

¹

VxInsight's variant of multidimensional scaling

Widely adopted by C. elegans community following Kim et al (Science 2001).

Each gene is a point in the plane

High correlation \iff small distance

Find center of Rb genes

Investigate non-Rb genes near that center

Gene recommender

Build a "cluster" around a seed group of known genes.

Mimic algorithms used to recommend movies/books

For movies

- 1. Start with a list of movies
- 2. Find viewers who rated them highly
- 3. Find other movies those viewers liked

For genes

- 1. Start with a list of genes
- 2. Find experiments where they're co-expressed
- 3. Find other genes with similar profiles in those expts

Similar and independent: Ihmels, Friedlander, Bergmann, Sarig, Ziv, Barkai. (Nature Genetics, 2002)

Google set labs.google.com/sets

Query: Larry, Moe, Curly

Result: Moe, Curly, Larry, Shemp, Joe

Query: John, Paul, George

Result: Paul, George, John, Ringo

Query: Donut, Bagel, Washer, Inner Tube

Result: Donut, Bagel, Bagel with Cream Cheese,

Egg ala carte, Peaches, ..., Side Pancakes

Omits Washer and Inner Tube

Query: stop, yield, one way

Result: stop, yield, one way, SLOW, VIEWPOINT AHEAD, Obey your thirst, WALK

Query: lin-35 lin-53 hda-1 lin-36 lin-9

Result: Check your spelling ····

Experiment list

553 experiments from

Eggs, larvae, dauer, adult

Heat shock and other stresses

Mutants

Various labs

Some experiments irrelevant to Rb, or MSP, or repair

They'll add noise (or undesired signal)

Recommender approach uses selected expts only

Rb data for two experiments

Experiment scores

$$Z_{\mathrm{Rb},j} = \frac{|\bar{X}_{\mathrm{Rb},j}|}{\sqrt{V_{\mathrm{Rb},j}}} \times \sqrt{N_{\mathrm{Rb},j}}$$

where

 $ar{X}_{{
m Rb},j} =$ Avg X for Rb genes in expt j $V_{{
m Rb},j} =$ Variance(X) for Rb genes in expt j $N_{{
m Rb},j} =$ # nonmissing Rb vals for expt j

Examples

Expt 287 scored 97.8

Expt 11 scored 0.41

Roughly: $Z \sim |N(0,1)|$ if "nothing going on"

Rb and random 5 gene queries

15

Art Owen, Stanford University

ORFScoreZ#ET23G7.10.24710.533162K07A1.120.24415.632320K12D12.10.24015.370320C32F10.20.23815.188320R06C7.80.23715.048317C53A5.30.23715.152320B0464.60.23314.720315R06F6.10.23314.825319T16G12.50.23114.691315F55A3.70.23014.690318K06H7.10.22914.558320K637.70.22714.546320F35G12.80.22714.519317				
T23G7.10.24710.533162K07A1.120.24415.632320K12D12.10.24015.370320C32F10.20.23815.188320R06C7.80.23715.048317C53A5.30.23715.152320B0464.60.23314.720315R06F6.10.23314.825319T16G12.50.23114.691315K06H7.10.22914.558318K06H7.10.22714.546320F35G12.80.22714.519317	ORF	Score	Z	#E
K07A1.120.24415.632320K12D12.10.24015.370320C32F10.20.23815.188320R06C7.80.23715.048317C53A5.30.23715.152320B0464.60.23314.720315R06F6.10.23314.825319T16G12.50.23114.691315F55A3.70.23014.690318K06H7.10.22914.558318K06H7.10.22714.546320F35G12.80.22714.519317	○ T23G7.1	0.247	10.533	162
K12D12.10.24015.370320C32F10.20.23815.188320R06C7.80.23715.048317C53A5.30.23715.152320B0464.60.23314.720315R06F6.10.23314.825319T16G12.50.23114.691315F55A3.70.23014.690318K06H7.10.22914.558318ZK637.70.22714.546320F35G12.80.22714.519317	• K07A1.12	0.244	15.632	320
C32F10.20.23815.188320R06C7.80.23715.048317C53A5.30.23715.152320B0464.60.23314.720315R06F6.10.23314.825319T16G12.50.23114.691315F55A3.70.23014.690318K06H7.10.22914.558318ZK637.70.22714.546320F35G12.80.22714.519317	○ K12D12.1	0.240	15.370	320
R06C7.80.23715.048317C53A5.30.23715.152320B0464.60.23314.720315R06F6.10.23314.825319T16G12.50.23114.691315F55A3.70.23014.690318K06H7.10.22914.558318ZK637.70.22714.546320F35G12.80.22714.519317	• C32F10.2	0.238	15.188	320
C53A5.30.23715.152320B0464.60.23314.720315R06F6.10.23314.825319T16G12.50.23114.691315F55A3.70.23014.690318K06H7.10.22914.558318ZK637.70.22714.546320F35G12.80.22714.519317	○ R06C7.8	0.237	15.048	317
B0464.60.23314.720315R06F6.10.23314.825319T16G12.50.23114.691315F55A3.70.23014.690318K06H7.10.22914.558318ZK637.70.22714.546320F44B9.60.22714.543320F35G12.80.22714.519317	• C53A5.3	0.237	15.152	320
R06F6.10.23314.825319T16G12.50.23114.691315F55A3.70.23014.690318K06H7.10.22914.558318ZK637.70.22714.546320F44B9.60.22714.543320F35G12.80.22714.519317	○ B0464.6	0.233	14.720	315
T16G12.50.23114.691315F55A3.70.23014.690318K06H7.10.22914.558318ZK637.70.22714.546320F44B9.60.22714.543320F35G12.80.22714.519317	○ R06F6.1	0.233	14.825	319
F55A3.70.23014.690318K06H7.10.22914.558318ZK637.70.22714.546320F44B9.60.22714.543320F35G12.80.22714.519317	○ T16G12.5	0.231	14.691	315
K06H7.10.22914.558318ZK637.70.22714.546320F44B9.60.22714.543320F35G12.80.22714.519317	○ F55A3.7	0.230	14.690	318
ZK637.70.22714.546320F44B9.60.22714.543320F35G12.80.22714.519317	○ K06H7.1	0.229	14.558	318
F44B9.60.22714.543320F35G12.80.22714.519317	• ZK637.7	0.227	14.546	320
F35G12.8 0.227 14.519 317	• F44B9.6	0.227	14.543	320
	○ F35G12.8	0.227	14.519	317

Picking the threshold

We use experiments j with $Z_{{\rm Rb}j}>Z^{*}$

 Z^{\ast} too large \longrightarrow too few expts to score genes

 Z^* too small \longrightarrow include noisy expts

We pick Z^* to bring query group to top of list

Minimize # non-group genes scoring better than half of gp genes

This is circular, but

- 1. ranks changed little using leave-one-out methods
- 2. queries with 5 or more random genes did not have high scoring experiments

Recommender more precise than

Topomap

Group sizes at 50% recall

Query	Size	Reco	Торо
Retinoblastoma	5	6	138
Recombination/repair	6	57	1271
Synaptonemal	6	4	246
MSP	43	32	225

The Rb query has 5 genes.

To get at least 3 Rb query genes, requires the top 6 genes in the gene recommender ordering.

For the topomap ordering it takes the top 138 genes.

Similar improvements at other recall levels.

Is topomap comparison fair?

Yes and No

Topomap had no free params

Topomap is not optimized per query

 \ldots because it takes $O(n^2)$ work

Topomap was de facto standard

Interpreting output

We get a list of candidates

High rank does not prove group membership:

- 1. We might already have the whole group
- 2. Strong expression correlations can arise for other reasons

No p-value can confirm relevance for genes

... or movies or web docs

Confirmation

- 1. Literature
 - Found known MSP genes not in our list
 - Top 2 Rb candidates: dpl-1 & K12D12.1 similar to mammalian genes that interact with Rb
 - Four new genes involved in cell cycle and chromatin regulation; shared function with Rb
- 2. RNAi knockouts
 - Tried top 50 ranked genes
 - wrm-1 embryonic lethality, supressed by loss of lin-35
 - JC8.6 had a synMuv phenotype

Try it!

Enter ORFs at

http://pmgm2.stanford.edu/~kimlab/cassettes