Fixed vs. Random Effects

Jonathan Taylor
Today’s class

- Random effects.
- One-way random effects ANOVA.
- Two-way mixed & random effects ANOVA.
- Sattherwaite’s procedure.
Two-way ANOVA

- Second generalization: more than one grouping variable.
- Two-way ANOVA model: observations:
 \((Y_{ijk}), 1 \leq i \leq r, 1 \leq j \leq m, 1 \leq k \leq n_{ij}: r \text{ groups in first grouping variable, } m \text{ groups in second and } n_{ij} \text{ samples in } (i, j)\)-“cell”:

 \[Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}, \quad \varepsilon_{ijk} \sim N(0, \sigma^2). \]

- Constraints:
 - \(\sum_{i=1}^{r} \alpha_i = 0\)
 - \(\sum_{j=1}^{m} \beta_j = 0\)
 - \(\sum_{j=1}^{m} (\alpha\beta)_{ij} = 0, 1 \leq i \leq r\)
 - \(\sum_{i=1}^{r} (\alpha\beta)_{ij} = 0, 1 \leq j \leq m.\)
In ANOVA examples we have seen so far, the categorical variables are well-defined categories: below average fitness, long duration, etc.

In some designs, the categorical variable is “subject”.

Simplest example: repeated measures, where more than one (identical) measurement is taken on the same individual.

In this case, the “group” effect α_i is best thought of as random because we only sample a subset of the entire population of subjects.
When to use random effects?

- A “group” effect is random if we can think of the levels we observe in that group to be samples from a larger population.
- Example: if collecting data from different medical centers, “center” might be thought of as random.
- Example: if surveying students on different campuses, “campus” may be a random effect.
Example: sodium content in beer

- How much sodium is there in North American beer? How much does this vary by brand?
- Observations: for 6 brands of beer, researchers recorded the sodium content of 8 12 ounce bottles.
- Questions of interest: what is the “grand mean” sodium content? How much variability is there from brand to brand?
- “Individuals” in this case are brands, repeated measures are the 8 bottles.
Suppose we take \(n \) identical measurements from \(r \) subjects.

\[
Y_{ij} \sim \mu + \alpha_i + \varepsilon_{ij}, \quad 1 \leq i \leq r, 1 \leq j \leq n
\]

\[
\varepsilon_{ij} \sim N(0, \sigma^2), \quad 1 \leq i \leq r, 1 \leq j \leq n
\]

\[
\alpha_i \sim N(0, \sigma^2_{\alpha}), \quad 1 \leq i \leq r.
\]

We might be interested in the population mean, \(\mu \): CIs, is it zero? etc.

Alternatively, we might be interested in the variability across subjects, \(\sigma^2_{\mu} \): CIs, is it zero?
Implications for model

- In random effects model, the observations are no longer independent (even if ε’s are independent). In fact

$$\text{Cov}(Y_{ij}, Y_{i'j'}) = \sigma_\mu^2 \delta_{i,i'} + \sigma_\delta^2 \delta_{j,j'}.$$

- In more complicated mixed effects models, this makes MLE more complicated: not only are there parameters in the mean, but in the covariance as well.

- In ordinary least squares regression, the only parameter to estimate is σ^2 because the covariance matrix is $\sigma^2 I$.
One-way random ANOVA table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>$E(MS)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>$SSTR = \sum_{i=1}^{r} n (\bar{Y}_i. - \bar{Y}..)^2$</td>
<td>$r - 1$</td>
<td>$\sigma^2 + n\sigma^2_{\mu}$</td>
</tr>
<tr>
<td>Error</td>
<td>$SSE = \sum_{i=1}^{r} \sum_{j=1}^{n} (Y_{ij} - \bar{Y}_i.)^2$</td>
<td>$(n - 1)r$</td>
<td>σ^2</td>
</tr>
</tbody>
</table>

- Only change here is the expectation of $SSTR$ which reflects randomness of α_i’s.
- ANOVA table is still useful to setup tests: the same F statistics for fixed or random will work here.
- Under $H_0 : \sigma^2_{\mu} = 0$, it is easy to see that

$$\frac{MSTR}{MSE} \sim F_{r-1,(n-1)r}.$$
Inference for μ.

- We know that $E(\bar{Y}_{..}) = \mu_{..}$, and can show that
 \[
 \text{Var}(\bar{Y}_{..}) = \frac{n\sigma^2_{\mu} + \sigma^2}{rn}.
 \]

- Therefore,
 \[
 \frac{\bar{Y}_{..} - \mu_{..}}{\sqrt{\frac{SSTR}{(r-1)rn}}} \sim t_{r-1}
 \]

- Why $r - 1$ degrees of freedom? Imagine we could record an infinite number of observations for each individual, so that $\bar{Y}_{i.} \rightarrow \mu_i$.

- To learn anything about μ, we still only have r observations (μ_1, \ldots, μ_r).

- Sampling more within an individual cannot narrow the CI for $\mu_{..}$.

- Today’s class
- Two-way ANOVA
- Random vs. fixed effects
- When to use random effects?
- Example: sodium content in beer
- One-way random effects model
- Implications for model
- One-way random ANOVA table
- Estimating σ^2_{μ}
- Example: productivity study
- Two-way random effects model
- ANOVA tables: Two-way (random)
- Mixed effects model
- Two-way mixed effects model
- ANOVA tables: Two-way (mixed)
- Confidence intervals for variances
- Satterthwaite’s procedure
Estimating σ^2_{μ}

- From the ANOVA table

$$\sigma^2_{\mu} = \frac{E(SSTR/(r - 1)) - E(SSE/((n - 1)r))}{n}.$$

- Natural estimate:

$$S^2_{\mu} = \frac{SSTR/(r - 1) - SSE/((n - 1)r)}{n}.$$

- Problem: this estimate can be negative! One of the difficulties in random effects model.
Example: productivity study

- Imagine a study on the productivity of employees in a large manufacturing company.
- Company wants to get an idea of daily productivity, and how it depends on which machine an employee uses.
- Study: take m employees and r machines, having each employee work on each machine for a total of n days.
- As these employees are not all employees, and these machines are not all machines it makes sense to think of both the effects of machine and employees (and interactions) as random.
Two-way random effects model

- $Y_{ijk} \sim \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ij}, 1 \leq i \leq r, 1 \leq j \leq m, 1 \leq k \leq n$

- $\varepsilon_{ijk} \sim N(0, \sigma^2), 1 \leq i \leq r, 1 \leq j \leq m, 1 \leq k \leq n$

- $\alpha_i \sim N(0, \sigma_{\alpha}^2), 1 \leq i \leq r.$

- $\beta_j \sim N(0, \sigma_{\beta}^2), 1 \leq j \leq m.$

- $(\alpha \beta)_{ij} \sim N(0, \sigma_{\alpha \beta}^2), 1 \leq j \leq m, 1 \leq i \leq r.$

- $\text{Cov}(Y_{ijk}, Y_{i'j'k'}) = \delta_{ii'}\sigma_{\alpha}^2 + \delta_{jj'}\sigma_{\beta}^2 + \delta_{ii'}\delta_{jj'}\sigma_{\alpha \beta}^2 + \delta_{ii'}\delta_{jj'}\sigma_{kk'}^2.$
ANOVA tables: Two-way (random)

<table>
<thead>
<tr>
<th>SS</th>
<th>df</th>
<th>$E(SS)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SSA = nm \sum_{i=1}^{r} (\bar{Y}{i..} - \bar{Y}{...})^2$</td>
<td>$r - 1$</td>
<td>$\sigma^2 + nm\sigma^2_\alpha + n\sigma^2_\alpha\beta$</td>
</tr>
<tr>
<td>$SSB = nr \sum_{j=1}^{m} (\bar{Y}{.j} - \bar{Y}{...})^2$</td>
<td>$m - 1$</td>
<td>$\sigma^2 + nr\sigma^2_\beta + n\sigma^2_\alpha\beta$</td>
</tr>
<tr>
<td>$SSAB = n \sum_{i=1}^{r} \sum_{j=1}^{m} (\bar{Y}{ij} - \bar{Y}{i..} - \bar{Y}{.j} + \bar{Y}{...})^2$</td>
<td>$(m - 1)(r - 1)$</td>
<td>$\sigma^2 + n\sigma^2_\alpha\beta$</td>
</tr>
<tr>
<td>$SSE = \sum_{i=1}^{r} \sum_{j=1}^{m} \sum_{k=1}^{n} (Y_{ijk} - \bar{Y}_{ij.})^2$</td>
<td>$(n - 1)ab$</td>
<td>σ^2</td>
</tr>
</tbody>
</table>

- To test $H_0: \sigma^2_\alpha = 0$ use SSA and $SSAB$.
- To test $H_0: \sigma^2_\alpha\beta = 0$ use $SSAB$ and SSE.
Mixed effects model

- In some studies, some factors can be thought of as fixed, others random.
- For instance, we might have a study of the effect of a standard part of the brewing process on sodium levels in the beer example.
- Then, we might think of a model in which we have a fixed effect for “brewing technique” and a random effect for beer.
Two-way mixed effects model

\[Y_{ijk} \sim \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ijk}, \ 1 \leq i \leq r, 1 \leq j \leq m, 1 \leq k \leq n \]

\[\varepsilon_{ijk} \sim N(0, \sigma^2), \ 1 \leq i \leq r, 1 \leq j \leq m, 1 \leq k \leq n \]

\[\alpha_i \sim N(0, \sigma^2_{\alpha}), \ 1 \leq i \leq r. \]

\[\beta_j, 1 \leq j \leq m \text{ are constants.} \]

\[(\alpha \beta)_{ij} \sim N(0, (m - 1)\sigma^2_{\alpha \beta}/m), 1 \leq j \leq m, 1 \leq i \leq r. \]

Constraints:

\[\sum_{j=1}^{m} \beta_j = 0 \]

\[\sum_{i=1}^{r} (\alpha \beta)_{ij} = 0, 1 \leq i \leq r. \]

\[\text{Cov} ((\alpha \beta)_{ij}, (\alpha \beta)_{i'j'}) = -\sigma^2_{\alpha \beta}/m \]

\[\text{Cov}(Y_{ijk}, Y_{i'j'k'}) = \delta_{jj'} \left(\sigma^2_{\beta} + \delta_{ii'} \frac{m-1}{m} \sigma^2_{\alpha \beta} - (1 - \delta_{ii'}) \frac{1}{m} \sigma^2_{\alpha \beta} + \delta_{ii'} \delta_{kk'} \sigma^2 \right) \]
ANOVA tables: Two-way (mixed)

<table>
<thead>
<tr>
<th>SS</th>
<th>df</th>
<th>E((MS))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SSA)</td>
<td>(r - 1)</td>
<td>(\sigma^2 + nm\sigma^2_{\alpha})</td>
</tr>
<tr>
<td>(SSB)</td>
<td>(m - 1)</td>
<td>(\sigma^2 + nr\sum_{j=1}^{m}\beta_i^2 + n\sigma^2_{\alpha\beta})</td>
</tr>
<tr>
<td>(SSAB)</td>
<td>((m - 1)(r - 1))</td>
<td>(\sigma^2 + n\sigma^2_{\alpha\beta})</td>
</tr>
</tbody>
</table>

\[SSE = \sum_{i=1}^{r} \sum_{j=1}^{m} \sum_{k=1}^{n} (Y_{ijk} - \bar{Y}_{ij})^2 \]
\[\text{with } \frac{(n - 1)ab}{\sigma^2} \]

- To test \(H_0 : \sigma^2_{\alpha} = 0\) use \(SSA\) and \(SSE\).
- To test \(H_0 : \beta_1 = \cdots = \beta_m = 0\) use \(SSB\) and \(SSAB\).
- To test \(H_0 : \sigma^2_{\alpha\beta} \) use \(SSAB\) and \(SSE\).
Consider estimating σ^2_β in the two-way random effects ANOVA. A natural estimate is

$$\hat{\sigma}^2_\beta = nr(MS_B - MS_{AB}).$$

- What about CI?
- A linear combination of χ^2 – but not χ^2.
- To form a confidence interval for $\hat{\sigma}^2_\beta$ we need to know distribution of a linear combination of $MS \cdot s$, at least approximately.
Sattherwaite’s procedure

- Given k independent MS’s

$$\hat{L} \sim \sum_{i=1}^{k} c_i M S_i$$

- Then

$$\frac{df_T \hat{L}}{\mathbb{E}(\hat{L})} \sim \chi^2_{df_T}.$$

where

$$df_T = \frac{\left(\sum_{i=1}^{k} c_i M S_i\right)^2}{\sum_{i=1}^{k} c_i^2 M S_i^2 / df_i}$$

where df_i are the degrees of freedom of the i-th MS.

- $(1 - \alpha) \cdot 100\%$ CI for $\mathbb{E}(\hat{L})$:

$$L_L = \frac{df_T \times \hat{L}}{\chi^2_{df_T;1-\alpha/2}}, \quad L_U = \frac{df_T \times \hat{L}}{\chi^2_{df_T;\alpha/2}}$$

Sattherwaite's procedure