Stat 315c: Transposable Data
Spectral clustering

Art B. Owen

Stanford Statistics
Spectral clustering

- Relatively new method.
- Defined via NP-hard graph criteria.
- Approximate solution via matrix theory and eigenvectors.
- Lots of promise.
- Applications to information retrieval and image segmentation and network analysis.
- Several competing flavors.
- Good news = bad news = we still have to think about our data
Spectral clustering

Main reference
I mostly follow the excellent exposition of Ulrike von Luxborg

Graphs
- $G = (V, E)$
- Vertices v_i \(i = 1, \ldots, n\). $v_i \in V$
- Edges are vertex pairs from $V \times V$
- Undirected and weighted
- Represent by $w_{ij} = w_{ji} \geq 0$.
- $w_{ij} > 0$ iff G has an ij edge

Graph clustering
- Partition the vertices
- With large weights within and small weights between
Graph Cut

Binary split

- $A \subset V$ and $A^c = V - A$

- $$\text{Cut}(A, A^c) = \sum_{i \in A} \sum_{i \in A^c} w_{ij}$$

- (Sketch), Minimize cut, often get singleton A

- Penalize small groups via group size $|A|$ to favor balance

- $$\text{RatioCut}(A, A^c) = \sum_{i \in A} \sum_{i \in A^c} w_{ij} \left(\frac{1}{|A|} + \frac{1}{|A^c|} \right)$$

- Best split hard to find
Define $f \in \mathbb{R}^n$

$$f_i = \begin{cases} \sqrt{|A^c|/|A|}, & i \in A \\ -\sqrt{|A|/|A^c|}, & i \in A^c \end{cases}$$

NB: $\sum_i f_i = 0$, and $\sum_i f_i^2 = |V|$

Now

$$\sum_{ij} w_{ij} (f_i - f_j)^2 = \sum_{i \in A} \sum_{j \in A^c} (w_{ij} + w_{ji}) \left(\sqrt{|A|/|A^c|} + \sqrt{|A^c|/|A|} \right)^2$$

$$= 2 \text{Cut}(A, A^c) \left(\frac{|A^c|}{|A|} + \frac{|A|}{|A^c|} + 2 \right)$$

$$= 2 \text{Cut}(A, A^c) \left(\frac{|A^c| + |A|}{|A|} + \frac{|A| + |A^c|}{|A^c|} \right)$$

$$= 2|V| \text{RatioCut}(A, A^c)$$
Relaxed problem

Minimize

\[\sum_{ij} w_{ij}(f_i - f_j)^2 \] subject to

1. \[\sum_i f_i = 0 \]
2. \[\sum_i f_i^2 = |V| \]

But forgetting about the combinatorial constraint

Solution

Via an eigen vector algorithm. The smallest eigen value is 0 \(f_i \) is the eigen vector for the second smallest eigen value

Then take \(A = \{ i \mid f_i \geq 0 \} \)

Variants

- How to pick \(w_{ij} \)
- Alternatives to RatioCut
- Binary splits other than the sign and \(k \) fold splits
Size of sets

\[d_i = \sum_j w_{ij} \] generalizes degree of \(i \)

For \(A \subseteq V \)

- \(|A| = \text{cardinality of } A \)
- \(\text{vol}(A) = \sum_{i \in A} d_i \)

Similarity measures

- \(\epsilon \) neighborhood \(w_{ij} = 1 \) \(\|x_i - x_j\| \leq \epsilon \)
- k-NN graph \(w_{ij} = 1 \) if \(i \) is one of \(j \)'s k NNs (or conversely)
- \(w_{ij} = \exp(-\|x_i - x_j\|^2/2\sigma^2) \)
Graph Laplacian

Graph Laplacian matrix (unweighted)

\[L = D - W \]
\[D = \text{diag}(d_1, \ldots, d_n) \quad \text{degree matrix} \]

Properties

\(L \) is symmetric and positive semidefinite

\[f'Lf = \frac{1}{2} \sum_{ij} w_{ij} (f_i - f_j)^2 \]

Smallest eigenvalue is 0, corresponding eigenvector is \((1, \ldots, 1) \in \mathbb{R}^n\)

We’re interested in smallest eigenvalues of \(L \) (largest of \(W - D \))
\[0 \leq \lambda_1 \leq \cdots \leq \lambda_n \]
Graph Laplacian

Components

If G has k connected components
Then L has k eigenvalues of 0
Sort edges, then

$$L = \text{diag}(L_1, L_2, \ldots, L_k)$$

Each L_j has an eigenvalue of 0

Normalizations

Symmetric normalization

$$L_{sym} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$$

Random walk normalization

$$L_{rw} = D^{-1}L = I - D^{-1}W$$

L_{ij} gives probability of graph walking to j from i
Properties of L_{sym} and L_{rw}

- $f' L_{\text{sym}} f = \frac{1}{2} \sum_{ij} w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2$
- $L_{\text{rw}} v = \lambda v \iff L_{\text{sym}} w = \lambda w$, for $w = D^{1/2} v$
- L_{rw} has eigenvalue 0 for eigenvector of 1s
- Both positive semidefinite
- Number of zero eigenvalues is number of connected components
Spectral clustering

Unnormalized

- Construct similarity graph W
- Get $L = D - W$
- Find smallest k eigenvalue/vector pairs
- Let V be the $n \times k$ eigenvector matrix
- Represent point i by y_i i’th row of V
- Run k means on the y_i
Spectral clustering

Normalized (per Shi and Malik (2000))

- Construct similarity graph W
- Get $L = D - W$
- Find smallest k eigenvalue/vector pairs in generalized eigenvalue problem $Lv = \lambda Dv$
- Or \cdots just use $L_{rw}v = \lambda v$
- Let V be the $n \times k$ eigvector matrix
- Represent point i by y_i i’th row of V
- Run k means on the y_i
Spectral clustering

Normalized (per Ng, Jordan and Weiss (2002))

- Construct similarity graph W
- Get $L_{\text{sym}} = I - D^{-1/2}W D^{-1/2}$
- Find smallest k eigenvalue/vector pairs of L
- Let V be the $n \times k$ eigvector matrix
- Get U by normalizing rows of V to unit length
- Represent point i by y_i i’th row of U
- Run k means on the y_i

Actually they run a clever k means that expects the cluster means to be mutually orthogonal
The extra normalization step helps when cluster sizes are very unequal.
Examples

The handout is from Ng, Jordan and Weiss

Notes

- Spectral clustering soundly beats k-means on straggly arbitrary shaped clusters.
- It even beats single linkage in such examples.
- The reason is that having 5 connections at distance $d + \epsilon$ counts for more than having just one at d.
- We might expect 'reverse counter-examples' for the other methods.
More graph cuts

Seeking 'light' edges between 'heavy' edges within

\[
\text{Cut}(A_1, \ldots, A_k) = \sum_{i=1}^{k} \text{Cut}(A_i, A_i^c)
\]

\[
\text{RatioCut}(A_1, \ldots, A_k) = \sum_{i=1}^{k} \text{Cut}(A_i, A_i^c) \frac{1}{|A_i|}
\]

Hagen Kahng 1992

\[
\text{NCut}(A_1, \ldots, A_k) = \sum_{i=1}^{k} \text{Cut}(A_i, A_i^c) \frac{1}{\text{vol} A_i}
\]

Shi Malik 2000

We relaxed RatioCut to get unnormalized spectral clustering
Relaxing NCut gets normalized spectral clustering (Shi Malik version)
Guattery and Miller: cockroach graphs lead spectral clustering astray

Random walks

\[\text{Ncut}(A, A^c) = \Pr(A^c \mid A) + \Pr(A \mid A^c) \]
Expected traffic between groups.
1st eigenvector describes stationary distribution. 2nd eigenvector describes correction: extra probability for \(i \to j \) transitions after (large) \(m \) steps governed by \(z_2 z'_2 \). Going \(i \to j \) slightly more likely of \(\text{sign}(z_{2i}) = \text{sign}(z_{2j}) \).

Commute distance

Expected time to go from \(i \) to \(j \) and back
Almost but not quite the dist in spectral clustering

Perturbation theory

- Stable eigenvectors
- Come from well separated eigenvalues
Where to cut

k means using r eigenvectors

- k means with $r = k$
- k means with $r = k - 1$ (eg $k = 2$ only needs $r = 1$ eigenvector)
- If r eigenvectors $\rightarrow k = 2^r$ clusters . . . take $r = \lceil \log_2(k) \rceil$

Other

- For $k = 2$, we can use direct cut-style measures instead of k-means
- Recursive bisection with or without k-means
Alternatives

Alternative dist

\[
W_{ij} = \exp(-\beta \|x_i - x_j\|)
\]

Instead of \(\exp(-\beta \|x_i - x_j\|^2)\).

Gets 'path weight' \(x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_n\) of \(\exp(-\beta \sum_i \|x_{i+1} - x_i\|)\).

Kannan Vempala Vetta

Use Cheeger conductance

\[
\phi(A, A^c) = \frac{\text{Cut}(A, A^c)}{\min(\text{vol}(A), \text{vol}(A^c))}
\]

Directed graphs

\[
\text{Cut}(A, B) = \sum_{i \in A} \sum_{j \in B} w_{ij}
\]

is symmetric in \(W\). So are size penalties based on \(\text{Cut}(A, A)\).
References

- Ulrike von Luxborg: Excellent and very clear tutorial on spectral clustering
- Chris Ding: Two well illustrated ICML tutorials online
- Ng, Jordan, Weiss: Concise and well illustrated NIPS paper
- Shortreed and Meila: Graph examples with random walk interpretations