The link prediction problem for social networks

Alexandra Chouldechova

STATS 319, February 1, 2011
Motivation

- Recommending new friends in online social networks.

- Suggesting interactions between the members of a company/organization that are external to the hierarchical structure of the organization itself.

- Predicting connections between members of terrorist organizations who have not been directly observed to work together.

- Suggesting collaborations between researchers based on co-authorship.
Statement of the problem

- **Link prediction problem:** Given the links in a social network at time t or during a time interval I, we wish to predict the links that will be added to the network during the later time interval from time t' to a some given future time.
Statement of the problem

▶ **Link prediction problem:** Given the links in a social network at time t or during a time interval I, we wish to predict the links that will be added to the network during the later time interval from time t' to a some given future time.

▶ **Main approach:** Use measures of network-proximity adapted from graph theory, computer science, and the social sciences to determine which unconnected nodes are ‘close together’ in the topology of the network.
General Notation

- Social network $G = \langle V, E \rangle$ (or $G = \langle A, E \rangle$ if nodes are authors)
- An edge $e = \langle u, v \rangle \in E$ represents an interaction between u and v that took place at time $t(e)$
General Notation

- Social network $G = \langle V, E \rangle$ (or $G = \langle A, E \rangle$ if nodes are authors)
- An edge $e = \langle u, v \rangle \in E$ represents an interaction between u and v that took place at time $t(e)$
- For $t < t'$, let $G[t, t']$ denote the subgraph of G consisting of all edges that took place between t and t'
General Notation

▸ Social network $G = \langle V, E \rangle$ (or $G = \langle A, E \rangle$ if nodes are authors)

▸ An edge $e = \langle u, v \rangle \in E$ represents an interaction between u and v that took place at time $t(e)$

▸ For $t < t'$, let $G[t, t']$ denote the subgraph of G consisting of all edges that took place between t and t'

▸ For $t_0 < t'_0 < t_1 < t'_1$, given $G[t_0, t'_0]$, we wish to output a list of edges not in $G[t_0, t'_0]$ that are predicted to appear in $G[t_1, t'_1]$
General Notation

- Social network $G = \langle V, E \rangle$ (or $G = \langle A, E \rangle$ if nodes are authors)
- An edge $e = \langle u, v \rangle \in E$ represents an interaction between u and v that took place at time $t(e)$
- For $t < t'$, let $G[t, t']$ denote the subgraph of G consisting of all edges that took place between t and t'
- For $t_0 < t'_0 < t_1 < t'_1$, given $G[t_0, t'_0]$, we wish to output a list of edges not in $G[t_0, t'_0]$ that are predicted to appear in $G[t_1, t'_1]$
- Let Core $\subset V$ denote the set of all nodes that are incident to at least κ_{training} edges in $G[t_0, t'_0]$ and at least κ_{test} edges in $G[t_1, t'_1]$
Notation for arXiv physics co-authorship network

- $[t_0, t'_0]$ are the three years 1993 – 1996
- $[t_1, t'_1]$ are the three years 1997 – 1999
Notation for arXiv physics co-authorship network

- $[t_0, t'_0]$ are the three years 1993 – 1996
- $[t_1, t'_1]$ are the three years 1997 – 1999
- $G[1993, 1996] = G_{collab} = \langle A, E_{old} \rangle$
Notation for arXiv physics co-authorship network

- \([t_0, t'_0]\) are the three years 1993 – 1996
- \([t_1, t'_1]\) are the three years 1997 – 1999
- \(G[1993, 1996] = G_{collab} = \langle A, E_{old} \rangle\)
- \(E_{new}\) is the set of edges \(\langle u, v \rangle\) such that authors \(u\) and \(v\) co-authored an article sometime during 1997 – 1999 but not during 1993 – 1996
Notation for arXiv physics co-authorship network

- $[t_0, t'_0]$ are the three years 1993 – 1996
- $[t_1, t'_1]$ are the three years 1997 – 1999
- $G[1993, 1996] = G_{collab} = \langle A, E_{old}\rangle$
- E_{new} is the set of edges $\langle u, v \rangle$ such that authors u and v co-authored an article sometime during 1997 – 1999 but not during 1993 – 1996
- Each link predictor p outputs a ranked list L_p of pairs in $A \times A - E_{old}$. List is ordered according to decreasing values of $\text{score}(x, y)$ for $\langle x, y \rangle \in A \times A - E_{old}$
Notation for arXiv physics co-authorship network

- $[t_0, t'_0]$ are the three years $1993 - 1996$
- $[t_1, t'_1]$ are the three years $1997 - 1999$
- $G[1993, 1996] = G_{collab} = \langle A, E_{old} \rangle$
- E_{new} is the set of edges $\langle u, v \rangle$ such that authors u and v co-authored an article sometime during $1997 - 1999$ but not during $1993 - 1996$
- Each link predictor p outputs a ranked list L_p of pairs in $A \times A - E_{old}$. List is ordered according to decreasing values of $\text{score}(x, y)$ for $\langle x, y \rangle \in A \times A - E_{old}$
- $E^*_{new} = E_{new} \cap (\text{Core} \times \text{Core})$, $n = |E^*_{new}|$
Notation for arXiv physics co-authorship network

- $[t_0, t'_0]$ are the three years 1993 – 1996
- $[t_1, t'_1]$ are the three years 1997 – 1999
- $G[1993, 1996] = G_{collab} = \langle A, E_{old} \rangle$
- E_{new} is the set of edges $\langle u, v \rangle$ such that authors u and v co-authored an article sometime during 1997 – 1999 but not during 1993 – 1996
- Each link predictor p outputs a ranked list L_p of pairs in $A \times A - E_{old}$. List is ordered according to decreasing values of $\text{score}(x, y)$ for $\langle x, y \rangle \in A \times A - E_{old}$
- $E^*_{new} = E_{new} \cap (\text{Core} \times \text{Core})$, $n = |E^*_{new}|$
- Evaluate method by taking the top n edge predictions from L_p that are in $\text{Core} \times \text{Core}$ and computing the size of the intersection with E^*_{new}
Methods for Link Prediction: Shortest-path

▶ **Shortest-path:** For \(\langle x, y \rangle \in A \times A - E_{old} \), define,

\[
score(x, y) = \text{(negated) length of shortest path between } x \text{ and } y
\]

▶ If there are more than \(n \) pairs of nodes tied for the shortest path length, order them at random.
Methods for Link Prediction: Neighbourhood-based

- Let $\Gamma(x)$ denote the set of neighbours of x in G_{collab}
- **Common neighbours:** Based on the idea that links are formed between nodes who share many common neighbours

$$\text{score}(x, y) = |\Gamma(x) \cap \Gamma(y)|$$
Methods for Link Prediction: Neighbourhood-based

- Let $\Gamma(x)$ denote the set of neighbours of x in G_{colab}

- **Common neighbours:** Based on the idea that links are formed between nodes who share many common neighbours

 $$score(x, y) = |\Gamma(x) \cap \Gamma(y)|$$

- **Jaccard’s coefficient:** Measure how likely a neighbour of x is to be a neighbour of y and vice versa

 $$score(x, y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}$$
Methods for Link Prediction: Neighbourhood-based

- Let $\Gamma(x)$ denote the set of neighbours of x in G_{collab}
- **Common neighbours:** Based on the idea that links are formed between nodes who share many common neighbours
 \[
 \text{score}(x, y) = |\Gamma(x) \cap \Gamma(y)|
 \]

- **Jaccard's coefficient:** Measure how likely a neighbour of x is to be a neighbour of y and vice versa
 \[
 \text{score}(x, y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}
 \]

- **Adamic/Adar:** Assigns large weight to common neighbours z of x and y which themselves have few neighbours $|\Gamma(z)|$
 \[
 \text{score}(x, y) = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}
 \]
Methods for Link Prediction: Preferential attachment

- Based on the premise that a new edge has node \(x \) as its endpoint is proportional to \(|\Gamma(x)| \). i.e., nodes like to form ties with ‘popular’ nodes.

- **Preferential attachment**: Researchers found empirical evidence to suggest that co-authorship is correlated with the product of the neighbourhood sizes.

\[
\text{score}(x, y) = |\Gamma(x)||\Gamma(y)|
\]
Methods for Link Prediction: Ensembles of all Paths

- **Katz_β measure**: Sums over all possible paths between x and y, giving higher weight to shorter paths.

\[
\text{score}(x, y) = \sum_{l=1}^{\infty} \beta^l |\text{paths}_{x,y}^{(l)}|
\]

where \(\beta > 0\) and \(\text{paths}_{x,y}^{(l)}\) is the set of all length-\(l\) paths from \(x\) to \(y\).
Katz β measure: Sums over all possible paths between x and y, giving higher weight to shorter paths.

$$\text{score}(x, y) = \sum_{l=1}^{\infty} \beta^l |\text{paths}_{x,y}^{(l)}|$$

where $\beta > 0$ and $\text{paths}_{x,y}^{(l)}$ is the set of all length-l paths from x to y.

Two variants of the Katz measure are considered

(a) unweighted: $\text{paths}_{x,y}^{(l)} = 1$ if x and y have collaborated and 0 otherwise

(b) weighted: $\text{paths}_{x,y}^{(l)}$ is the number of times that x and y have collaborated.
Methods for Link Prediction: Hitting and Commute times

- Consider a random walk on G_{collab} which starts at x and iteratively moves to a neighbour of x chosen uniformly at random from $\Gamma(x)$.

- The **Hitting Time** $H_{x,y}$ from x to y is the expected number of steps it takes for the RW starting at x to reach y.

\[
\text{score}(x, y) = -H_{x,y}
\]
Consider a random walk on G_{collab} which starts at x and iteratively moves to a neighbour of x chosen uniformly at random from $\Gamma(x)$.

The **Hitting Time** $H_{x,y}$ from x to y is the expected number of steps it takes for the RW starting at x to reach y.

$$\text{score}(x, y) = -H_{x,y}$$

The **Commute Time** $C_{x,y} = H_{x,y} + H_{y,x}$ is the expected number of steps to travel from x to y then back to x.

$$\text{score}(x, y) = -C_{x,y} = -(H_{x,y} + H_{y,x})$$
Methods for Link Prediction: Hitting and Commute times

- Consider a random walk on G_{collab} which starts at x and iteratively moves to a neighbour of x chosen uniformly at random from $\Gamma(x)$.

- The **Hitting Time** $H_{x,y}$ from x to y is the expected number of steps it takes for the RW starting at x to reach y.

 $$ score(x, y) = -H_{x,y} $$

- The **Commute Time** $C_{x,y} = H_{x,y} + H_{y,x}$ is the expected number of steps to travel from x to y then back to x.

 $$ score(x, y) = -C_{x,y} = -(H_{x,y} + H_{y,x}) $$

- Can also consider stationary-normed versions:

 $$ score(x, y) = -H_{x,y}\pi_y $$

 $$ score(x, y) = -(H_{x,y}\pi_y + H_{y,x}\pi_x) $$
The hitting time and commute time measures are sensitive to parts of the graph far away from x and y.

Rooted PageRank: $\text{score}(x,y) =$ stationary distribution weight of y under this scheme
The hitting time and commute time measures are sensitive to parts of the graph far away from \(x \) and \(y \).

Consider instead the random walk on \(G_{collab} \) that starts at \(x \) that has a probability of \(\alpha \) of returning to \(x \) at each step.

Rooted PageRank:

\[
score(x, y) = \text{stationary distribution weight of } y \text{ under this scheme}
\]
Methods for Link Prediction: SimRank

- **SimRank_γ**: Let \(\text{similarity}(x, y) \) be a fixed point of

\[
\text{similarity}(x, y) = \gamma \frac{\sum_{a \in \Gamma(x)} \sum_{b \in \Gamma(y)} \text{similarity}(a, b)}{|\Gamma(x)||\Gamma(y)|}
\]

where \(\gamma \in [0, 1] \)

| score(x, y) = similarity(x, y) |

- This is the expected value of \(\gamma^\ell \) under the random walk probabilities, where \(\ell \) is the time at which random walks started from \(x \) and \(y \) first meet
Comparisons of the different methods

- Prediction accuracy will be tabulated in terms of relative improvement over a random predictor.
Comparisons of the different methods

- Prediction accuracy will be tabulated in terms of relative improvement over a random predictor.
- The random predictor simply predicts randomly selected pairs of authors from Core who did not collaborate during the training interval 1993 – 1996.
Comparisons of the different methods

- Prediction accuracy will be tabulated in terms of relative improvement over a random predictor.
- The random predictor simply predicts randomly selected pairs of authors from Core who did not collaborate during the training interval 1993 – 1996.
- The probability the random prediction is correct is
 \[
 \frac{1}{\binom{|\text{Core}|}{2} - |E_{old}|}
 \]
- This value ranges from 0.15% in cond-mat to 0.48% in astro-ph.