Statistics 352: Spatial statistics
Models for discrete data

Jonathan Taylor
Department of Statistics
Stanford University

April 28, 2009
Models for discrete data

Outline

- Dependent discrete data.
- Image data (binary).
- Ising models.
- Simulation: Gibbs sampling.
- Denoising.
SIDDS (sudden infant death syndrome) in North Carolina

Statistics 352: Spatial statistics
Jonathan Taylor
Department of Statistics
Stanford University
Discrete data

Description

- **Observations:**
 - Incidence of SIDS: \(\{Z_i : i \text{ is a county in North Carolina}\} \).
 - Births in county: \(\{n_i : i \text{ is a county in North Carolina}\} \).

- **Natural models:**
 - \(Z_i \sim \text{Poisson}(\lambda_i) \)
 - \(Z_i \sim \text{Binomial}(n_i, p_i) \)
 - \(\lambda_i = \exp(x_i' \beta) \): spatial? other features?
 - \(\text{logit}(p_i) = x_i' \beta ? \)
Discrete data

Models

- How do we introduce spatial dependence in the Z_i’s?
- If the Z_i’s are Gaussian, all we need is a covariance function . . . more complicated for Poisson, Binomial.
- One approach: Markov random fields (a.k.a. graphical models)
Discrete data

Models

- How do we introduce spatial dependence in the Z_i’s?
- If the Z_i’s are Gaussian, all we need is a covariance function . . . more complicated for Poisson, Binomial.
- One approach: Markov random fields (a.k.a. graphical models)
- Instead of defining a general MRF, we’ll start with image models.
Simulation of an Ising model
Binary images

Ising model

- Let $L = \{(i, j) : 1 \leq i \leq n_1; 1 \leq j \leq n_2\}$ be our lattice of pixels.
- Binary images Z are elements of $\{-1, 1\}^L$.
- Let $i \sim j$ be the nearest neighbours (with periodic boundary conditions).
- Given an inverse temperature $\beta = 1/T$

\[
P(Z = z) \propto \exp \left(\beta \sum_{(i,j):i \sim j} z_i z_j \right)
= \frac{e^{\beta \sum_{(i,j):i \sim j} z_i z_j}}{\sum_{w \in \{-1,1\}^L} e^{\beta \sum_{(i,j):i \sim j} w_i w_j}}
\]
Binary images

Ising model

- To a physicist

\[H(z) = \beta \sum_{(i,j): i \sim j} z_i z_j \]

is the potential energy of the system.

- Another representation:

\[H(z) = \beta \sum_{(i,j): i \sim j} ((z_i - z_j)^2 - 2) = \beta z' L z + C \]

where \(L \) is the graph Laplacian.
Binary images

Ising model

- Yet another representation

\[
\sum_{j:i\sim j} z_i z_j = \#\{j : i \sim j, z_j = z_i\} - \#\{j : i \sim j, z_j \neq z_i\} = 2\#\{j : i \sim j, z_j = z_i\} - 4
\]

- The set

\[
\{i : \exists j \sim i, z_j \neq z_i\}
\]

can be thought of as the boundary of the black/white interface of \(z\)

- Leads to an interpretation

\[
\sum_i \#\{j : i \sim j, z_j = z_i\} = \text{boundary length of } z.
\]
Ising model

- Conditional distributions are simple

\[P(z_i = 1 | z_j, j \neq i) \propto e^{\beta z_i \sum_{j: i \sim j} z_j} \]

\[= P(z_i = 1 | z_j, j \sim i) \]

- Full joint distribution requires partition function

\[\sum_{w \in \{-1, 1\}^L} e^{\beta \sum_{(i,j): i \sim j} w_i w_j} \]

which is complicated . . .

- Simulation of the Ising model is (relatively) easy
Gibbs sampler (Geman & Geman (1984))

Algorithm

```python
def simulate(initial, beta, niter=1000):
    Z = initial.copy()
    for k in range(niter):
        for i in L:
            s = sum([Z[j] for j in nbrs(i, L)])
            odds = exp(2*beta*s)
            p = odds / (1 + odds)
            Z[i] = bernoulli(p)
    return Z
```
Convergence

- For whatever initial configuration \(\text{initial} \), as \(n_{\text{iter}} \to \infty \)

\[
Z^{n_{\text{iter}}} \xrightarrow{n_{\text{iter}} \to \infty} Z_{\beta}
\]

where \(Z_{\beta} \) is a realization of the Ising model.

- In fact, as a process \((Z^i)_{1 \leq i \leq n_{\text{iter}}} \) is a Markov chain that has stationary distribution \(Z_{\beta} \).

- This is the basis of \textit{most} of the MCMC literature …

- We’ll see the Gibbs sampler again for more general MRFs.
Ising models

Adding an external field

We can also add a “mean” to the Ising model through an external field

\[P(Z = z) \propto \exp \left(\beta \sum_{(i,j): i \sim j} z_i z_j + \sum_i \alpha_i z_i \right) \]
Gibbs sampler with an external field

Algorithm

```python
def simulate(initial, beta, alpha, niter=1000):
    Z = initial.copy()
    for k in range(niter):
        for i in L:
            s = sum([Z[j] for j in nbrs(i, L)])
            odds = exp(2*beta*s + 2*alpha[i])
            p = odds / (1 + odds)
            Z[i] = bernoulli(p)
    return Z
```
Denoising

Model

- Suppose we observe a “noisy” image $Y \in \{-1, 1\}^L$ based on a “noise-free” image $Z \in \{-1, 1\}^L$.
- A plausible choice for “noise” independent bit-flips

$$P(Y_i = y_i | Z = z) = P(Y_i = y_i | Z_i = z_i)$$

$$= \begin{cases}
q & y_i = z_i \\
1 - q & y_i \neq z_i
\end{cases}$$

- Goal: recover Z, the “noise-free” image.
Noisy image $q = 0.7$
Denoising

Model

- If Z were continuous, we might put some smoothness penalty on Z . . .
- Recall the Laplacian interpretation of the potential in the Ising model
 \[H(z) = \beta z' L z \]
- Suggests the following

\[
\hat{Z}_\beta = \arg\min_{Z \in \{-1, 1\}^L} \log L(Z|Y) - \beta \sum_{(i,j): i \sim j} z_i z_j
\]

\[
= \arg\min_{Z \in \{-1, 1\}^L} \sum_{i \in L} Z_i Y_i \logit(q) - \beta \sum_{(i,j): i \sim j} z_i z_j
\]
Denoising

Model

- Our “suggested” estimator is the mode of an Ising model with parameter β and field $\alpha_i = \logit(q) Y_i \ldots$

- In Bayesian terms, if our prior for Z is Ising with parameter β, the posterior is Ising with a field dependent on the observations Y.

- If it's Bayesian, we can sample from the posterior using Gibbs sampler.
Denoising

Estimating Z

Based on outputs of the Gibbs sampler (samples from the posterior), we can compute

$$\hat{Z}_i = 1_{Z_i > 0}$$

where

$$\bar{Z} = \sum_{j=l}^{niter} Z^j$$

is the posterior mean after throwing away l samples.
Posterior mean, $q = 0.7$
Denoising

Computing the MAP

- Our original estimator was the MAP for this prior.
- Finding the MAP is a combinatorial optimization problem: \(\{-1, 1\}^L \) possible configurations to search through.
- A general approach is based on “simulated annealing”. (Geman & Geman, 1984).
Denoising

Simulated annealing

- Basic observation: $\hat{Z}_\beta(Y)$ is also the mode of

$$P_{T,\beta,Y}(z) \propto \exp \left(-\frac{1}{T} \left(\beta \sum_{(i,j):i \sim j} z_i z_j - \logit(q) \sum_{i \in L} Y_i z_i \right) \right)$$

- BUT, for $T > 1$, $P_{T,\beta,Y}$ is more sharply peaked than $P_{1,\beta,Y}$.

- Depends on a choice of temperature schedule . . .

- To prove things, one often has to assume $T_{\text{iter}} = \log(\text{iter})$.
Simulated annealing

Algorithm

```python
def simulate(initial, beta, alpha, temps):
    Z = initial.copy()
    for t in temps:
        for i in L:
            s = sum([Z[j] for j in nbrs(i, L)])
            odds = exp((2*beta*s + 2*alpha[i])/t)
            p = odds / (1 + odds)
            Z[i] = bernoulli(p)
    return Z
```
Denoising

Additive Gaussian noise

- Let the new noisy data be
 \[Y_i = Z_i + \epsilon_i \]

 with \(\epsilon_i \sim \text{IID } N(0, \sigma^2) \)

- The field is now
 \[\alpha_i = Y_i z_i \]

 and \(i \sim i \) (i.e. a new term in the neighbourhood relation).
Additive noise
Additive noise
Additive noise
Denoising

Mixture model

- The additive noise example can be thought of as a two-class mixture model.
- Suggests using LDA (or QDA if variances unequal) to classify.
- Problem: the mixing proportion is 0.03...
Mixture density
FDR curve
Thresholded
Where this leaves us

Markov random fields

- MRFs generally have distributions “like” an Ising model.
- Gibbs sampler can be used to simulate MRFs.
- Simulated annealing can also generally be used to find MAP (i.e. modes of an MRF).
- Bayesian image analysis is a huge field.