Products of compact spaces and the axiom of choice II

Omar De la Cruz1, Eric Hall1, Paul Howard2, Kyriakos Keremedis3, and Jean E. Rubin** ***

1 Department of Mathematics, Purdue University, West Lafayette, IN 47907, U. S. A.
2 Department of Mathematics, Eastern Michigan University, Ypsilanti, MI 48197, U. S. A.
3 Department of Mathematics, University of the Aegean, Karlovasi, Samos, 83200, Greece

Received 19 January 2002, revised 4 March 2002, accepted 6 March 2002
Published online 26 December 2002

Key words First countable, second countable, Hausdorff space, Tychonoff-product, compact spaces, axiom of choice, axiom of multiple choice.

MSC (2000) 03E25, 04A25, 54D30

This paper is dedicated to the memory of Jean Rubin, our friend, colleague and mentor.

This is a continuation of [2]. We study the Tychonoff Compactness Theorem for various definitions of compactness and for various types of spaces (first and second countable spaces, Hausdorff spaces, and subspaces of \mathbb{R}^n). We also study well ordered Tychonoff products and the effect that the multiple choice axiom has on such products.

1 Introduction and definitions

We started our study of the Tychonoff Compactness Theorem in [2], where we studied the Theorem using the definitions of compactness studied in [3]. In this paper we extend these results to various types of topological spaces, first countable spaces, second countable spaces, Hausdorff spaces and subsets of \mathbb{R}^n. We also consider the role the multiple choice axiom plays when the products of topological spaces are well ordered.

It is well known (see [18] or [10]) that the Tychonoff Compactness Theorem, “Products of compact spaces are compact” is equivalent to the Axiom of Choice (AC). In the last section we prove that this equivalence does not hold when “compact” in Tychonoff’s Theorem is replaced by certain weaker forms of compactness. We construct a Fraenkel-Mostowski model in which one of the product theorems is true, but AC is false.

We start by defining some of the terms we shall be using. Let $S = (X, T)$ be a topological space.

1. $B \subseteq T$ is called a base for T if for each $x \in X$ and each neighborhood U of x there is a $V \in B$ such that $x \in V \subseteq U$. (Thus, every element of T is a union of elements of B.)
2. S is first countable if each point has a countable base.
3. S is second countable if T has a countable base.
4. S is Lindelöf if each open cover has a countable subcover.
5. S is said to be T_0 if whenever x and y are distinct points, there is a neighborhood of one that does not contain the other.
6. S is said to be T_1 if whenever x and y are distinct points, each has a neighborhood not containing the other. (Points are closed.)
7. S is said to be T_2 (or Hausdorff) if whenever x and y are distinct points, there is a neighborhood U of x and a neighborhood V of y such that $U \cap V = \emptyset$.

Clearly, every second countable space is first countable; every T_2 space is T_1; every T_1 space is T_0.

* Corresponding author: e-mail: ericeric@math.purdue.edu
** Jean Rubin died on October 25, 2002.
*** e-mail: odlc@math.purdue.edu (De la Cruz), phoward@emunix.emich.edu (Howard), and kker@aegean.gr (Keremedis)
Some of the weak forms of AC that we shall be using include the following:

8. AC(WO) is the axiom of choice for a well ordered family of sets.
9. ACWO is the axiom of choice for a family of well orderable sets.
10. AC(LO) is the axiom of choice for a linearly ordered family of sets.
11. AC(\\mathbb{N}_0) is the axiom of choice for a countable number of sets.
12. ACin(\\mathbb{N}_0) is the axiom of choice for a countable number of finite sets.

13. MC is the Multiple Choice Axiom: For every non-empty set X of non-empty sets, there is a function f such that for each x ∈ X, f(x) is a non-empty finite subset of X.

14. BPI is the Boolean Prime Ideal Theorem: Every Boolean algebra has a prime ideal.

(The reader is referred to [7] for more information about the statements given in items 8 – 14 above.)

It is known that each of AC(LO) and MC are equivalent to AC in ZF. However, they do not imply AC in ZF0, ZF without the foundation axiom (see [12] and [17]). Unless otherwise stated, all proofs are in ZF0.

The types of compactness we will be studying are given in [2], but we shall repeat those definitions for convenience.

Definitions of Compact Spaces.

1. A space is compact A if every open covering has a finite subcovering.
2. A space is compact B if every ultrafilter has an accumulation point.
3. A space is compact C if there is a subbase for the topology such that every open covering by elements of the subbase has a finite subcovering.
4. A space is compact D if every covering by elements of a nest of open sets has a finite subcovering.
5. A space is compact E if every sequence has a convergent subsequence.
6. A space is compact F if every infinite subset has a complete accumulation point.
7. A space is compact G if every infinite subset has an accumulation point.
8. A space is compact H if every countable open covering has a finite subcovering.

Product Topology. Let \{X_i : i ∈ k\} be a set of topological spaces and let \(X = \prod_{i \in k} X_i\) be their product. A base for the product topology on X is the family of all sets of the form \(\prod_{i \in k} U_i\), where \(U_i\) is open in \(X_i\) and for all but a finite number of coordinates, \(U_i = X_i\).

\(P(X,Y)\) is the statement: Products of compact X spaces are compact Y. \(Pr(X)\) is the statement: Product Topology. Let \(X,Y\) be the following statement: Every product of \(X,Y\) spaces is compact \(Y\), provided that the product itself is of type \(t\). The same statement but without the requirement that the product is of type \(t\) will be called \(P(X,Y)\). Clearly, \(P(X,Y)\) implies \(P(X,Y)\), for all \(X,Y\). If \(t\) is some property such as Hausdorff that is preserved under arbitrary products, then \(P(X,Y)\) are identical and the superscript will be omitted.

We shall study two types of product theorems. Let \(P(X,Y)\) be the following statement: Every product of type \(t\) compact X spaces is compact Y, provided that the product itself is of type \(t\). The same statement but without the requirement that the product is of type \(t\) will be called \(P(X,Y)\). Clearly, \(P(X,Y)\) implies \(P(X,Y)\), for all \(X,Y\). If \(t\) is some property such as Hausdorff that is preserved under arbitrary products, then \(P(X,Y)\) are identical and the superscript will be omitted.

The following results for general topological spaces were obtained in [2]:

(1) Each of the following statements is equivalent to AC: \(P(A,A), P(A,C), P(A,D), P(A,F), P(A,G), P(A,H), P(B,A), P(B,C), P(B,D), P(B,F), P(B,G), P(B,H), P(C,A), P(C,C), P(C,D), P(C,F), P(C,G), P(C,H), P(D,A), P(D,C), P(D,D), P(D,F), P(D,G), P(D,H), and P(F,F).

(2) AC \(\rightarrow\) P(F,A) \(\rightarrow\) P(F,C) \(\rightarrow\) P(F,B).

(3) AC \(\rightarrow\) P(F,A) \(\rightarrow\) P(F,G) \(\rightarrow\) ACWO.

(4) AC \(\rightarrow\) P(F,A) \(\rightarrow\) P(F,D) \(\rightarrow\) P(F,H) \(\rightarrow\) ACWO.

(5) AC \(\rightarrow\) P(B,B) \(\rightarrow\) P(C,B) \(\rightarrow\) P(A,B) \(\leftarrow\) P(D,B) \(\leftarrow\) AC.
It is easy to show that properties (1) through (5) also hold for \(P_{BE}(X,Y) \), where \(BE \) is first or second countable. However, in the proof of [2, Theorem 1] that each of \(P(A,G) \) and \(P(A,H) \) implies AC, the topology used is not even \(T_0 \). However, we show in Section 4, that it is easy to extend the topology so that it is \(T_1 \). In addition, it is shown in [14] that \(P_{2}(A,A) \) is equivalent to BPI and it is shown in [4] that \(P_{T_2}(B,B) \) is provable in ZF. We show in the introduction that if BPI holds, then compact \(D \) implies compact \(G \). Therefore, \(P_{T_2}(A,A) + P_{E_2}(D,D) \) implies \(P_{E_2}(D,G) \).

In [3, Section 6], we give some relationships between the forms of compactness if BPI holds. Here, we note that we can add to those relationships by showing that compact \(D \) implies compact \(G \). (BPI implies that every set can be linearly ordered. Suppose \(X \) is compact \(D \) and \(Y \) is an infinite subset of \(X \) that has no accumulation points. Then every subset of \(Y \) is closed. Let \(N = \{U \subseteq X \mid \{z \in Y : z < y \} : z \in y\} \), where \(< \) is a linear ordering of \(Y \) which has no minimum element. Then \(N \) is a nest of open sets which covers \(Y \), but has no finite subcover.) Thus, the arrow diagram which gives the relationship between the forms when BPI holds can be changed to:

![Diagram](image)

2 First and second countable spaces

In this section we shall study product theorems for first and second countable spaces. We shall use the notation \(P_{co}^{\text{cu}}(X,Y) \) to stand for the statement “Countable products of first countable compact \(X \) spaces are compact \(Y \”). Likewise, we have \(P_{co}^{\text{sc}}(X,Y) \) about second countable spaces. Note that first and second countability are preserved under countable products.

It follows from [3] that the following are the arrow diagrams for first countable spaces.

![Diagram](image)

Assuming AC, we have

![Diagram](image)

For second countable spaces we have the following relationships between the forms of compactness:

![Diagram](image)

Consequently, we immediately have that the statements \(P_{sc}^{1}(X,Y) \) for \(X,Y = A,D, \) or \(H \), are equivalent. In ZFC we have:

![Diagram](image)

(In addition in ZFC, if the space is second countable and \(T_1 \), then all the forms of compactness are equivalent – see [3].)

In a topological space \(X \), let us refer to a point that has only one neighborhood (which must be \(X \)) as a trivial point. A trivially compact topological space is a space that has a trivial point (so a space \(X \) is trivially compact if every open cover contains \(X \)). A space \(X \) is indiscrete if its topology is \(\{\emptyset,X\} \). It is provable in ZFC that a product \(\prod_{i \in I} X_i \) of first countable spaces is first countable iff each \(X_i \) is first countable and all but countably many of the \(X_i \)'s are indiscrete spaces, and that a product of \(T_2 \) spaces is second countable iff each factor is second countable and all but countably many factors are one-point spaces (see [19]). In ZF, we show in the next lemma that uncountable products are not first countable unless all but \(\kappa \) of the factors are trivially compact, where \(\kappa \) is a countable union of finite sets.
Lemma 1 Let \(X_i, i \in I, \) be topological spaces such that \(\prod_{i \in I} X_i \) is first countable and non-empty.
(a) \(X_i \) is first countable, for all \(i \in I. \)
(b) For each \(s \in \prod_{i \in I} X_i, \) the set \(J_s := \{ i \in I : \pi_i(s) \) is not a trivial point in \(X_i \}\) is a countable union of finite sets.

Proof. Part (a) is clear. For (b), let \(s \in \prod_{i \in I} X_i, \) and let \(B_s = \{ u_n : n \in \omega \} \) be a neighborhood base for \(s. \) For each \(i \in J_s, \) define \(f(i) \) as the least \(n \in \omega \) such that \(u_n \subseteq \pi_i^{-1} \nu \) for some neighborhood \(\nu \) of \(\pi_i(s) \) in \(X_i \) such that \(\nu \neq X_i. \) Given \(n \in \omega, \) since \(u_n \) is an open set in \(\prod_{i \in I} X_i, \) it contains a basic neighborhood of the form \(\pi_1^{-1} v_1 \cap \cdots \cap \pi_n^{-1} v_n, \) where \(v_1, \ldots, v_n \) are open sets in \(X_{i_1}, \ldots, X_{i_n}, \) respectively. In this case, \(f^{-1}(n) \subseteq \{ i_0, \ldots, i_k \} \). This means that \(f \) defines a partition of \(J_s \) into countably many finite pieces.

Corollary 1 \(A \mathcal{C}_\text{fin}(\aleph_0) \) implies that if \(\prod_{i \in I} X_i \) is first countable, then for each \(s \in \prod_{i \in I} X_i, \) the set \(J_s \) (as in Lemma 1(b)) is countable.

Proof. \(A \mathcal{C}_\text{fin}(\aleph_0) \) implies that countable unions of finite sets are countable.

The following can be checked case by case:

Lemma 2 If \(S \) is a compact \(X \) space and \(T \) is a trivially compact space, then \(S \times T \) is compact \(X, \) where \(X \) is \(A, B, C, D, E, G, \) or \(H. \)

Notice that the previous lemma does not apply when \(X \) is compact \(F. \) For example, suppose \(T \) is an infinite but Dedekind finite set given the indiscrete topology, and let \(S = \{ 0, 1 \} \) with the discrete topology. Then \(S \times T \) is an infinite set with no complete accumulation point, since a neighborhood of the form \(\{ i \} \times T \) does not have the same cardinality as \(S \times T. \)

Theorem 1. Let \(X, Y \) be definitions of compactness, with \(Y \) different from \(F. \) If \(A \mathcal{C}_\text{fin}(\aleph_0) \) holds, then (a) \(P_{\text{sc}}^0(X, Y) \) implies \(P_{\text{sc}}^1(X, Y) \) and (b) \(P_{\text{sc}}^{00}(X, Y) \) implies \(P_{\text{sc}}^{01}(X, Y). \)

Proof. We give the proof of (a). The proof of (b) is similar. Let \(X_i \) for \(i \in I \) be first countable compact \(X \) spaces such that \(\prod_{i \in I} X_i \) is first countable. If \(\prod_{i \in I} X_i \) is empty, then it is immediately compact \(Y. \) Otherwise, fix a point \(s \in \prod_{i \in I} X_i. \) Then we have that \(\prod_{i \in I} X_i = \prod_{i \in J_s} X_i \times \prod_{i \not\in J_s} X_i, \) where \(J_s = \{ i \in I : \pi_i(s) \) is not a trivial point in \(X_i \}. \) is countable by Corollary 1. Now the space \(\prod_{i \not\in J_s} X_i \) is trivially compact, since the projection of \(s \) into that space is a trivial point there. And since \(P_{\text{sc}}^{00}(X, Y) \) implies that \(\prod_{i \not\in J_s} X_i \) is compact \(Y, \) by Lemma 2 we conclude that \(\prod_{i \in I} X_i \) is compact \(Y. \)

The fact that \(A \mathcal{C}_\text{fin}(\aleph_0) \) is needed for the results above is illustrated by the following theorem. However, some statements of the form \(P_{\text{sc}}^{00}(X, Y) \) might automatically imply \(A \mathcal{C}_\text{fin}(\aleph_0), \) and make it redundant for some of the instances of Theorem 1.

Theorem 2 \(P_{\text{sc}}^1(X, Y) \) cannot be proved in \(\mathsf{ZF}, \) where \(X \) is any of the definitions of compactness and \(Y \) is \(A, D, F, G, \) or \(H. \) Consequently, \(P_{\text{sc}}^{00}(X, Y) \) cannot be proved in \(\mathsf{ZF} \) either, for the same values of \(X \) and \(Y. \)

Proof. Consider the second Fraenkel model (\(\mathcal{A}^2 \) in [7]), in which there is a set \(A \) which has a countable partition into pairs with no choice function. In this model we have that \(2^A \) is a product of two-element spaces which is first countable, but not compact \(X \) for \(X = A, D, F, G, \) or \(H \) (see [3]).

Note that it does not follow immediately from the definitions that \(P_{\text{sc}}^1(X, Y) \) implies \(P_{\text{sc}}^1(X, Y). \) The next theorem proves a result of this form.

Theorem 3 \(P_{\text{sc}}^1(A, A) \) implies \(P_{\text{sc}}^1(A, A), \) and \(P_{\text{sc}}^1(A, A) \) is equivalent to \(\mathcal{AC}(\aleph_0). \)

Proof. It is proved in [5] that \(P_{\text{sc}}^{00}(A, A) \) is equivalent to \(\mathcal{AC}(\aleph_0), \) and thus both \(P_{\text{sc}}^{00}(A, A) \) and \(P_{\text{sc}}^{00}(A, A) \) imply \(A \mathcal{C}_\text{fin}(\aleph_0). \) It then follows from Theorem 1 that \(P_{\text{sc}}^{00}(A, A) \) is equivalent to \(P_{\text{sc}}^1(A, A). \) Likewise, it follows from Theorem 1 that \(P_{\text{sc}}^1(A, A) \) is equivalent to \(P_{\text{sc}}^1(A, A). \) The theorem follows easily since \(P_{\text{sc}}^{00}(A, A) \) clearly implies \(P_{\text{sc}}^{00}(A, A). \)
We mention some Tychonoff-type product assertions that are provably false.

Theorem 4

(a) $P^2_{se}(X, E)$ is false in ZF for all definitions X of compactness.

(b) $P^1_{se}(G, Y)$ is false in ZF for $Y \in \{A, B, C, D, E, F, G\}$.

(c) $P^2_{se}(X, Y)$ is false in ZFC for $X \in \{E, G, H\}$ and $Y \in \{A, B, C, D, F\}$.

Proof. The two-element space 2 with the discrete topology is compact X for $X = A, B, C, D, E, F, G$, and H, while 2^ω is not compact E (see [3]). This proves (a). Parts (b) and (c) are consequences of counterexamples that are not even products (again see [3]). For part (b) note that the topology $T = \{\{x, \infty\} : x \in Z\}$ on the integers witnesses in ZF that a second countable space can be compact G but not compact in any other sense. To prove (c) consider ω_1 with the order topology. Assuming ω_1 is regular, it is a first countable compact X space for $X \in \{E, G, H\}$ that is not compact Y for $Y \in \{A, B, C, D, F\}$.

From independence results found in [3, Theorem 3(b) and Lemma 1(c)], it immediately follows that the following statements are not provable in ZF: $P^2_{se}(B, X)$ for $X \in \{A, B, C, D, E, F, G, H\}$ and $P^2_{se}(X, F)$ for $X \in \{A, B, C, D, E, G\}$.

Theorem 5 $P^2_{se}(A, C)$ implies AC.

Proof. We will refine the proof in [16] that $P(A, A)$ implies AC.

Assume $P^2_{se}(A, C)$, and let $X = \{X_i : i \in I\}$ be a collection of non-empty sets; we will prove that X has a choice function. For each $i \in I$ define the space (Y_i, T_i) by $Y_i = X_i \cup \{\infty\}$, where ∞ stands for a fixed element not in $\bigcup X$, and $T_i = \{\emptyset, Y_i, \{\infty\}\}$. These spaces are compact A (actually trivially compact). Let $P = \bigcap_{i \in I} Y_i$; clearly P is not empty. For every finite $E \subset I$, define $P_E = \prod_{i \in E} Y_i \times \prod_{i \notin E} \{\infty\}$; every non-empty basic neighborhood in P is of the form P_E for some finite $E \subset I$. We have the following facts:

Claim 1. $s \in P$ is a trivial point in P if and only if s is a choice function for X.

Indeed, a basic neighborhood P_E is different from P if $E \neq \emptyset$, and P_E contains s if $s(i) \notin X_i$ for $i \in E$.

Claim 2. Every finite open cover of P contains P as an element.

To prove this we will show that if $S, S' \neq P$ are open sets, then $S \cup S' \neq P$; an easy inductive argument can then complete the proof. Let $S = \bigcup \{P_E : E \in E\}$ and $S' = \bigcup \{P_E : E \in E'\}$, where E, E' are sets of finite subsets of I. Take $s, s' \in P$ such that $s \notin S$ and $s' \notin S'$. Then for each $E \in E$ there exists $i \in E$ such that $s(i) \in X_i$, and for each $E \in E'$ there exists $i \in E$ such that $s'(i) \in X_i$. It is clear that $t \in P$, defined by

$$t(i) = \begin{cases} s(i) & \text{if } s(i) \in X_i, \\ s'(i) & \text{otherwise,} \end{cases}$$

is neither in S nor in S'. This finishes the proof of Claim 2.

Finally, in order to reach a contradiction, assume that X has no choice function; by Claim 1, P has no trivial points. If B is a subbase for the product topology on P, then every point has a neighborhood in B which is not P. This way, $\{u \in B : u \neq P\}$ is an open cover of P with elements in B. By $P^2_{se}(A, C)$, this cover has a finite subcover, but that is impossible by Claim 2.

Thus, it follows that each of $P^2_{se}(X, Y)$, for $X, Y = A$ or C, is equivalent to AC. Also, it follows from [4, Theorem 4.2], that $P^2_{se}(F, F)$ is equivalent to AC. In addition, Theorem 1 of [2] holds for second countable spaces: Each of $P^2_{se}(A, G)$ and $P^2_{se}(A, H)$ imply AC. Consequently, (1) – (5) in the introduction also hold for $P^2_{se}(X, Y)$. (In addition, since $P^2_{se}(X, Y)$ implies $P^2_{se}(X, Y)$, (1) – (5) hold for $P^2_{se}(X, Y)$.)

Let U_ω be the statement: Every non-principal filter on ω can be extended to an ultrafilter. Recall that $Pr(A)$ is the statement: Projections in Tychonoff-products of compact A spaces are closed. We close this section with a result showing that some weak forms of AC imply $Pr(A)$.

Theorem 6 $U_\omega + AC(\aleph_0)$ implies $Pr(A)$ for first countable T_2 spaces.

Proof. Let $\{(X_i, T_i) : i \in k\}$ be a family of first countable compact T_2 spaces and let (X, T) be their Tychonoff-product. If $X = \emptyset$, then there is nothing to show. Let C be a closed set in X and $i \in k$. If $\pi_i(C)$
(the projection of C on its \(i\)th coordinate) is not closed, then \(\pi_i(C)\) is an infinite subset of \(X_i\) and \(X_i \setminus \pi_i(C)\) contains limit points from \(\pi_i(C)\). Let \(x\) be such a limit point in \(\pi_i(C)\) and, by \(AC(\mathbb{N})\), let \(\{x_n : n \in \omega\}\) be a countably infinite subset of \(\pi_i(C)\) converging to \(x\). By \(AC(\mathbb{N})\) again, we choose for each \(n \in \omega\), \(y_n \in \pi_i^{-1}(x_n) \cap C\). Let \(\mathcal{F}\) be a non-principal ultrafilter on \(\{y_n : n \in \omega\}\) extending the filterbase

\[
\{\pi_i^{-1}(V) \cap \{y_n : n \in \omega\} : V \text{ is a neighborhood of } x\}.
\]

Using compactness and the fact that the spaces are \(T_2\), we can readily verify that for every \(j \in k, j \neq i\), there exists a unique \(x_j \in X_j\) such that \(\{\pi_j^{-1}(V) \cap \{y_n : n \in \omega\} \text{ is a neighborhood of } x_j\} \subseteq \mathcal{F}\). Clearly, the element \(y \in X\) with \(\pi_i(y) = x\) and \(\pi_j(y) = x_j\) for \(j \neq i\) is in the closure of \(C\), hence, in \(C\). On the other hand, since \(x \notin \pi_i(C)\), \(y \notin C\). This contradiction finishes the proof of the theorem.

3 Hausdorff spaces

Properties (1) – (5) in the introduction do hold for \(T_1\) spaces because Theorem 1 of [2] ("Each of \(P(A,G)\) and \(P(A,H)\) implies AC") holds for \(T_1\) spaces (add the set of cofinite subsets to the topology on each \(Y_2\)). However, these properties do not necessarily hold for \(T_2\) or Hausdorff spaces. We shall add a diagram to indicate the relationships that are known to hold for all spaces. First we have the relationships between the definitions of compact.

\[
\begin{align*}
H & \longrightarrow \ D & A & \longrightarrow \ C & B \\
\uparrow & & & \downarrow & \\
F & \longrightarrow \ G
\end{align*}
\]

It is known that \(P_{T_2}(A,A)\) is equivalent to BPI (see Theorem 7 below). Also, it is known (see, for example, [3]) that BPI implies that compact A, compact B, and compact C are equivalent. Thus, \(P_{T_2}(A,A)\) implies \(P_{T_2}(C,C)\). In addition, using the preceding diagram and that if compact X implies compact Y, then \(P(Z,X)\) implies \(P(Z,Y)\) and \(P(Y,Z)\) implies \(P(X,Z)\), we obtain the following diagram (also note that products of \(T_2\) spaces are always \(T_2\)):

\[
\begin{array}{cccccc}
P_{T_2}(D,H) & \longrightarrow & P_{T_2}(D,D) \\
& \longrightarrow & P_{T_2}(A,H) & \longrightarrow & P_{T_2}(A,D) & \longrightarrow & P_{T_2}(A,A) \rightarrow P_{T_2}(C,C) \rightarrow P_{T_2}(A,C) \\
& & & \longrightarrow & P_{T_2}(A,G)
\end{array}
\]

It has been shown in [4] that \(P_{T_2}(B,B)\) is provable in \(ZF\). Since \(P_{T_2}(B,B)\) implies \(P_{T_2}(C,B)\) and \(P_{T_2}(C,B)\) implies \(P_{T_2}(A,B)\), it follows that \(P_{T_2}(C,B)\) and \(P_{T_2}(A,B)\) are also provable in \(ZF\). Also, \(P_{T_2}(X,E)\) is always false (a counterexample is \(2^\omega\)).

It is also shown in [4] that \(AC\) isf \(P_{T_2}(F,F)\). Since \(F\) implies \(G\), it is also true that \(P_{T_2}(F,F)\) implies \(P_{T_2}(F,G)\). We show in Section 6 that \(P_{T_2}(F,G)\) does not imply \(AC\).

The next collection of results shows that, in contrast to (1) in the introduction, none of the following arrows are reversible:

\[
\begin{array}{cccc}
(\ast) & \quad AC & \longrightarrow & P_{T_2}(A,A) \longrightarrow P_{T_2}(A,D) \longrightarrow P_{T_2}(A,H)
\end{array}
\]

Theorem 7 (Łoś and Ryll-Nardzewski [14]) \(P_{T_2}(A,A)\) is equivalent to BPI.

Lemma 3 Assuming \(AC(LO)\), a \(T_2\) space \(X\) is compact if every well-ordered infinite subset of \(X\) has a complete accumulation point.

Note that Lemma 3 is not very interesting in \(ZF\), since \(ZF + AC(LO)\) implies \(AC\). However, \(ZF + AC(LO)\) does not imply \(AC\) (see [17]).
Proof. Suppose \(X \) is not compact, so there is a covering \(\{ U_i : i \in I \} \) of open sets that does not have \(X \) as a member. By AC(LO), every linearly ordered set can be well-ordered, so choose a well-ordering \(\leq \) of \(I \) (which is linearly ordered by the subset relation on the \(U_i \)'s). Now we obtain a well-ordered nest by induction: For each ordinal \(\alpha \), let \(W_\alpha = U_j \), where \(j \) is the \(\leq \)-least member of \(I \) such that \(U_j \) properly contains \(\bigcup_{\beta < \alpha} W_\beta \), if such \(W_\alpha \) exists. By throwing away all but some cofinal subset if necessary, we may assume that the \(W_\alpha \)'s are defined just for all \(\alpha \) in some cardinal \(\kappa \). Now using AC(LO) again, let \(x_\alpha \in W_{\alpha+1} \setminus W_\alpha \) for each \(\alpha \in \kappa \). Assuming \(X \) is Hausdorff, this family of \(x_\alpha \)'s will have no complete accumulation point.

Conversely, assume that \((X, T) \) is a compact \(T_2 \) space. We will show that every well-ordered subset \(Y = \{ y_j : j \in \kappa \} \) has a complete accumulation point. We consider two cases:

(i) \(\kappa \) is a regular cardinal. For every ordinal \(j \in \kappa \) put \(U_j = \{ O \in T : O \cap \gamma \subseteq \{ y_i : i \in j \} \} \) and let \(U = \{ \bigcup U_j : j \in \kappa \} \). Assuming that \(Y \) has no complete accumulation point and taking into consideration that every point \(x \in X \) has a neighborhood \(O_x \) meeting \(Y \) in a set of size \(< \kappa \), we see that \(U \) is a well ordered open cover of \(X \). Hence, for some \(j \in \kappa \), \(X = \bigcup U_j \) which is a contradiction. As before, \(U_\omega \) is the statement: “Every non-principal filter on \(\omega \) can be extended to an ultrafilter”. Similarly, let \(U_{\text{WO}} \) be the statement: “Every non-principal filter on a well-ordered set can be extended to an ultrafilter”.

Note that these principles are always true in permutation models, where AC holds in the subuniverse of pure sets.

Theorem 8 \((a) U_\omega + AC(\aleph_0) \implies P_{T_2}(A, H). \quad (b) U_{\text{WO}} + AC(\mathbb{LO}) \implies P_{T_2}(A, D).\)

Proof. Let \(\{ (X_i, T_i) : i \in k \} \) be a family of \(T_2 \) compact \(A \) spaces and let \(X \) be their Tychonoff-product. In view of AC(\(\aleph_0 \)) it suffices to show that every countably infinite subset \(S = \{ g_n : n \in \omega \} \) of \(X \) has a limit point. Choose, by \(U_\omega \), a non-trivial ultrafilter \(F \) on \(S \). It is straightforward to verify that for each \(j \in k \) there is a unique \(b_j \in X_j \) such that \(\{ \pi^{-1}_j(V_{b_j}) : V : b_j \text{ is a neighborhood of } b_j \} \subseteq F \). (The existence follows from compactness and the fact that \(F \) is an ultrafilter, and the uniqueness follows from \(T_2 \).) Now it is clear that the element \(b \in X \) given by \(b(i) = b_i \) is a limit point of \(S \) finishing the proof of the theorem.

(b) Choose a family of compact \(A \) Hausdorff spaces. By AC(LO) and Lemma 3, it suffices to show that every well-ordered infinite subset \(S \) of their product has a limit point. If we choose, by \(U_{\text{WO}} \) an ultrafilter \(F \) on \(S \) such that each subset of \(S \) with cardinality smaller than that of \(S \) is not in \(F \), then the proof proceeds just as in the proof of part (a).

Corollary 2 \(P_{T_2}(A, D) \) does not imply \(P_{T_2}(A, A) \).

Proof. The corollary follows from Theorem 7 and Theorem 8(b), since in \(\mathbb{ZF}^0 \), \(U_\omega + AC(\mathbb{LO}) \) does not imply BPI. (Construct a permutation model as follows: Let the set \(A \) of atoms be uncountable. The group of permutations \(G \) is the group of all permutations on \(A \), and supports are countable. (See \(\aleph_2 \) in [7].) BPI is false because BPI implies that every set of pairs has a choice function, but the set of pairs of atoms in this model has no choice function. Truss showed in [17] that AC(LO) holds in this model.)

Theorem 9 \(P_{T_2}(A, H) \) does not imply \(P_{T_2}(A, D) \).

Proof. We first give the description of a permutation model \(\mathcal{N} \). The set of atoms is \(A = \bigcup \{ A_i : i \in \omega_1 \} \), where \(A_i = \{ \alpha_\theta : x \in C \} \) and \(C \) is the set of points on the unit circle centered at 0. The group of permutations \(G \) is the group of all permutations on \(A \) which rotate the \(A_i \)'s by an angle \(\theta_i \in \mathbb{R} \) and supports are countable. The following two claims are straightforward:

Claim 1. The family \(A = \{ A_i : i \in \omega_1 \} \) does not have a multiple choice function in \(\mathcal{N} \).

Claim 2. AC(\(\aleph_0 \)) is true in \(\mathcal{N} \).
Since \(U_0 \) and \(AC(\mathcal{N}_0) \) are true in \(\mathcal{N} \), it follows by Theorem 8(a) that \(P_{T_0}(A,H) \) also holds in \(\mathcal{N} \). Furthermore, \(P_{T_0}(A,D) \) fails in \(\mathcal{N} \). Indeed, for each \(i \in \omega \) let \(X_i = A_i \cup \{s_i\} \) carry the disjoint topology \(T_i \) induced from the \((\text{compact } A)\) metric topology of \(A_i \) (\(A_i \) is identified with the unit circle) and the discrete topology on \(\{s_i\} \). Clearly each \(X_i \) is a compact \(A \) space. Let \(X \) be the Tychonoff-product of the family \(\{X_i, T_i\} : i \in \omega \}. Let \(U_i = \bigcup \{\pi_i^{-1}(\{s_i\}) : j \in j\} \). Since \(AC(\mathcal{N}_0) \) holds in \(\mathcal{N} \), it follows that no \(U_i \) covers \(X \). Since \(A \) has no choice set, we see that \(U = \{U_i : i \in \omega \} \) is a nested open cover of \(X \) which has no finite subcover.

This completes the proof that none of the implications in \((*)\) are reversible.

Let \(U \) be the statement: “Every infinite set has a non-trivial ultrafilter”. It is known that \(U \) is strictly weaker than BPI, so the next result shows that the implication \(P_{T_0}(A,A) \rightarrow P_{T_0}(A,G) \) is not reversible in \(ZF \).

Theorem 10 \(U \) implies \(P_{T_0}(A,G) \).

Proof. Let \(\{(X_i, T_i) : i \in k\} \) be a family of compact \(A \) T\(X_2 \) spaces and let \(X \) be their Tychonoff-product. Let \(S \) be an infinite subset of \(X \) and let \(\mathcal{F} \) be a non-trivial ultrafilter on \(X \). Continuing as in the proof Theorem 8(a) we can finish the proof of this theorem.

4 Well ordered products and the multiple choice axiom

Our first theorem in this section gives a property of well ordered products of compact \(A \) spaces. We shall use the notation \(P^{WO}(X,Y) \) to mean that a well ordered product of compact \(X \) spaces is compact \(Y \).

Theorem 11 \(P^{WO}(A,D) \) if and only if \(P^{WO}(A,A) \).

Proof. It suffices to show \((\Rightarrow)\) as the other implication is clear. Fix a well ordered family \(\{(X_n, T_n) : n \in \aleph\} \) of compact \(A \) spaces and let \((X,T) \) be their Tychonoff-product. Without loss of generality we may assume that for every \(\nu \in \aleph \), \(Y_\nu = \prod_{n \in \nu} X_n \) is compact \(\mathcal{A} \). Let \(\pi_\nu \) denote the projection of \(X \) to \(X_\nu \). Let \(\mathcal{G} \) be a family of closed subsets of \(X \) having the finite intersection property. Let \(\mathcal{Q} = \{a_\nu^{-1}(Q_\nu) : \nu \in \aleph\} \), where \(Q_\nu = \bigcap \{\pi_\nu(\mathcal{G}) : \mathcal{G} \in \mathcal{G}\} \). It can be readily verified that \(\mathcal{Q} \) is a family of closed sets of \(X \) having the finite intersection property. Since for every \(\nu \in \aleph \), \(Y_\nu \) is compact \(\mathcal{A} \), it follows that \(\forall \nu \in \aleph \), \(X_\nu \) is a nest of non-empty closed subsets of \(X \). Since \(X \) is compact \(\mathcal{D} \), it follows that \(\bigcap \mathcal{Q} \neq \emptyset \). Clearly, any point \(x \in \bigcap \mathcal{Q} \) is \(\mathcal{G} \) and, consequently, \(X \) is compact \(\mathcal{A} \) as required, finishing the proof of the theorem.

Our next result gives a property of the Multiple Choice Axiom \(MC \).

Theorem 12 \(MC \) implies that compact \(D \) spaces are compact \(A \).

Proof. Let \((X,T) \) be a compact \(D \) space and \(\mathcal{U} = \{U_i : i \in k\} \) be an open cover of \(X \). Using Levy’s Lemma (Form 67 B in \([7]\): “Each set can be covered by a well ordered family of finite sets”) we express \(k \) as \(\{k_j : j \in \aleph\} \), where each \(k_j \) is a finite subset of \(k \) and \(\aleph \) is a well ordered cardinal. For every \(j \in \aleph \) put \(O_j = \bigcup \{U_i : i \in k_j\} \). Let \(m \) be the least cardinal number for which there exists a subfamily \(F \) of \(\{O_j : j \in \aleph\} \) covering \(X \). We show that \(m \) is finite. Assume on the contrary that \(m \) is infinite. For every \(j \in m \) put \(Q_j = \bigcup \{O_i : i < j\} \). Since \(X \) is compact \(\mathcal{D} \), it follows that some \(Q_j \) covers \(X \). Thus, \(\{O_i : i \in j\} \) is a subfamily of \(\{O_j : j \in \aleph\} \) of cardinality \(< m \) covering \(X \). This is a contradiction. Hence, \(\mathcal{U} \) has a finite subcover and \(X \) is compact \(\mathcal{A} \) as required.

Theorem 13 \(MC + P^{WO}(A,A) \) if and only if \(AC \).

Proof. It suffices to show that \(MC + P^{WO}(A,A) \) implies \(P(A,A) \), as \(P(A,A) \) is equivalent to \(AC \), and the implication in the other direction is clear. Let \(\{X_i : i \in k\} \) be a family of compact \(A \) spaces and let \(X = \prod_{i \in k} X_i \) be the Tychonoff-product. Use Levy’s Lemma again (see the proof of Theorem 12) to express \(k \) as a well ordered union of finite disjoint subsets of \(k \). That is, \(k = \bigcup \{k_\nu : \nu \in \aleph\} \). For every \(\nu \in \aleph \), let \(Q_\nu = \prod_{j \in k_\nu} Y_j \). Clearly \(Q_\nu \) is compact \(A \). Then \(Q = \prod_{\nu \in \aleph} Q_\nu \) is a compact \(A \) space by \(P^{WO}(A,A) \), and \(Q \) is homeomorphic to \(X \).

It now follows from Theorems 12 and 13:

Corollary 3 \(MC + P^{WO}(D,D) \) if and only if \(AC \).

It follows from Theorem 13 and Corollary 3 that neither \(P^{WO}(A,A) \) nor \(P^{WO}(D,D) \) is provable in \(ZF \).
5 Products of subsets of \mathbb{R}^n and choice for closed sets

In this section we study products of subsets of \mathbb{R}^c; the results are different for well orderable products and general products.

Theorem 14 Let $\{X_i : i \in I\}$ be a collection of compact C topological spaces such that the family $\{c \subset X_i : i \in I, c \neq \emptyset, \text{ and } c \text{ is closed}\}$ has a choice function. Assume also that there exists a sequence $\{S_i : i \in I\}$ such that for each $i \in I$, S_i is a subbase for X_i that witnesses the fact that X_i is compact C. Then $\prod_{i \in I} X_i$ is compact C.

Proof. Let us consider the collection $T = \{U_{i,s} : i \in I \text{ and } s \in S_i\}$ of open sets in $\prod_{i \in I} X_i$, where $U_{i,s} = \prod_{j \in I} N_j$ with $N_i = s$ and $N_j = X_j$ for $j \neq i$. It is easy to see that the set of finite intersections of elements of T is a base for the Tychonoff-topology of $\prod_{i \in I} X_i$, and therefore T is a subbase for that topology. Suppose now that $C \subset T$ is a cover for $\prod_{i \in I} X_i$. Then there exists $i_0 \in I$ such that $\bigcup \{s : U_{i_0,s} \in C\} = X_{i_0}$; otherwise, we have that for every $i \in I, D_i = X_i \setminus \bigcup \{s : U_{i,s} \in C\}$ is a non-empty closed subset of X_i, and by hypothesis there is an element in $\prod_{i \in I} D_i$, which cannot be covered by any element of C. Since $\{s : U_{i_0,s} \in C\}$ is a cover of X_{i_0} by elements of S_i, it has a finite subcover F. Clearly, $\{U_{i_0,s} : s \in F\}$ is a finite subcover of C.

The existence of the witnessing family of subbases is satisfied, for example, in the case of a power of a fixed space.

For well orderable products, we have:

Theorem 15 Let $\{X_\alpha : \alpha < \lambda\}$ be a collection of compact A topological spaces such that the family $\{c \subset X_\alpha : \alpha < \lambda, c \neq \emptyset, \text{ and } c \text{ is closed}\}$ has a choice function. Then $\prod_{\alpha < \lambda} X_\alpha$ is compact A.

Proof. Let C be a choice function for $\{c \subset X_\alpha : \alpha < \lambda, c \neq \emptyset, \text{ and } c \text{ is closed}\}$. To see that $X = \prod_{\alpha < \lambda} X_\alpha$ is compact A, let F be a family of closed subsets of X with the finite intersection property (f. i. p.); we will show that $\bigcap F \neq \emptyset$.

By simultaneous recursion on α we define a family $\{F_\alpha : \alpha < \lambda\}$ of filters on X, and a sequence $\{x_\alpha \in X_\alpha : \alpha < \lambda\}$, satisfying

(i) F_\emptyset is the filter generated by F;
(ii) $F_\alpha \subset F_\beta$ for all $\alpha < \beta < \lambda$;
(iii) for all $\beta < \lambda$ and all $\alpha < \beta$, $\pi^{-1}_\beta(u) \in F_\alpha$, for every neighborhood u of x_α.

Once this construction is completed, the filter \mathcal{G} generated by $\bigcup \{F_\alpha : \alpha < \lambda\}$ will converge to the point $x = \langle x_\alpha : \alpha < \lambda \rangle \in X$. Then every neighborhood v of x intersects every element of F; since each element of F is closed, $x \in \bigcap F$.

F_\emptyset is given by (i). Assuming that the filter F_δ is defined, we take $x_\delta = C(\bigcap \{\pi_\delta(y) : y \in F_\delta\})$ (we have that $\bigcap \{\pi_\delta(y) : y \in F_\delta\} \neq \emptyset$ because each X_α is compact A). We also define $F_{\delta+1}$ as the filter generated by the collection $F_\delta \cup \{\pi^{-1}_\delta(v) : v \text{ is a neighborhood of } x\}$. If γ is a limit ordinal and F_δ is defined for all $\delta < \gamma$, we define F_γ as the filter generated by $\bigcup \{F_\delta : \delta < \gamma\}$. This finishes the recursion; clearly conditions (ii) and (iii) are satisfied.

Corollary 4

(a) Any product $\prod_{i \in I} X_i$ of closed compact C sets of reals with a witnessing family of subbases $\{S_i : i \in I\}$ is compact C.

(b) Well ordered products of compact A sets of reals are compact A.

(c) More generally, any product of compact C linearly ordered spaces with the order topology (and a family of witnessing subbases) which are conditionally complete (any subset with upper bounds has a least upper bound) is compact C. If the product is well orderable and the spaces are compact A (equivalently, if they have a maximum and a minimum element), then the product is compact A.

Proof. Part (c) implies both parts (a) and (b). For (c), if the product is empty, then it is compact A. Assume then that the product is not empty; because of the previous theorems, we only need to prove that the collection of...
all closed subsets from all the factor spaces has a choice function. Fix one element \(x\) in the product; we will give a rule for choosing an element from a given closed subset \(c\) of the \(i\)-th factor space using only the element \(x_i\). If \(x_i\) is an upper bound for \(c\), we pick the least upper bound of \((x_i, \infty) \cap c\). In either case the element we picked is in \(c\), since \(c\) is closed.

Notice that arbitrary products of compact A sets of reals are not necessarily compact A: consider the space \(2^A\) in the model \(\lambda^2\) in [7], where \(A\) is the set of atoms.

Theorem 16 If \(\kappa\) is a well-orderable cardinal, then the collection \(\{c \subset \mathbb{R}^\kappa : c \neq \emptyset, c\text{ is compact A}\}\) has a choice function.

Proof. Let \(c\) be a fixed compact A subset of \(\mathbb{R}^\kappa\). We will describe a rule for choosing an element of \(c\). For each \(\alpha < \kappa\), let \(c_\alpha\) be the projection of \(\pi_\alpha\) of \(c\) on \(\mathbb{R}\). Since projections are continuous, \(c_\alpha\) is compact A. Therefore, \(c_\alpha \subset \mathbb{R}\) is bounded. Let \(r_\alpha = \inf(c_\alpha)\) and \(s_\alpha = \sup(c_\alpha)\). Then \(Y = \prod_{\alpha < \kappa}[r_\alpha, s_\alpha]\) contains \(c\), and \(Y\) is compact A by the previous corollary. Also, for each \(\alpha < \kappa\), let \(B_\alpha\) be the restriction to \([r_\alpha, s_\alpha]\) of the base \(B\) for the topology of \(\mathbb{R}\) which contains all open intervals with rational endpoints. Clearly, \(B_\alpha\) is a countable base for \([r_\alpha, s_\alpha]\). Let \(\mathcal{V}\) be a subfamily of \(\{c\} \cup \{\pi_\alpha^{-1}(b) : \alpha < \kappa, b \in B_\alpha\}\) which contains \(c\) and is maximal with respect to the f. i. p.; such a family can be easily constructed by transfinite induction, since \(\{c\} \cup \{\pi_\alpha^{-1}(b) : \alpha < \kappa, b \in B_\alpha\}\) has cardinality \(\kappa\). Let \(\mathcal{F}\) be the filter generated by \(\mathcal{V}\), and for each \(\alpha < \kappa\), define \(A_\alpha = \{x \in [r_\alpha, s_\alpha] : \pi_\alpha^{-1}(b) \in \mathcal{F}, \text{ for every neighborhood } b \in B_\alpha\text{ of } x\}\). We have that \(A_\alpha \neq \emptyset\). Since \([r_\alpha, s_\alpha]\) is compact A, the filter \(\mathcal{F}_\alpha\) generated by the sets \(b \in B_\alpha\) such that \(\pi_\alpha^{-1}(b) \in \mathcal{F}\) has an accumulation point \(x\). If \(b \in B_\alpha\) is a neighborhood of \(x\), then it has a non-empty intersection with every member of \(\mathcal{F}_\alpha\); consequently \(\pi_\alpha^{-1}(b)\) meets every member of \(\mathcal{F}\), and therefore \(\pi_\alpha^{-1}(b) \in \mathcal{F}\) (by maximality). Furthermore, \(A_\alpha\) is a singleton. Otherwise, if \(b_1, b_2 \in B_\alpha\) are disjoint neighborhoods of two points in \(A_\alpha\), we would have \(\pi_\alpha^{-1}(b_1), \pi_\alpha^{-1}(b_2) \in \mathcal{F}\), which is not possible because these sets are disjoint. Now, for each \(\alpha < \kappa\), let \(x_\alpha\) be the unique element of \(A_\alpha\), and let \(x^\kappa = \{x_\alpha : \alpha < \kappa\} \in \mathcal{F}\). Then every neighborhood of \(x^\kappa\) in \(\mathcal{F}\) contains a neighborhood which is a finite intersection of sets of the form \(\pi_\alpha^{-1}(b_1)\), which are in \(\mathcal{F}\). Therefore, every neighborhood of \(x^\kappa\) intersects \(c\); since \(c\) is closed, then \(x^\kappa \in c\).

Notice that in the proof we used no arbitrary parameters. Therefore we can uniformly choose elements from the compact A subsets of many different spaces \(\mathbb{R}^\kappa\) at the same time.

Corollary 5 Arbitrary products of compact A spaces which are a subspace of \(\mathbb{R}^\kappa\) for some well-orderable cardinal \(\kappa\), are compact C. Also, if the index set is well orderable, then the product is compact A.

Proof. Let \(\{X_i : i \in I\}\) be a family of compact A spaces such that for each \(i \in I\), \(X_i\) is a subspace of \(\mathbb{R}^{\kappa_i}\). Then for each \(i \in I\), the collection of closed subsets of \(X_i\) is contained in the collection of compact A subsets of \(\mathbb{R}^{\kappa_i}\). Therefore, by the previous theorem, we have a choice function for the closed subsets of all the factor spaces. Applying Theorems 14 and 15 we obtain the desired conclusions.

We turn now to the study of compact F sets in this context.

Theorem 17 Assume that \(X\) has a well-ordered base and a choice function for its closed subsets. If \(X\) is compact F, then it is compact A.

Proof. Let \(\mathcal{B}\) be a well ordered base for \(X\), let \(F\) be a choice function for the closed subsets of \(X\), and suppose that \(X\) is not compact A. From all the well-ordered open covers from \(\mathcal{B}\) without a finite subcover, choose \(C = \{u_\alpha : \alpha < \lambda\}\) with minimum \(\lambda\), where \(\lambda\) is a cardinal. Let \(\kappa = \text{cof}(\lambda)\) and let \(f : \kappa \to \lambda\) be an increasing cofinal sequence. For each \(\alpha < \kappa\) let \(x_\alpha = F(X \setminus \bigcup_{\beta \leq f(\alpha)} u_\beta)\). (Each set \(X \setminus \bigcup_{\beta \leq f(\alpha)} u_\beta\) is closed, and it is non-empty by the minimality of \(\kappa\).) Then, since \(\kappa\) is a regular cardinal, \(Y = \{x_\alpha : \alpha < \kappa\}\) has cardinality \(\kappa\), and for every \(\gamma < \kappa\), \(\{x_\alpha : \alpha < \gamma\}\) is closed. Now, the set \(Y\) has no complete accumulation points because for every \(x \in X\) there exists a neighborhood \(u_\alpha\) of \(x\), and we have that \(|u_\alpha \cap Y| < \kappa\). Therefore, \(X\) is not compact F.

Corollary 6 For closed sets of reals, compact F implies compact A.

Proof. From our previous results, closed sets of reals satisfy the hypotheses of Theorem 17.

Corollary 7 Well-ordered products of closed compact F sets of reals are compact A.
However, it is not true in general that even well-ordered products of compact F sets of reals are compact F: Consider the product space 2^ω in the model M_1 in [7]; $2 = \{0, 1\}$ is clearly compact F, but 2^ω is not, because it is Hausdorff and contains an infinite Dedekind finite set.

The results in this section suggest the following questions: Are compact C (or compact F) sets of reals necessarily closed in \mathbb{R}?

Since choice for closed sets played an important role in the previous results, the study of the following principles becomes natural:

Definition Let $\text{CSC}(T_i)$, $i = 1, 2$, stand for the statements: “If (X, τ) is a compact A T_i space, then the family G of all non-empty closed subsets of X has a choice function”.

Theorem 18 $\text{CSC}(T_1)$ is equivalent to AC.

Proof. We only need to prove that $\text{CSC}(T_1)$ implies AC. Fix a disjoint family $\mathcal{A} = \{A_i : i \in I\}$ of non-empty sets and let Z be the one point compactification of the disjoint union Y of the family of spaces $\{(A_i, \tau_i) : i \in I\}$, where τ_i is the cofinite topology on A_i. By $\text{CSC}(T_1)$, let f be a choice function on the family of all non-empty closed subsets of Z. Clearly, the restriction h of f to the family \mathcal{A} is a choice function, finishing the proof of the theorem.

In the last part of this section we use the following statements from [7]:

Form 154. Tychonoff’s Compactness Theorem for Countably Many T_2 Spaces: “The product of countably many compact A T_2 spaces is compact A”.

Form 343. “Every product of non-empty compact A T_2 spaces is non-empty”.

Theorem 19 (Keremedis and Tachtis [11]) $\text{CSC}(T_2)$ is equivalent to Form 343.

Theorem 20 $\text{CSC}(T_2)$ is equivalent to $\text{P}^*_\omega(A, C)$, where $\text{P}^*_\omega(A, C)$ is the following principle: “If $\{(X_i, \tau_i) : i \in I\}$ is a family of non-empty compact A T_2 spaces, then the Tychonoff-product $X = \prod_{i \in I} X_i$ is compact C with respect to the standard subbase $\mathcal{H} = \{\pi_i^{-1}(O) : O \in \tau_i, i \in I\}$ of X”.

Proof.

(\Rightarrow). Fix a family $\{(X_i, \tau_i) : i \in I\}$ of non-empty compact A spaces and let $X = \prod_{i \in I} X_i$. We will show that X is compact C with respect to the standard subbase \mathcal{H}. Let $U \subseteq \mathcal{H}$ be an open cover of X. For every $i \in I$ put $U_i = U[\pi_i^{-1}(O) : O \in \tau_i]$. If some U_i covers X, then it is easy to see that U_i, hence U, has a finite subcover. So assume that no U_i covers X and arrive at a contradiction. Put $G = \{G_i : i \in I\}$, where $G_i = X_i \setminus \bigcup \{O \in G \cap \pi_i^{-1}(O) : O \in U_i\}$. Clearly each G_i with the subspace topology is a compact A T_2 space. Thus, by Theorem 19, G has a choice function f. It is straightforward to see that f is not covered by U, contradicting the fact that U covers X.

(\Leftarrow). By Theorem 19, it suffices to prove Form 343. Fix a family of non-empty compact A T_2 spaces $\{(X_i, \tau_i) : i \in I\}$. Let $Y_i = X_i \cup \{s_i\}, s_i \notin X_i$, carry the disjoint union topology of X_i and the discrete space $\{s_i\}$. Clearly Y_i is a compact A T_2 space. Hence, by $\text{P}^*_\omega(A, C)$, $Y = \prod_{i \in I} Y_i$ the Tychonoff-product of the family $\{Y_i : i \in I\}$, is compact C with respect to the standard subbase \mathcal{H}. If $\prod_{i \in I} X_i = \emptyset$, then $U = \{\pi^{-1}(s_i) : i \in I\} \subseteq \mathcal{H}$ is an open cover of Y. It follows that U has a finite subcover, which is a contradiction.

Theorem 21 $\text{CSC}(T_2)$ implies $\text{P}^*_\omega(A, A)$, where $\text{P}^*_\omega(A, A)$ stands for: “The Tychonoff-product of every well ordered family $\{(X_i, \tau_i) : i \in R\}$ of compact A T_2 spaces is compact A”. In particular, $\text{CSC}(T_2)$ implies Form 154.

Proof. Fix a well ordered family $\{(X_i, \tau_i) : i \in k\}$ of compact A T_2 spaces, and let $X = \prod_{i \in k} X_i$ be their Tychonoff-product. Let $G = \{G_j : j \in J\}$ be a family of closed sets having the f.i.p. We will show that $\bigcap G \neq \emptyset$. Let f be a choice function of the family of all non-empty closed sets of the one point compactification of the disjoint topological union of the family $\{(X_i, \tau_i) : i \in k\}$. It follows that the restriction h of f to the family $\{H : H \neq X \setminus X_i, (X \setminus H) \in \tau_i, i \in k\}$ is a choice function. Now we can complete the proof of the theorem by mimicking the proof of Theorem 20.
The status of the relationship between Form 343 and Form 154 is indicated as unknown in Table 4 of [7]. By Theorems 19 and 21 we have the following:

Corollary 8 Form 343 implies Form 154.

6 An independence result

Our last result shows that $P(F, G)$ does not imply AC in ZF0. We do this by showing that $P(F, G)$ is true in Mostowski’s linearly ordered model \mathcal{N}. (This is the model \mathcal{N}^3 in [7].) The set of atoms \mathcal{A} is ordered so that it is isomorphic to the set of rational numbers. The group G is the group of order preserving isomorphisms and the ideal of supports is the set of all finite subsets of \mathcal{A}. If E is a finite subset of \mathcal{A}, let $G_E = \{ \varphi \in G : \varphi \text{ fixes } E \}$. Then G_E is a subgroup of G. (Note that if $\varphi \in G_E$, then φ fixes E pointwise.) We will also use the following facts about \mathcal{N}.

1. Every element x of \mathcal{N} has a smallest support $\text{supp}(x)$ with the property that for all $\varphi \in G$, $\varphi(x) = x$ iff $\varphi(\text{supp}(x)) = \text{supp}(x)$.
2. If E and F are disjoint finite subsets of \mathcal{A}, then $S = \{ \varphi(F) : \varphi \in G_E \}$ is an infinite, Dedekind finite set in the model. (If we choose $t \in F$, then the set $\{ \varphi(t) : \varphi \in G_E \}$ is infinite. By (1), if φ and ψ are in G_E and $\varphi(t) \neq \psi(t)$, then $\varphi(F) \neq \psi(F)$. It follows that S is infinite. If S were Dedekind finite, then there would be a finite subset G of \mathcal{A} which was a support of infinitely many elements of S. But the only finite subsets of \mathcal{A} supported by G are the finitely many subsets of G. It follows that S is Dedekind finite.)
3. If $E = \{ e_0, e_1, \ldots, e_n \}$ is any finite subset of \mathcal{A} and if $\forall W = \{ (e_0, e_1), \ldots, (e_n, \infty) \}$ is the set of open intervals determined by E, then for any two subsets F and F' of \mathcal{A} both disjoint from E, if $|F \cap W| = |F' \cap W|$ for all $W \in \forall$, then there is a $\varphi \in G_E$ such that $\varphi(F) = F'$. (The proof of (3) uses the following fact about the ordering on \mathcal{A}: If $B = \{ b_1, b_2, \ldots, b_k \}$ and $C = \{ c_1, c_2, \ldots, c_k \}$ are two subsets of \mathcal{A} both with the same number of elements and $b_1 < b_2 < \cdots < b_k$ and $c_1 < c_2 < \cdots < c_k$, then there is an order isomorphism φ of \mathcal{A} such that for all $i, 1 \leq i \leq k$, $\varphi(b_i) = c_i$. In order to see that this is true we may assume that \mathcal{A} is the set of rational numbers with the usual ordering and let φ be the function $\varphi_1, \varphi_2, \ldots, \varphi_{k-1}$, where φ_1 is the linear function whose domain is $(-\infty, b_2]$ and whose graph goes through the points (b_1, c_1) and (b_2, c_2), for $2 \leq i < k - 1$, φ_i is the linear function whose domain is $[b_i, b_{i+1}]$ and whose graph goes through the points (b_i, c_i) and (b_{i+1}, c_{i+1}), and φ_{k-1} is the linear function whose domain is $[b_{k-1}, \infty)$ whose graph goes through the points (b_{k-1}, c_{k-1}) and (b_k, c_k). Now (3) follows by taking $B = E \cup F$ and $C = E \cup F'$.

Theorem 22 $P(F, G)$ is true in the Mostowski linearly ordered model \mathcal{N}.

Proof. Assume that $\{ (X_i, T_i) : i \in I \} \subseteq \mathcal{N}$ is a collection of ordered pairs each of which is a compactF topological space in \mathcal{N} and let $X = \bigcap_{i \in I} X_i$, where the subscript \mathcal{N} means that the product is taken in the model. Assume that $Z \subseteq X$ is an infinite subset of X. Let E be a support of the ordered pair (X, Z). For each $i \in I$, let $\pi_i : X \to X_i$ be the projection map. We first claim that it suffices to prove that

(I) $Z \subseteq X$ has a cluster point (in \mathcal{N}) under the assumption that for all $i \in I$, $|\pi_i(Z)| > 1$.

(Note that f is a cluster point of Z if every neighborhood of f contains a point in Z different from f.)

To prove the claim, let $I' = \{ i \in I : |\pi_i(Z)| > 1 \}$, and let $\pi' : X \to \prod_{i \in I'} X_i$ be the projection map. Then for all $i \in I'$, $|\pi_i(\pi'(Z))| > 1$. It is also easy to see that $\pi'(Z)$ is infinite since Z is. Therefore, if we assume (I), $\pi'(Z)$ has a cluster point in $\prod_{i \in I'} X_i$, call it f'. If we then define $f \in X$ by

$$f(i) = \begin{cases} f'(i) & \text{if } i \in I' , \\ \text{the unique element of } \pi_i(Z) & \text{otherwise,} \end{cases}$$

we can show that f is a cluster point of Z.

For the remainder of the proof we shall assume

(II) for all $i \in I$, $|\pi_i(Z)| > 1$,

and we shall show that Z has a cluster point.
Lemma 4 If for any \(i \in I \), there is a \(t \in X_i \) for which \(\text{supp}(t) \not\subseteq \text{supp}(X_i) \), then \(Z \) has a cluster point.

Proof. Assume \(i \in I \) satisfies the hypothesis, then \(W = \{ \varphi(t) : \varphi \in G_{\text{supp}(X_i)} \} \) is an infinite, Dedekind finite subset of \(X_i \) since it can be put in a one to one correspondence in the model with the set \(\{ \varphi(\text{supp}(t) \setminus \text{supp}(X_i)) : \varphi \in G_{\text{supp}(X_i)} \} \). (This latter set is infinite and Dedekind finite in the model by (2).) By our assumption (II), there are two elements \(f \) and \(g \) of \(Z \) such that \(f(i) \neq g(i) \). Since \(X_i \) is compact, the set \(W' = \{ f(i) \in W : \} \) has a complete accumulation point \(z \in X_i \). We assume without loss of generality that \(z \neq f(i) \). We first note that \(f(i) \) is in every neighborhood of \(z \). For, assume that \(N \) is a neighborhood of \(z \) in \(X_i \). Then since \(W' \) is Dedekind finite and \(|W' \cap N| = |W'| \) we have \(W' \cap N = W' \). Hence, \(f(i) \in N \). Define \(h \in X \) by \(h(j) = \begin{cases} z & \text{if } j = i, \\ f(j) & \text{otherwise.} \end{cases} \) Then \(f \neq h \) and \(f \) is in every neighborhood of \(h \) since \(f(i) \) is in every neighborhood of \(z = h(i) \). Therefore, \(h \) is an accumulation point of \(Z \).

Using Lemma 4, we will assume for the remainder of the proof that

\[(III) \quad \text{for all } i \in I \text{ and for all } t \in X_i, \text{supp}(t) \subseteq \text{supp}(X_i).\]

Lemma 5 If for some \(f \in Z \) \(\text{supp}(f) \not\subseteq E \), then \(Z \) has a cluster point.

Proof. Assume that \(f_0 \) is an element of \(Z \) whose support is not contained in \(E \). We may also assume that the function \(i \mapsto X_i \) is one to one and therefore, for any \(\varphi \in G_E \), \(\varphi(i) = i \) iff \(\varphi(X_i) = X_i \). Let \(E = \{ e_0, e_1, \ldots, e_n \} \) and let \(\mathcal{W} \) be the set of open intervals determined by \(E \). That is (see (3) above), \(\mathcal{W} = \{ (-\infty, e_0], (e_0, e_1], \ldots, (e_n, \infty) \} \). For the proof of the lemma we will need to consider the \(G_E \) orbits of \(I \). For each \(i \in I \), let \(\text{orb}(i) = \{ \varphi(i) : \varphi \in G_E \} \) and let \(\text{Ob} = \{ \text{orb}(i) : i \in I \} \). For each \(Q \in \text{Ob} \) choose \(i_Q \in Q \) so that

\[(IV) \quad \text{for every open interval } W \text{ determined by } E, \text{every element of } \text{supp}(f_0) \cap W \text{ is less than every element of } \text{supp}(i_Q) \cap W.\]

The function \(Q \mapsto i_Q \) may not be in \(\mathcal{N} \), however the set \(f_1 \) defined by

\[f_1 = \{ (\varphi(i_Q), \varphi(f_0(i_Q))) : \varphi \in G_E \text{ and } Q \in \text{Ob} \} \]

is in the model since it has support \(E \). We also make the following claims about \(f_1 \).

Claim A. \(f_1 \) is a function.

To prove Claim A, assume that \((\varphi_1(i_Q), \varphi_1(f_0(i_Q))) \) and \((\varphi_2(i_P), \varphi_2(f_0(i_P))) \) are in \(f_1 \), where \(\varphi_1 \) and \(\varphi_2 \) are in \(G_E \) and \(Q \) and \(P \) are in \(\text{Ob} \) and assume that \(\varphi_1(i_Q) = \varphi_2(i_P) \). Then \(i_Q = \varphi_1^{-1}(\varphi_2(i_P)) \). From this we may draw two conclusions: First that \(i_Q \) and \(i_P \) are in the same orbit, hence, \(i_Q = i_P \). Secondly (using (III)) that \(f_0(i_Q) = \varphi_1^{-1}(\varphi_2(f_0(i_Q))) \) and therefore, \(\varphi_1(f_0(i_Q)) = \varphi_2(f_0(i_P)) \). Claim A follows.

Claim B. \(f_1 \in \prod_{i \in I} X_i \).

This claim follows from the facts that \(\text{dom}(f_1) = \{ \varphi(i_Q) : \varphi \in G_E \text{ and } Q \in \text{Ob} \} = I \) and, for each \(\varphi(i_Q) \in \text{dom}(f_1) \), \(f_1(\varphi(i_Q)) = \varphi(f_0(i_Q)) \in X_{\varphi(i_Q)} \).

Claim C. \(f_1 \) is a cluster point of \(Z \).

We first note that proving Claim C will complete the proof of the lemma. To prove the claim, let \(N \) be a basic neighborhood of \(f_1 \). Then \(N = \prod_{i \in I} K_i \), where for some finite subset \(I_0 \) of \(I \), \(K_i = X_i \) for all \(i \notin I_0 \). We will show that \(N \) contains an element \(f_2 \) of \(Z \) different from \(f_1 \).

For each \(j \in I_0 \), let \(Q_j \) be the unique element of \(\text{Ob} \) such that \(j \in Q_j \) and let \(\varphi_j \in G_E \) be chosen so that \(\varphi_j(i_Q) = j \). Choose an \(\eta \in G_E \) so that for every \(W \in \mathcal{W} \)

\[(V) \quad \text{for each of the intervals } W \text{ determined by } E \text{ and every element } a \text{ of } \text{supp}(f_0) \text{ in } W, \quad \eta(a) < c \quad \text{for every element } c \in \text{supp}(j) \cap W.\]
Let \(f_2 = \eta(f_0) \). Then \(f_2 \neq f_1 \) as \(E \) is a support of \(f_1 \) but \(\text{supp}(f_2) = \text{supp}(f_0) \neq E \) since \(\text{supp}(f_0) \neq E \) and \(\eta \) fixes \(E \). We also note that \(f_2 = \eta(f_0) \in Z \) since \(f_0 \in Z \); \(Z \) has support \(E \) and \(\eta \) fixes \(E \) pointwise. Therefore, to complete the proof of the claim, it suffices to show that \(f_2 \in N \). We will do this by arguing that for all \(j \in I_0 \), \(f_2(j) = f_1(j) \). Assume that \(j \in I_0 \), then, using the notation introduced above, \(\varphi_j(i_{Q_j}) = j \), where \(\varphi_j \in G_E \) for \(j \in Q_j \). It follows that for each open interval \(W \) determined by \(E \), \([\text{supp}(i_{Q_j}) \cap W] = [\text{supp}(j) \cap W] \). Similarly \([\text{supp}(f_0) \cap W] = [\text{supp}(\eta(f_0)) \cap W] \). By (IV), \(\text{supp}(f_0) \cap \text{supp}(i_{Q_j}) \cap W = \emptyset \) and by (V), \(\text{supp}(\eta(f_0)) \cap \text{supp}(j) \cap W = \emptyset \), hence

\[
[\text{supp}(f_0) \cup \text{supp}(i_{Q_j}) \cap W] = [\text{supp}(\eta(f_0)) \cup \text{supp}(j) \cap W].
\]

Therefore, letting \(F = \text{supp}(f_0) \cup \text{supp}(i_{Q_j}) \) and \(F^* = \text{supp}(\eta(f_0)) \cup \text{supp}(j) \), we conclude by property (3) in our list of properties of \(\mathcal{N} \) that there is a \(\beta \in G_E \) such that \(\beta(F) = F^* \). Since \(\beta \) is order preserving (and using (IV) and (V)) we conclude that \(\beta(\text{supp}(f_0)) = \text{supp}(\eta(f_0)) \) and \(\beta(\text{supp}(i_{Q_j})) = \text{supp}(j) \). Therefore, \(\beta(f_0) = \eta(f_0) \) and \(\beta(i_{Q_j}) = j \). Hence, \(f_2(j) = (\eta(f_0))(j) = (\beta(f_0))(j) = \beta(f_0(\beta^{-1}(j))) = \beta(f_0(i_{Q_j}))) = f_1(j) \).

This completes the proof of Claim C and therefore, Lemma 5 is proved. \(\square \)

We therefore assume for the remainder of the proof that

\[
(\text{VI}) \quad \text{for all } f \in Z, \text{supp}(f) \subseteq E.
\]

It follows from (III) that each \(X_i \) is well orderable in \(\mathcal{N} \) and therefore, the power set of \(X_i \) in \(\mathcal{N} \) (which we denote by \(\mathcal{P}(X_i)^{\mathcal{N}} \)) is the same as the power set of \(X_i \) in the ground model. Similarly \((\mathcal{P}(X_i)^{\mathcal{N}})^{\mathcal{N}} \) is the same as \(\mathcal{P}(\mathcal{P}(X_i)) \) in the ground model. We denote the ground model (that is, the model of \(\text{ZF} + \text{AC} \) from which \(\mathcal{N} \) was constructed) by \(\mathcal{N}_0 \). It follows that \((X_i, T_i) \) is a compact \(F \) topological space in \(\mathcal{N}_0 \). Therefore, since \(\mathcal{N}_0 \) is a model of \(\text{AC} \), \(\prod_{i \in I} X_i \) (taken in \(\mathcal{N}_0 \)) is compact \(G \text{ in } \mathcal{N}_0 \). Since \(Z \subseteq \langle \prod_{i \in I} X_i \rangle^{\mathcal{N}} \subseteq \prod_{i \in I} X_i \), \(Z \) has a cluster point in \(\prod_{i \in I} X_i \). Let \(h \) be such a cluster point. If \(h \notin \mathcal{N} \), then it is not hard to verify that \(h \) is a cluster point of \(Z \) in \(\mathcal{N} \) in which case the proof is complete. Assume therefore, that \(h \notin \mathcal{N} \). Then there is a permutation \(\sigma \in G_E \) and a \(j \in I \) such that \(\sigma(h(j)) \neq h(\sigma(j)) \). (Otherwise \(h \) has support \(E \).) One consequence of this assumption is that \(\sigma(j) \neq j \). For, if \(\sigma(j) = j \), then by (III), \(\sigma(h(j)) = h(j) \) and, hence, \(\sigma(h(j)) = h(j) = h(\sigma(j)) \).

Now, as in the proof of the previous lemma, we choose one representative \(i_{Q_j} \) from each \(Q \in \text{Ob} \) but rather than require (IV) we require only that \(i_{ob(j)} = i_{Q_j} \). Again in the proof of the previous lemma (see the definition of \(f_1 \)) we define \(h_1 = \{ \varphi(i_{Q_j}), \varphi(h(i_{Q_j})) : \varphi \in G_E \text{ and } Q \in \text{Ob} \} \). The proof for \(h_1 \in \langle \prod_{i \in I} X_i \rangle^{\mathcal{N}} \) is almost identical to the proof that \(f_1 \in \langle \prod_{i \in I} X_i \rangle^{\mathcal{N}} \). We also note

\[
(\text{VII}) \quad \text{for all } Q \in \text{Ob}, h_1(i_{Q_j}) = h(i_{Q_j}).
\]

We define \(h_2 \in \prod_{i \in I} X_i \) by

\[
h_2(i) = \begin{cases}
 h_1(i) & \text{if } i \neq \sigma(j), \\
 h(i) & \text{if } i = \sigma(j).
\end{cases}
\]

It is clear that \(h_2 \in \mathcal{N} \) since \(h_1 \) is. We will show that \(h_2 \) is a cluster point of \(Z \).

First note that

\[
\begin{align*}
\sigma(h_2(j)) &= \sigma(h_1(j)) \quad &\text{since } j \neq \sigma(j), \\
\sigma(h_1(j)) &= \sigma(h(j)) \quad &\text{since } j = i_{ob(j)}, \text{by (VII)}, \\
\sigma(h(j)) &= h(\sigma(j)) \quad &\text{since } \sigma \in G_E.
\end{align*}
\]

so \(\sigma(h_2(j)) \neq h_2(\sigma(j)) \), and since \(\sigma \in G_E \) it follows that \(\text{supp}(h_2) \notin E \). By (VI) \(h_2 \notin E \). Therefore, to show that \(h_2 \) is a cluster point of \(Z \), it suffices to show that every neighborhood of \(h_2 \) contains an element of \(Z \).

Let \(N \) be a neighborhood of \(h_2 \), then \(N = \bigcup_{i \in I} K_i \), where for some finite subset \(I_0 \) of \(I, K_i = X_i \) for all \(i \notin I_0 \). For each \(k \in I_0 \), choose \(\eta_k \in G_E \) so that \(\eta_k(k) = i_{ob(k)} \). For each \(Q \in \text{Ob} \), let

\[
N_Q = \bigcap \{ \eta_k(K_k) : k \in Q \text{ and } k \neq \sigma(j) \}.
\]
Since K_k is a neighborhood of $h_2(k) = h_1(k)$ for all $k \in Q$ such that $k \neq \sigma(j)$ and since η fixes h_1, $\eta(K_k)$ is a neighborhood of $h_1(i_Q)$. Further, since $K_k = X_k$ for all but finitely many k, $\eta(K_k) = X_k$ for all but finitely many k in Q. Thus N_Q is a neighborhood of $h_1(i_Q) = h_2(i_Q)$. Let $M = \prod_{i \in J} M_i$, where

$$M_i = \begin{cases} N_{\eta(i)} & \text{if } i \in I_0, i = i_{\eta(j)}, \text{ and } i \neq \sigma(j), \\ K_{\sigma(j)} & \text{if } i = \sigma(j), \\ X_i & \text{otherwise.} \end{cases}$$

Then M is a neighborhood of h and therefore there is an element f of Z such that $f \in M$. We complete the proof by showing that $f \in N$.

It follows from the choice of f that $f(j) \in K_j$ and we also have for $i \notin I_0$, $f(i) \in X_i = K_i$. Suppose $i \in I_0$ and $i \neq \sigma(j)$. Then $f(i_{\eta(i)}) \in N_{\eta(i)} \subseteq \eta(K_i)$. So $\eta^{-1}(f(i_{\eta(i)})) \subseteq \eta(K_i)$. That is, $\eta^{-1}(f) \subseteq \eta^{-1}(i_{\eta(i)}) \subseteq \eta(K_i)$. But by (VI), $\eta^{-1}(f) = f$ and by the definition of η, $\eta^{-1}(i_{\eta(i)}) = i$. Therefore, $f(i) \in K_i$ and, hence, f is in N. □

References