	0.1222260	1.2222
100	-4.60	0.99524	0.0097523	0.9752
1,000	-6.90	0.99953	0.0009537	0.9536
10,000	-9.21	0.99995	0.0000952	0.9515
100,000	-11.51	0.99999	0.0000095	0.9513

 $\beta(N) \to 0$ Cauchy has no mean to tilt onto $\bar{x}!$

Example: now
$$F_0 = U[0,1]$$
 and $n_1 = 2$

$$x_{0i} \sim U(0,1)$$

Rare values:

```
n = 2
x_{11} = 0.5
x_{12} = 2.0
```

Example: now $F_0 = U[0,1]$ and $n_1 = 2$

Common values:

$$x_{0i} \sim U(0,1)$$

Rare values:

$$n = 2$$

$$x_{11} = 0.5$$

$$x_{12} = 2.0$$

Unif x0 and x1 = .5, 2

Example: now $F_0 = U[0,1]$ and $n_1 = 2$

Common values:

$$x_{0i} \sim U(0,1)$$

Rare values:

$$n = 2$$

 $x_{11} = 0.5$

$$x_{12} = 2.0$$

1.0

×

 $\overline{\mathbf{x}}$

1.5

2.0

2.5

Unif x0 and x1 = .5, 2

We can't tilt U(0,1) to have mean $\bar{x}=1.25$

0.0

0.0

0.5

Example: now
$$F_0=U[0,1]$$
 and $n_1=2$
$$x_{0i}=\frac{i-1/2}{N},\quad i=1,\dots,N$$

$$x_{11}=\frac{1}{2},\quad x_{12}=2\quad \text{only}$$

Example: now
$$F_0=U[0,1]$$
 and $n_1=2$
$$x_{0i}=\frac{i-1/2}{N},\quad i=1,\dots,N$$

$$x_{11}=\frac{1}{2},\quad x_{12}=2\quad \text{only}$$

Logistic regression results

N	α	Ne^{α}	β	e^{β}/N
10	-3.82	0.2184	2.85	1.74
100	-7.13	0.0804	4.19	0.66
1,000	-10.71	0.0223	5.82	0.34
10,000	-14.52	0.0050	7.62	0.20
100,000	-18.49	0.0009	9.54	0.14

Example: now
$$F_0=U[0,1]$$
 and $n_1=2$
$$x_{0i}=\frac{i-1/2}{N},\quad i=1,\dots,N$$

$$x_{11}=\frac{1}{2},\quad x_{12}=2\quad \text{only}$$

Logistic regression results

N	α	Ne^{α}	β	e^{β}/N
10	-3.82	0.2184	2.85	1.74
100	-7.13	0.0804	4.19	0.66
1,000	-10.71	0.0223	5.82	0.34
10,000	-14.52	0.0050	7.62	0.20
100,000	-18.49	0.0009	9.54	0.14

$$eta(N) o \infty$$
 also $ar{x} = rac{5}{4}
ot\in [0,1]$ (can't tilt mean so far)

We need conditions:

Tail of F_0 not too heavy

$$\int \|x\| e^{x'\beta} \, dF_0(x) < \infty$$

to fix problem from Cauchy example tail weight not an issue in finite samples

We need conditions:

Tail of F_0 not too heavy

$$\int \|x\| e^{x'\beta} \, dF_0(x) < \infty$$

to fix problem from Cauchy example tail weight not an issue in finite samples

Overlap between F_0 and \bar{x}

to fix problem from U(0,1) example overlap is an issue in finite samples but we need stronger overlap condition

Overlap conditions

F has $x^* \in \mathbb{R}^d$ surrounded if

- ullet For all unit vectors $heta \in \mathbb{R}^d$
- $\Pr((x-x^*)'\theta > \epsilon \mid x \sim F_0) > \delta$
- \bullet for some $\epsilon>0$ and $\delta>0$

Overlap conditions

F has $x^* \in \mathbb{R}^d$ surrounded if

- ullet For all unit vectors $heta \in \mathbb{R}^d$
- $\Pr((x-x^*)'\theta > \epsilon \mid x \sim F_0) > \delta$
- \bullet for some $\epsilon>0$ and $\delta>0$

For $N \to \infty$ we need:

ullet F_0 to have $ar{x}=rac{1}{n_1}\sum_{i=1}^{n_1}x_{1i}$ surrounded

Overlap conditions

F has $x^* \in \mathbb{R}^d$ surrounded if

- For all unit vectors $\theta \in \mathbb{R}^d$
- $\Pr((x-x^*)'\theta > \epsilon \mid x \sim F_0) > \delta$
- $\bullet \ \, \text{for some} \,\, \epsilon > 0 \,\, \text{and} \,\, \delta > 0$

For $N \to \infty$ we need:

• F_0 to have $\bar{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_{1i}$ surrounded

For finite samples, Silvapulle (1981, JRSS-B)

- If model has intercept and x's are full rank
- ullet We need some x_0 surrounded by both \hat{F}_1 and \hat{F}_0

Theorem

Let $n \geq 1$ and $x_1, \ldots, x_n \in \mathbb{R}^d$ be fixed. Suppose that

- 1. F_0 surrounds $\bar{x} = \sum_{i=1}^n x_i/n$
- 2. $\int ||x|| e^{x'\beta} dF_0(x) < \infty \quad \forall \beta \in \mathbb{R}^d$

Theorem

Let $n \geq 1$ and $x_1, \ldots, x_n \in \mathbb{R}^d$ be fixed. Suppose that

- 1. F_0 surrounds $\bar{x} = \sum_{i=1}^n x_i/n$
- 2. $\int ||x|| e^{x'\beta} dF_0(x) < \infty \quad \forall \beta \in \mathbb{R}^d$

Then the maximizer $(\hat{\alpha}, \hat{\beta})$ of ℓ satisfies

$$\lim_{N \to \infty} \frac{\int e^{x'\hat{\beta}} x \, dF_0(x)}{\int e^{x'\hat{\beta}} \, dF_0(x)} = \bar{x}.$$

Theorem

Let $n \geq 1$ and $x_1, \ldots, x_n \in \mathbb{R}^d$ be fixed. Suppose that

- 1. F_0 surrounds $\bar{x} = \sum_{i=1}^n x_i/n$
- 2. $\int ||x|| e^{x'\beta} dF_0(x) < \infty \quad \forall \beta \in \mathbb{R}^d$

Then the maximizer $(\hat{\alpha}, \hat{\beta})$ of ℓ satisfies

$$\lim_{N \to \infty} \frac{\int e^{x'\hat{\beta}} x \, dF_0(x)}{\int e^{x'\hat{\beta}} \, dF_0(x)} = \bar{x}.$$

Steps

- 1. show $\alpha(N)$ and $\beta(N)$ exist for each N
- 2. show $Ne^{\hat{\alpha}(N)}$ is bounded
- 3. show $\|\hat{\beta}\|$ is bounded
- 4. then take partial derivatives as before

Computation

Given an approximation to F_0 :

Solve
$$0 = \int (x - \bar{x})e^{x'\beta}\,dF_0(x) \qquad d \text{ equations}$$
 Same as
$$0 = g(\beta) \equiv \int (x - \bar{x})e^{(x - \bar{x})'\beta}\,dF_0(x)$$
 I.E. Minimize
$$f(\beta) = \int e^{(x - \bar{x})'\beta}\,dF_0(x)$$
 Hessian is
$$H(\beta) = \int (x - \bar{x})(x - \bar{x})'e^{(x - \bar{x})'\beta}\,dF_0(x)$$
 convex

Newton step

$$\beta \leftarrow \beta - H^{-1}q$$

Cost per iteration: $O(d^3)$ vs $O(Nd^2)$ or $O(nd^2)$.

Mixture of Gaussians

$$F_0 = \sum_{k=1}^K \lambda_k N(\mu_k, \Sigma_k) \qquad \lambda_k > 0 \quad \sum_k \lambda_k = 1$$

Tilt a Gaussian, get a Gaussian:

$$e^{(x-\bar{x})'\beta}\,e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)} = e^{(\mu-\bar{x})'\beta}\,e^{-\frac{1}{2}(x-\mu-\Sigma\beta)'\Sigma^{-1}(x-\mu-\Sigma\beta)}$$

Newton step is

$$\beta \leftarrow \beta - H^{-1}g$$

$$g = \sum_{k=1}^{K} \lambda_k e^{(\mu_k - \bar{x})'\beta} (\widetilde{\mu}_k - \bar{x}), \qquad \widetilde{\mu}_k = \mu_k + \Sigma_k \beta$$

$$H = \sum_{k=1}^{K} \lambda_k e^{(\mu_k - \bar{x})'\beta} (\Sigma_k + (\bar{x} - \widetilde{\mu}_k)(\bar{x} - \widetilde{\mu}_k)')$$

Drug discovery example

Zhu, Su, Chipman

Technometrics, 2005 Y=1 for active drug Y=0 for inactive drug d=6 features $29{,}821$ chemicals only 608 active $\approx 2\%$

 $x_1 \ x_3$ strongest Group means plotted

Drug discovery example ctd

Fits

Plain logistic (608 ones), vs 1 one at \bar{x}_1

Upshot

Same ordering, ROC precision-recall etc.

Drug discovery example ctd

ROC curves Plain logistic 1 one at \bar{x}_1

Drug discovery example ctd

Fits

Plain logistic, vs, Pretend F_0 is Gaussian And use \bar{x}_1

Upshot

Slight difference For easy 0s Mixture model might improve

Drug data had

very bad separation Poor ROC \bar{x} very surrounded

Drug data had

very bad separation Poor ROC \bar{x} very surrounded

Artificial version

$$x_{1i} \leftarrow x_{1i} + \delta$$

 $\delta = (s/10, \dots, s/10)$
 $s = 0, \dots, 10$
Original ROCs in blue
Lumped in red

Drug data had

very bad separation Poor ROC \bar{x} very surrounded

Artificial version

$$x_{1i} \leftarrow x_{1i} + \delta$$

 $\delta = (s/10, \dots, s/10)$
 $s = 0, \dots, 10$
Original ROCs in blue
Lumped in red

Drug data had

very bad separation Poor ROC \bar{x} very surrounded

Artificial version

$$x_{1i} \leftarrow x_{1i} + \delta$$

 $\delta = (s/10, \dots, s/10)$
 $s = 0, \dots, 10$
Original ROCs in blue
Lumped in red

Upshot

Still only uses \bar{x}

Thoughts for fraud detection

Non fraud data, Y = 0

Change slowly over time Large sample size So build a rich model for ${\cal F}_0$ Update rarely

Thoughts for fraud detection

Non fraud data, Y = 0

Change slowly over time Large sample size So build a rich model for F_0 Update rarely

Fraud data, Y = 1

May change rapidly in response to detection May have different flavors Clusters appear, disappear, move, change size Rapidly refit model using per cluster \bar{x}

Acknowledgments

- Paul Louisell for comments
- NSF for funds
- Host: University of Florida
- Organizers: Agresti, Young, Daniels, Casella
- Travel help: Robyn Crawford