Latin Supercube Sampling
for
Very High Dimensional Simulations

by
Art B. Owen
Stanford University

http://www-stat.stanford.edu/reports/owen
Numerical Problems become Statistical in high dimensions

Examples in $[0, 1]^d$

1. Integration✓
2. Approximation
3. Search

Rationale:
Only a very sparse sample of the space is possible, the error depends on the part you don’t see, and the error must be estimated somehow.

Common Alternative:
Get good estimate \hat{I}_0 and much better estimate \hat{I}_1.
Error in $\hat{I}_0 \doteq |\hat{I}_1 - \hat{I}_0|$

Red herring: Function not random.

http://www-stat.stanford.edu/reports/owen
Integration

\[I = \int_{[0,1]^d} f(X) dX \]

\(f \) subsumes

- Domain transformations (to \([0, 1]^d\))
- Nonuniform sampling density
- Importance weighting
- Periodizing transformation
- Transformations to reduce effective dimension

Bahvalov showed it is intractable (worst case)

http://www-stat.stanford.edu/reports/owen
Examples

Transport simulation

Follow trajectory of:
- Radioactive particles through shield
- Photons to viewing plane in graphics
- Heat particles (Laplace’s equation)

Financial valuation

Assess value, or value at risk
- Stochastic process X_t (e.g. interest rates)
- Derivative $Y = f(X_1, \ldots, X_T)$
- Want $E(Y)$, $V(Y)$, $Q_{0.05}(Y)$

Boyle, Broadie, Caflisch, Glasserman, Joy, Tan

http://www-stat.stanford.edu/reports/owen
Examples Ctd.

Queue simulations

Given arrival process A_1, A_2, \ldots and service times S_1, S_2, \ldots

How long is queue at time T?
How long until queue is half full?

Optimal Expectations

$$I(t) = \int f(x, t) dx$$

Want $\arg \min_t I(t)$

Experimental design Cohn, Yue
Stochastic linear programming Infanger

Inference

Posterior means
Some bootstraps

http://www-stat.stanford.edu/reports/owen
\[d = 1, \text{ methods and errors} \]

- Midpoint rule, \(O(n^{-2}) \)
- Trapezoid rule, \(O(n^{-2}) \)
- Simpson’s rule, \(O(n^{-4}) \)
- Generic rule \(n^{-r} \| f(r) \| \)

Davis and Rabinowitz

http://www-stat.stanford.edu/reports/owen
Small $d > 1$, Iterated integrals

by Fubini...

$$\int f(x_1, \ldots, x_d) \, dx$$

$$= \int_0^1 \cdots \int_0^1 f(x_1, \ldots, x_d) \, dx_1 \cdots dx_d$$

Get error $O\left(n^{-r/d}\right)$ \ldots $n = n_1^d, \ n_1 \geq r$

Same as worst case rate (Bahvalov)

Working definition

"d is **large** if grids are impractical"
High dimensional methods

Monte Carlo

\[I = \int f(x) \, dx, \quad \sigma^2 = \int (f(x) - I)^2 \, dx \]

\[\hat{I} = \frac{1}{n} \sum_{i=1}^{n} f(x_i), \quad x_i \sim U[0, 1]^d \]

\[E(\hat{I}) = I, \quad V(\hat{I}) = \frac{\sigma^2}{n}, \quad E(s^2) = \sigma^2 \]

Summary:

• ERR = \(O_p(n^{-1/2}) \) (all \(d \))

• Get sample based estimate of error

• Variance reduction tricks improve const (not rate)

http://www-stat.stanford.edu/reports/owen
High dimensional methods continued

Quasi-Monte Carlo

Spread x_i uniformly in $[0, 1]^d$

Avoid clusters and gaps

Get “representative sample”

See: Niederreiter’s (1992) monograph

Error bounds

$$I = \int f(x) dF(x), \quad \hat{I} = \int f(x) F_n(x)$$

$$F = U[0, 1]^d, \quad F_n = U\{x_1, \ldots, x_n\}$$

$$|I - \hat{I}| \leq \|F - F_n\| \times \|f\|*$$

*Koksma-Hlawka inequality and generalizations

(Niederreiter, Hickernell)

http://www-stat.stanford.edu/reports/owen
Two d view of 125 points in $[0, 1]^5$

Constructions: Sobol, Faure, Niederreiter, Xing

http://www-stat.stanford.edu/reports/owen
Lattices

Texts: Sloan & Joe, Fang & Wang, Hua & Wang

Great for smooth periodic functions

http://www-stat.stanford.edu/reports/owen
QMC vs MC

- QMC can get \(\text{ERR} = O \left(\frac{1}{n} (\log n)^{d-1} \right) \)

- Hard to estimate \(|\hat{I} - I| \) with QMC (Don’t just wait for answer to “converge”!)

- In examples QMC usually beats MC

For large \(d \)

- The gain disappears (Morokoff, Caflisch)

- The gain remains (Paskov, Traub)

- It depends on \(f \) (Caflisch, Morokoff, Owen)

C.M.O. Findings

“QMC does well if the effective dimension is not large”

http://www-stat.stanford.edu/reports/owen
Hybrid methods

- \(A_1, \ldots, A_n \) a QMC
- \(A_i \rightarrow X_i \) randomized (carefully)
- \(X_1, \ldots, X_n \) still QMC, but
- each \(X_i \sim U[0, 1]^d \)

Surprise!

Can get \(\text{ERR} = O_p \left(n^{-3/2} (\log n)^{(d-1)/2} \right) \)

Replication

1. Get \(\hat{I}_1, \ldots, \hat{I}_r \) iid (small \(r \))
2. Use \(\hat{I} = \frac{1}{r} \sum_{j=1}^{r} \hat{I}_j \)
3. and \(\hat{V} (\hat{I}) = \frac{1}{r(r-1)} \sum_{j=1}^{r} (\hat{I}_j - \hat{I})^2 \)

http://www-stat.stanford.edu/reports/owen
Scrambled Nets

1. Chop $[0, 1]^d$ into congruent pieces
2. Randomly permute them
3. Apply recursively to each piece
4. Apply to all d axes

http://www-stat.stanford.edu/reports/owen
Scrambled Net Results

1. X_1, \ldots, X_n still a net

2. Each $X_i \sim U[0, 1]^d$

3. $V_{SNET}(\hat{I}) = o(1/n)$ any f, $n = \lambda b^m$

4. So $V_{SNET}(\hat{I})/V_{MC}(\hat{I}) \to 0$

5. $V_{SNET}(\hat{I}) \leq 2.7183V_{MC}(\hat{I})$, any f, $n = \lambda b^m$
 from $(0, d)$-net in base b

6. For smooth f,

 $$V_{SNET}(\hat{I}) = O(n^{-3}(\log n)^{d-1})$$

http://www-stat.stanford.edu/reports/owen
Cranley-Patterson Rotations

1. $A_i = (A^1_i, \ldots, A^d_i)$ in a lattice rule

2. $X_i^j = A_i^j + U^j \mod 1$, $U^j \sim U[0, 1]^d$ iid

http://www-stat.stanford.edu/reports/owen
Latin hypercube sampling

One point per row, one per column

Two versions: centered, and random.

Start with diagonal points, then permute.

http://www-stat.stanford.edu/reports/owen
Patterson

1. Take midpoint rule \(A_i = \frac{i - 1/2}{n} \)

2. Lift to \(d \) dimensions

 (a) \(X_{i}^{j} = A_{\pi_{j}(i)}, i = 1, \ldots, n, j = 1, \ldots, d \)

 (b) \(\pi_{j}(i) \) indep. random permutations of \(1 \ldots n \)

McKay, Conover, Beckman

1. Take stratified sample \(A_i = \frac{i - V_i}{n}, V_i \sim U[0, 1] \)

2. Get \(d \) independent versions \(A_{i}^{j}, j = 1, \ldots, d \)

3. Lift to \(d \) dimensions

 (a) \(X_{i}^{j} = A_{\pi_{j}(i)}^{j}, i = 1, \ldots, n, j = 1, \ldots, d \)

 (b) \(\pi_{j}(i) \) indep. random permutations of \(1 \ldots n \)
LHS Results

1st Never much worse than Monte Carlo (Owen)

\[V_{LHS}(\hat{I}) \leq \frac{n}{n-1} V_{MC}(\hat{I}) \]

2nd Additive part of \(f \) removed from error (Stein)

\[
V_{LHS}(\hat{I}) = \frac{1}{n} \sigma^2 (f - f_{Add})
= \frac{1}{n} \left(\sigma^2(f) - \sigma^2(f_{Add}) \right)
\]

http://www-stat.stanford.edu/reports/owen
ANOVA of $[0, 1]^d$, $d < \infty$

Hoeffding, Efron-Stein, Wahba, Owen, Hickernell

Subsets $u \subseteq \{1, 2, \ldots, d\}$

Effects $f_u(X^u) = f_u(X)$ (by extension)

$$f(X) = \sum_u f_u(X)$$

Anova example

$$f(X^1, X^2) = 100 + 4X^1 + 8X^2 + 12X^1X^2$$

$$f_\emptyset = 109$$

$$f_{\{1\}} = 10X^1 - 5$$

$$f_{\{2\}} = 14X^2 - 7$$

$$f_{\{1,2\}} = 3(2X^1 - 1)(2X^2 - 1)$$

Additive part

$$f_{\text{Add}} = f_\emptyset + f_{\{1\}} + \cdots + f_{\{d\}}$$

http://www-stat.stanford.edu/reports/owen
Anova properties

\[f(X) = \sum_u f_u(X^u) \]
\[f_{\emptyset} = I \quad \text{(Constant)} \]
\[\int f_u(X)f_v(X) \, dx = 0, \quad u \neq v \]
\[\int_0^1 f_u(X)dX^j = 0, \quad j \in u \]
\[\sigma^2(f) = \sum_{|u|>0} \sigma^2(f_u) \]
\[\sigma^2(f_u) = \int f_u(X)^2, \quad |u| > 0 \]
\[\sigma^2(f_{\emptyset}) = 0 \]
Very large dimension

- For large d QMC may require $n \propto d^2$
- Awkward for $d = 1000$
- Worse for $d = \infty$

Working definition

"d is very large if QMC points hard to compute"
Padding

Spanier, Okten

QMC for s dimensions, MC for $d - s$ dimensions

<table>
<thead>
<tr>
<th>X_1</th>
<th>..................</th>
<th>..................</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_2</td>
<td>..................</td>
<td>..................</td>
</tr>
<tr>
<td>X_3</td>
<td>..................</td>
<td>..................</td>
</tr>
<tr>
<td>X_n</td>
<td>..................</td>
<td>..................</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q.M.C.</th>
<th>M. C.</th>
</tr>
</thead>
</table>

1. Or, replace QMC by RQMC
2. And/or, replace MC by LHS

http://www-stat.stanford.edu/reports/owen
MC padding

For RQMC on \(A = \{1, 2, \ldots, s\} \) with MC padding

Eventually,

\[
V(\hat{I}) \doteq \frac{1}{n} \left[\sigma^2 - \sum_{u \subseteq A} \sigma_u^2 \right]
\]

Practically, for some \(m = m(n) \)

\[
V(\hat{I}) \doteq \frac{1}{n} \left[\sigma^2 - \sum_{u \subseteq A, |u| \leq m} \sigma_u^2 \right]
\]

Recommendation

Put most important \(s \) variables into RQMC set \(A \)

http://www-stat.stanford.edu/reports/owen
LHS padding

For RQMC on \(A = \{1, 2, \ldots, s\} \) with LHS padding

Eventually,

\[
V(\hat{I}) \doteq \frac{1}{n} \left[\sigma^2 - \sum_{u \subseteq A} \sigma_u^2 - \sum_{j=s+1}^{d} \sigma_{\{j\}}^2 \right]
\]

Practically, for some \(m = m(n) \)

\[
V(\hat{I}) \doteq \frac{1}{n} \left[\sigma^2 - \sum_{u \subseteq A, |u| \leq m} \sigma_u^2 - \sum_{j=s+1}^{d} \sigma_{\{j\}}^2 \right]
\]

Recommendation

Put most interactive \(s \) variables into RQMC set \(A \)

http://www-stat.stanford.edu/reports/owen
Padding, wisely

Engineer f so that X^1, \ldots, X^s are “most important”

Standard Brownian Motion

$$X^j \sim U[0, 1] \rightarrow Z^j \sim N(0, 1) \rightarrow Y^j = Y^{j-1} + Z^j$$

Brownian Bridge Encoding

Feynman-Kac, Caflisch-Morokoff-Owen

Given Z^j, generate (conditionally)

$$Z^1 \rightarrow Y^d, Z^2 \rightarrow Y^{d/2}, Z^3 \rightarrow Y^{d/4}, \ldots$$

Principal Components

Acworth, Broadie, Glasserman

1. Use Z^j for jth principal component

2. 5 P.C.s explain 96% of B.M.

http://www-stat.stanford.edu/reports/owen
Queuing

1. Draw # arrivals in $[0, T]$ with X^1
2. Draw median arrival time with X^2
3. Draw quartiles using X^3, X^4
4. Etc.
5. Use (R)QMC for first steps

http://www-stat.stanford.edu/reports/owen
Queuing again

1. Draw # arrivals in \([0, T]\) with \(X^1\) (Poisson)

2. Draw # arrivals in \([0, T/2]\) with \(X^2\) (Binomial)

3. Draw # arrivals in \([0, T/4]\) with \(X^3\) (Binomial)

4. Draw # arrivals in \([T/2, 3T/4]\) with \(X^4\) (Binomial)

5. Etc.

6. Use (R)QMC for first steps

http://www-stat.stanford.edu/reports/owen
IID sampling

Want Z_1, \ldots, Z_n iid

1. Draw $Z_1 = F^{-1}(U_1)$ (Beta)
2. Draw $Z_d = F^{-1}(U_d)$ (Beta)
3. Draw $Z_{d/2} = F^{-1}(U_{d/2})$ (Beta)
4. Etc.
5. Assign quantiles to obs (if necessary)
6. Use (R)QMC for first steps

Alternatives

Or, generate \bar{Z}, \bar{Z}^2 first

http://www-stat.stanford.edu/reports/owen
Latin Supercube Sampling

- $d = k s$
- Use k copies of (R)QMC points $X_i \in [0, 1]^s$
- $X_i = (X_{\pi_1(i)}, X_{\pi_2(i)}, \ldots, X_{\pi_k(i)})$

<table>
<thead>
<tr>
<th></th>
<th>$X{1,2,3,4}$</th>
<th>$X{5,6,7,8}$</th>
<th>$X{9,10,11,12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>X_{353}</td>
<td>X_{19}</td>
<td>X_{989}</td>
</tr>
<tr>
<td>X_2</td>
<td>X_{67}</td>
<td>X_{67}</td>
<td>X_{296}</td>
</tr>
<tr>
<td>X_3</td>
<td>X_{123}</td>
<td>X_{567}</td>
<td>X_{721}</td>
</tr>
<tr>
<td>X_4</td>
<td>X_{421}</td>
<td>X_{755}</td>
<td>X_{433}</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>X_{1000}</td>
<td>X_{921}</td>
<td>X_{304}</td>
<td>X_{251}</td>
</tr>
</tbody>
</table>

http://www-stat.stanford.edu/reports/owen
Examples

1. (R)QMC on 5 P.C.s from each B.M. used (finance)
2. (R)QMC for each collision (transport problems)
3. (R)QMC for each collision feature (dx, dy etc.)
4. (R)QMC for each arrival/service stream (queuing)

http://www-stat.stanford.edu/reports/owen
LSS Error Analysis, \(d < \infty \)

\[
\hat{I} - I = \hat{I} - I_G + I_G - I
\]

\(I_G \) = Average over “big grid”

\[
I_G = \frac{1}{n^k} \sum_{i_1=1}^{n} \cdots \sum_{i_k=1}^{n} f(X_{i_1} \cdots X_{i_k})
\]

Sampling Error

\(\hat{I} - I_G \equiv k \) dim LHS error

Quadrature Error

\(I_G - I \equiv \text{sum of } k \text{ (R)QMC errors (Fubini)} \)

http://www-stat.stanford.edu/reports/owen
(R)QMC Sampling Distribution

Partition inputs into \(k \) sets:

- Use \(\mathcal{X}^r \in [0, 1]^{A_r} \)
- \(A_r \subseteq \{1, 2, \ldots, d\} \)
- \(A_r \cap A_q = \emptyset, r \neq q \)
- \(\bigcup_{r=1}^{k} A_r = \{1, 2, \ldots, d\} \)
- \(X = (\mathcal{X}^1, \ldots, \mathcal{X}^k) \)

Sampling Error

\[
E(\hat{I} - I_G) = 0
\]
\[
V(\hat{I} - I_G) = \frac{1}{n} \left[\sigma^2 - \sum_{r=1}^{k} \sum_{u \subseteq A_r} \sigma_u^2 \right]
\]

http://www-stat.stanford.edu/reports/owen
(R)QMC Quadrature Error

- \(|I_G - I| \approx O(kE), E = s \dim (R)QMC\) err
- So \(|I_G - I| = o(n^{-1/2})\)
- With luck: asymptotics relevant, \(|I_G - I|\) negligible

QMC vs RQMC

- QMC: \(I_G - I\) nonrandom, a bias
- RQMC: \(E(I_G - I) = 0\) random, contributes to variance

If \(I_G - I\) not negligible

- In RQMC errors cancel (in replications)
- In QMC errors don’t cancel

http://www-stat.stanford.edu/reports/owen
What if $d = \infty$?

1. Usual derivation of $V_{LHS}(\hat{I})$ crashes:
 Have to average over volume $[1 - 1/n]^d \to 0$

2. Uncountably many ANOVA terms to sum!

3. What is interaction of $X^2, X^3, X^5, X^7, \ldots$?

Is f “approximately finite dimensional”?

1. $f(X_i)$ must only use initial segment $X^1, \ldots, X^{M(i)}$

2. Leading X^{j} usually most important.

3. Maybe “all but ϵ” of variance is in first variables
Martingale Truncation

Williams

For \(s \geq 1 \)

\[
 f^s(x^1, \ldots, x^s) = E(f(X)|X^1 = x^1, \ldots, X^s = x^s)
\]

For \(X \in [0, 1]^\infty \) take

\[
 f^s(X) = f^s(X^1, \ldots, X^s)
\]

Then

\[
 E(f^{s+1}(X)|X^{\{1,2,\ldots,s\}}) = f^s(X)
\]

\(Y^s = f^s(X), \ s \geq 1 \) is a martingale
Finite variance does it

If \(\int f(X)^2 < \infty \) then \(\forall \epsilon > 0, \exists s < \infty \)

\[
E \left(\left[f^s(X) - f(X) \right]^2 \right) < \epsilon
\]

Consequences

\[
V_{LHS}(\hat{I}) \leq \frac{n}{n-1} V_{MC}(\hat{I}), \quad d = \infty
\]

\[
V_{LHS}(\hat{I}) = \frac{1}{n} \left[\sigma^2 - \sum_{j=1}^{\infty} \sigma_{\{j\}}^2 \right]
\]

\[
\sigma_u^2 = 0, \quad |u| = \infty
\]

And \(\ldots \) LSS works for \(\hat{k} = \infty \)

http://www-stat.stanford.edu/reports/owen
Conclusions

“It depends on f”

1. Large $d \Rightarrow$ integration intractable

2. . . . in the worst case

Success for large d means

- f was somehow “special”,
- and our method could exploit it,
- but not “curse of d lifted”

Tasks

1. Find special structures

2. ways to exploit them

3. ways to induce them

RQMC and LLS exploit lower “effective dimension”

http://www-stat.stanford.edu/reports/owen