Other datatypes

Document data

- You might start with a collection of n documents (i.e. all of Shakespeare’s works in some digital format; all of Wikileaks’ U.S. Embassy Cables).
- This is not a data matrix . . .
- Given p terms of interest: $\{\text{Al Qaeda, Iran, Iraq, etc.}\}$ one can form a term-document matrix filled with counts.
Time series

- Imagine recording the minute-by-minute prices of all stocks in the S & P 500 for last 200 days of trading.
- The data can be represented by a 78000×500 matrix.
- BUT, there is definite structure across the rows of this matrix.
- They are not unrelated “cases” like they might be in other applications.

Transaction data

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Social media data

- Bruce Arthur [Link](https://twitter.com/BruceArthur/status/1234567890)

Graph data

![Graph diagram]
Other data types

Graph data
- Nodes on the graph might be Facebook users, or public pages.
- Weights on the edges could be number of messages sent in a prespecified period.
- If you take weekly intervals, this leads to a sequence of graphs

\[G_i = \text{communication over } i\text{-th week.} \]
- How this graph changes is of obvious interest . . .
- Even structure of just one graph is of interest – we’ll come back to this when we talk about spectral methods . . .

Data quality

Some issues to keep in mind
- Is the data experimental or observational?
- If observational, what do we know about the data generating mechanism? For example, although the S&P 500 example can be represented as a data matrix, there is clearly structure across rows.
- General quality issues:
 - How much of the data missing? Is missingness informative?
 - Is it very noisy? Are there outliers?
 - Are there a large number of duplicates?

Preprocessing

General procedures
- Aggregation Combining features into a new feature. Example: pooling county-level data to state-level data.
- Discretization Breaking up a continuous variable (or a set of continuous variables) into an ordinal (or nominal) discrete variable.
- Transformation Simple transformation of feature (log or exp) or mapping to a new space (Fourier transform / power spectrum, wavelet transform).

A continuous variable that could be discretized
Discretization by fixed width

Discretization by fixed quartile

Discretization by clustering

Variable transformation: bacterial decay
Variable transformation: bacterial decay

BMW daily returns (fEcofin package)

ACF of BMW daily returns

Discrete wavelet transform of BMW daily returns
Part II

Dimension reduction, PCA &
eigenanalysis

Dimension reduction

- By choosing β appropriately, we may find "interesting" new features.
- Suppose we take k much smaller than p vectors of β which we write as a matrix $B_{p \times k}$.
- The new data matrix XB has fewer dimensions than X.
- This is dimension reduction ...

Combinations of features

- Given a data matrix $X_{n \times p}$ with p fairly large, it can be difficult to visualize structure.
- Often useful to look at linear combinations of the features.
- Each $\beta \in \mathbb{R}^p$, determines a linear rule
 $$f_\beta(x) = x^T \beta$$
- Evaluating this on each row X_i of X yields a vector
 $$(f_\beta(X_i))_{1 \leq i \leq n} = X\beta.$$
Dimension reduction

Principal Components
- Define the $n \times n$ matrix
 $$H = I_{n \times n} - \frac{1}{n}11^T$$
- This matrix removes means:
 $$(Hv)_i = v_i - \bar{v}.$$
- It is also a projection matrix:
 $$H^T = H$$
 $$H^2 = H$$

Dimension reduction

Eigenanalysis
- The matrix $X^T H X$ is symmetric, so it can be written as
 $$X^T H X = V D V^T$$
 where $D_{k \times k} = \text{diag}(d_1,\ldots,d_k)$, $\text{rank}(X^T H X) = k$ and
 $V_{p \times k}$ has orthonormal columns, i.e. $V^T V = I_{k \times k}$.
- We always have $d_i \geq 0$ and we take $d_1 \geq d_2 \geq \ldots d_k$.

Dimension reduction

Principal Components with Matrices
- With this matrix,
 $$\hat{\text{Var}}(V \beta) = \frac{1}{n - 1} \beta^T X^T H X \beta.$$
- So, maximizing sample variance, with $\|\beta\|_2 = 1$ is
 $$\text{maximize } \beta^T \left(X^T H X \right) \beta, \quad \|\beta\|_2 = 1$$
 $$\text{This boils down to an eigenvalue problem . . .}$$

Dimension reduction

Eigenanalysis & PCA
- Suppose now that $\beta = \sum_{j=1}^k a_j v_j$ with v_j the columns of V. Then,
 $$\|\beta\|_2 = \sqrt{\sum_{i=1}^k a_i^2}$$
 $$\beta^T \left(X^T H X \right) \beta = \sum_{i=1}^k a_i^2 d_i$$
- Choosing $a_1 = 1$, $a_j = 0, j \geq 2$ maximizes this quantity.
Dimension reduction

Eigenanalysis & PCA

- Therefore, \(\hat{\beta}_1 = v_1 \) the first column of \(V \) solves
 \[
 \maximize \beta^T \left(X^T H X \right) \beta, \quad \|\beta\|_2 = 1
 \]

- This yields scores \(HX\hat{\beta}_1 \in \mathbb{R}^n \).
- These are the 1st principal component scores.

Higher order components

- In matrix terms, all the principal components scores are
 \[
 (HXV)_{n \times k}
 \]
 and the loadings are the columns of \(V \).
- This information can be summarized in a biplot.
- The loadings describe how each feature contributes to each principal component score.

Dimension reduction

Higher order components

- Having found the direction with “maximal sample variance” we might look for the “second most variable” direction by solving
 \[
 \maximize \beta^T \left(X^T H X \right) \beta, \quad \|\beta\|_2 = 1, \beta^T v_1 = 0
 \]

- Note we restricted our search so we would not just recover \(v_1 \) again.
- Not hard to see that if \(\beta = \sum_{j=1}^k a_j v_j \) this is solved by taking \(a_2 = 1, a_j = 0, j \neq 2 \).

Olympic data

In matrix terms, all the principal components scores are

\[
(HXV)_{n \times k}
\]

and the loadings are the columns of \(V \).
This information can be summarized in a biplot.
The loadings describe how each feature contributes to each principal component score.
Dimension reduction

The importance of scale

- The PCA scores are not invariant to scaling of the features: for $Q_{p \times p}$ diagonal the PCA scores of XQ are not the same as X.
- Common to convert all variables to the same scale before applying PCA.
- Define the scalings to be the sample standard deviation of each feature. In matrix form, let

$$ S^2 = \frac{1}{n-1} \text{diag} \left(X^T H X \right) $$

- Define $\tilde{X} = HX S^{-1}$. The normalized PCA loadings are given by an eigenanalysis of $\tilde{X}^T \tilde{X}$.

Olympic data: screeplot
Dimension reduction

PCA and the SVD

- The singular value decomposition of a matrix tells us we can write

\[\tilde{X} = U \Delta V^T \]

with \(\Delta_{k \times k} = \text{diag}(\delta_1, \ldots, \delta_k) \), \(\delta_j \geq 0 \), \(k = \text{rank}(\tilde{X}) \), \(U^T U = V^T V = I_{k \times k} \).

- Recall that the scores were

\[\tilde{X} V = (U \Delta V^T) V = U \Delta \]

- Also,

\[\tilde{X}^T \tilde{X} = V \Delta^2 V^T \]

so \(D = \Delta^2 \).

Another characterization of SVD

- Given a data matrix \(X \) (or its scaled centered version \(\tilde{X} \)) we might try solving

\[\min_{Z: \text{rank}(Z) = k} \|X - Z\|_F^2 \]

where \(F \) stands for Frobenius norm on matrices

\[\|A\|_F^2 = \sum_{i=1}^n \sum_{j=1}^p A_{ij}^2 \]

- It can be proven that

\[Z = S_{n \times k} (V^T)_{k \times p} \]

where \(S_{n \times k} \) is the matrix of the first \(k \) PCA scores and the columns of \(V \) are the first \(k \) PCA loadings.

- This approximation is related to the screeplot: the height of each bar describes the additional drop in Frobenius norm as the rank of the approximation increases.
Dimension reduction

Other types of dimension reduction

- Instead of maximizing sample variance, we might try maximizing some other quantity . . .
- Independent Component Analysis tries to maximize “non-Gaussianity” of V_β. In practice, it uses skewness, kurtosis or other moments to quantify “non-Gaussianity.”
- These are both unsupervised approaches.
- Often, these are combined with supervised approaches into an algorithm like:
 - Feature creation: Build some set of features using PCA.
 - Validate: Use the derived features to see if they are helpful in the supervised problem.

Olympic data: 1st component vs. total score
Distances and similarities

Similarities

- Start with X which we assume is centered and standardized.
- The PCA loadings were given by eigenvectors of the correlation matrix which is a measure of similarity.
- The first 2 (or any 2) PCA scores yield an $n \times 2$ matrix that can be visualized as a scatter plot.
- Similarly, the first 2 (or any 2) PCA loadings yield an $p \times 2$ matrix that can be visualized as a scatter plot.

The matrix XX^T is a measure of similarity between cases.
- The matrix X^TX is a measure of similarity between features.
- Structure in the two similarity matrices yield insight into the set of cases, or the set of features . . .
Distances and similarities

Distances
- Distances are inversely related to similarities.
- If A and B are similar, then $d(A, B)$ should be small, i.e. they should be near.
- If A and B are distant, then they should not be similar.
- For a data matrix, there is a natural distance between cases:
 \[d(X_i, X_k)^2 = \|X_i - X_k\|_2^2 = \sum_{j=1}^{p} \|X_{ij} - X_{kj}\|_2^2 = (XX^T)_{ii} - 2(XX^T)_{ik} + (XX^T)_{kk} \]

Distances
- Suggests a natural transformation between a similarity matrix S and a distance matrix D
 \[D_{ik} = (S_{ii} - 2 \cdot S_{ik} + S_{kk})^{1/2} \]
- The reverse transformation is not so obvious. Some suggestions from your book:
 \[S_{ik} = -D_{ik} = e^{-D_{ik}} = \frac{1}{1 + D_{ik}} \]

Distances
- A distance (or a metric) on a set S is a function $d : S \times S \to [0, +\infty)$ that satisfies
 - $d(x, x) = 0$; $d(x, y) = 0 \iff x = y$
 - $d(x, y) = d(y, x)$
 - $d(x, y) \leq d(x, z) + d(z, y)$
 - If $d(x, y) = 0$ for some $x \neq y$ then d is a pseudo-metric.

Similarities
- A similarity on a set S is a function $s : S \times S \to \mathbb{R}$ and should satisfy
 - $s(x, x) \geq s(x, y)$ for all $x \neq y$
 - $s(x, y) = s(y, x)$
 - By adding a constant, we can often assume that $s(x, y) \geq 0$.
Distances and similarities

Examples: nominal data
- The simplest example for nominal data is just the discrete metric
 \[d(x, y) = \begin{cases}
 0 & x = y \\
 1 & \text{otherwise.}
 \end{cases} \]
- The corresponding similarity would be
 \[s(x, y) = \begin{cases}
 1 & x = y \\
 0 & \text{otherwise.}
 \end{cases} \]
 \[= 1 - d(x, y) \]

Examples: ordinal data
- If \(S \) is ordered, we can think of \(S \) as (or identify \(S \) with) a subset of the non-negative integers.
- If \(|S| = m \) then a natural distance is
 \[d(x, y) = \frac{|x - y|}{m - 1} \leq 1 \]
- The corresponding similarity would be
 \[s(x, y) = 1 - d(x, y) \]

Examples: vectors of continuous data
- If \(S = \mathbb{R}^k \) there are lots of distances determined by norms.
- The Minkowski \(p \) or \(\ell_p \) norm, for \(p \geq 1 \):
 \[d(x, y) = \|x - y\|_p = \left(\sum_{i=1}^{k} |x_i - y_i|^p \right)^{1/p} \]
- Examples:
 - \(p = 2 \) the usual Euclidean distance, \(\ell_2 \)
 - \(p = 1 \) the “taxicab distance”, \(\ell_1 \)
 - \(p = \infty \) the sup norm, \(\ell_\infty \)

Examples: binary vectors
- If \(S = \{0, 1\}^k \subset \mathbb{R}^k \) the vectors can be thought of as vectors of bits.
- The \(\ell_1 \) norm counts the number of mismatched bits.
- This is known as Hamming distance.
Distances and similarities

Example: Mahalanobis distance

- Given $\Sigma_{k \times k}$ that is positive definite, we define the Mahalanobis distance on \mathbb{R}^k by
 $$d_\Sigma(x, y) = \left((x - y)^T \Sigma^{-1} (x - y) \right)^{1/2}$$

- This is the usual Euclidean distance, with a change of basis given by a rotation and stretching of the axes.

- If Σ is only non-negative definite, then we can replace Σ^{-1} with Σ^\dagger, its pseudo-inverse. This yields a pseudo-metric because it fails the test $d(x, y) = 0 \iff x = y$.

Distances and similarities

Example: similarities for binary vectors

- We define the simple matching coefficient (SMC) similarity by
 $$SMC(x, y) = \frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}} = \frac{f_{00} + f_{11}}{k}$$
 $$= 1 - \frac{\|x - y\|_1}{k}$$

- The Jaccard coefficient ignores entries where $x_i = y_i = 0$
 $$J(x, y) = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}.$$
Distances and similarities

Example: correlation

- An alternative, perhaps more familiar definition:

\[
\text{cor}(x, y) = \frac{S_{xy}}{S_x S_y}
\]

\[
S_{xy} = \frac{1}{k-1} \sum_{i=1}^{k} (x_i - \bar{x})(y_i - \bar{y})
\]

\[
S_x^2 = \frac{1}{k-1} \sum_{i=1}^{k} (x_i - \bar{x})^2
\]

\[
S_y^2 = \frac{1}{k-1} \sum_{i=1}^{k} (y_i - \bar{y})^2
\]

Correlation & PCA

- The matrix \(\frac{1}{n-1} \tilde{X}^T \tilde{X}\) was actually the matrix of pair-wise correlations of the features. Why? How?

\[
\frac{1}{n-1} \left(\tilde{X}^T \tilde{X} \right)_{ij} = \frac{1}{n-1} \left(D^{-1/2} X^T H X D^{-1/2} \right)_{ij}
\]

- The diagonal entries of \(D\) are the sample variances of each feature.

- The inner matrix multiplication computes the pair-wise dot-products of the columns of \(H X\)

\[
\left(X^T H X \right)_{ij} = \sum_{k=1}^{n} (X_{ki} - \bar{X}_i)(X_{kj} - \bar{X}_j)
\]

High positive correlation

High negative correlation
No correlation

Small positive

Small negative

Distances and similarities

Combining similarities
- In a given data set, each case may have many attributes or features.
- Example: see the health data set for HW 1.
- To compute similarities of cases, we must pool similarities across features.
- In a data set with M different features, we write $x_i = (x_{i1}, \ldots, x_{iM})$, with each $x_{im} \in S_m$.
Combining similarities

- Given similarities s_m on each S_m we can define an overall similarity between case x_i and x_j by

\[
s(x_i, x_j) = \sum_{m=1}^{M} w_m s_m(x_{im}, x_{jm})
\]

with optional weights w_m for each feature.

- Your book modifies this to deal with “asymmetric attributes”, i.e. attributes for which Jaccard similarity might be used.