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Abstract

An alternative solution to the K - class (K > 3 - polychotomous) classification problem is
proposed. It is a simple extension of K = 2 (dichotomous) classification in that a separate two-
class decision boundary is independently constructed between every pair of the K classes. Each
of these boundaries is then used to assign an unknown observation to one of its two respective
classes. The individual class that receives the most such assignments over these (1; ) decisions is
taken as the predicted class for the observation. Motivation for this approach is provided along
with discussion as to those situations where it might be expected to do better than more traditional
methods. Examples are presented illustrating that substantial gains in accuracy can sometimes
be achieved.

1. Introduction

Classification is a prediction (learning) problem in which the value of an (“output”) variable y to be
predicted assumes one of K unorderable categorical values y € {cy,- - -, ¢k }. The prediction is made
based on given joint values of a set of (“input”) variables x = {zy,--, 2, }. The rule mapping the input
values X to an estimated output value §(x) is constructed by a learning algorithm from a (“training”)
sample T' of N previously solved cases

T = {xi, i} (1.1)
for which the joint values of both input and output variables have been given.
There are a wide variety of learning algorithms [see for example Bishop (1995) and Ripley (1996)].
Nearly all of them can be viewed as procedures for obtaining estimates {fx(x)} of the set of (condi-
tional) probabilities

{fr(x) = Pr(y = e | %)} (1.2)

that the output 4 assumes each of its respective values, at each point x in the space of input values.
These estimates are then inserted into the decision rule

K
k(x) =arg min > Lufi(x), (%) = ¢ (1.3)
- I=1

where Ly, is a (user specified) loss for predicting § = ¢z, when the true value is y = ¢; (L;; = 0). This
rule (1.3) is motivated by the fact that using the (unknown) true conditional probabilities (1.2) in
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(1.3) results in an optimal (“Bayes”) rule with the smallest possible misclassification “risk” (expected
loss)

R=Fx

> Lo fl(x)] . (1.4)

Here (1.4) the expected value (average) is over the distribution of (future) x values to be predicted.
The K x K loss matrix L;; is seldom fully general. Usually it is taken to have some special structure
such as

Lip=Li1(1 # k) (1.5)

where the function 1(+) is an indicator of the truth of its argument

1(77):{ 1 if n is true, (1.6)

0 otherwise.

Here (1.5) the loss for misclassifying a case with (true) output value y = ¢; is the same irrespective of
the alternative value § # ¢; to which it is assigned. For this loss structure (1.5) the decision rule (1.3)
reduces to

k(x) = arglg;CaSXK kak(x). (1.7)

A more restricted (but even more common) situation is where 7, = 1 in (1.5) for which the decision
rule (1.3) (1.7) reduces to assigning the output value (class) estimated to be the most probable at x,
and the misclassification risk (1.4) is simply the probability of assignment error

R= Bl (j(x) #9). (1.8)

2. Conditional probability estimation

There are two general paradigms for obtaining the estimates { fk (x) K of the conditional probabilities
(1.2). The density estimation approach makes use of Bayes theorem

Pr(x|y = c) Pr(y = cx)
(X)) =Pr(y=cx|x) = =% !
T =Py =al0 = o o) Prly — o) .

where Pr(x |y = ¢x) is the relative probability of observing a set of joint input values x given the output
value y = ¢z, and Pr(y = ¢;) is the unconditional (“prior”) probability of observing the value y = c¢.
The quantity Pr(x |y = ¢z) is just the joint probability density function of the kth class, and can be
estimated by density estimation techniques. The training sample 7" (1.1) is partitioned into K disjoint
subsamples, each with the same output value (“class label”), and a density estimation procedure is
applied to (separately) estimate Pr(x |y = ¢) from each respective subsample. These estimates are
then plugged into (2.1) to obtain a set of conditional (at x) probability estimates, which in turn are used
in (1.3) or (1.7) to make an output prediction. Examples of classification techniques employing this
density estimation paradigm are “discriminant analysis” [see McLachlan (1992)], Gaussian mixtures
[Chow and Chen (1992)], learning vector quantization techniques [Kohonen (1990)], and Bayesian
belief networks [Heckerman, Geiger, and Chickering(1994)].

An alternative paradigm that attempts to directly estimate the conditional probabilities (1.2) is
based on real valued output prediction (“regression”). The categorically valued output ¥ is encoded
into K numerically valued (“dummy”) output variables {d = 1(y = c;)}¥, for which one has

fe(x) =Pr(dr = 1|x) = E(dr| x). (2.2)
This is in turn the solution to the least-squares problem

fe(x) = argmfinE[(dk - N¥x. (2.3)



This motivates applying regression methodology to estimate

N

fr(x) = argfgcl)igF ; i — f(x:))? (2.4)

from the K respective training sets {dik,xi}ﬁl, where F' is some function class determined by the
regression procedure used. The { fr (x)}£ thereby obtained are then used in the decision rule (1.3)
or (1.7) to make an output prediction. Examples of techniques using this (regression) paradigm are
neural networks [Lippmann (1989)], decision tree induction methods | Breiman, et. al. (1984) and
Quinlan (1993)], projection pursuit [Friedman (1985)], and nearest neighbor methods [Fix and Hodges
(1951)] .

3. Alternative decision rule

As noted, solution to classification problems generally involves a two-step process: conditional proba-
bility estimation (Section 2) followed by a decision rule [(1.3) or (1.7)] using those estimates. In this
paper a different decision rule is proposed as an alternative to ( 1.7). That is, it is only applicable for
the simpler loss structure (1.5). It is motivated by the (rather obvious) identity

K
= 1 3.1
arg lir;:ixK ay, arglir;CaSXK 2 (ar > a;) (3.1)
where {a;, }¥ are any set of distinct real valued numbers. Applying (3.1) to (1.7) one has the alternative
decision rule

K
k(x) = arglgcagKZ 1 Lp fre(x) > Lifi(x)]. (3.2)
- Il=1

K are used in each.

Clearly (1.7) and (3.2) give identical results when the same set of estimates {fk( '
Opportunities arise by generalizing (3.2).
Using the (unknown) true conditional probabilities in (3.2) one can recast the optimal Bayes

decision rule as

K
kp(x) = arglg;%(z UL fr(x) > Lifi(x)]. (3.3)
- =1

This Bayes rule is equivalent to one based on (1.7) but can be viewed differently by expressing it as

u [ Ly fr(x) Ly fi(x) (3.4)

— x) + fi(x) - Jr(x) + fi(x)
Each term in this sum (3.4) represents a Bayes optimal two-class decision rule for discriminating only
between classes y = ¢ and y = ¢;. The sum counts how many times y = c; was selected as the
predicted value (“winner”) at x in its series of (two-class) decisions with all other K — 1 classes.
The maximization selects the class with the most winning two-class decisions (“votes”) as the overall
prediction at x.

From (3.4) it is seen that the optimal K-class Bayes decision rule can be obtained by separately
constructing an optimal rule for discriminating between every pair of classes y € {cx,¢;}, where each
such two-class rule ignores the existence of the other K — 2 classes. The complete decision boundary
separating all of the classes from each other is then produced automatically from these individual
two-class decisions through the voting rule. This motivates a generalized procedure in which each of
individual the two-class decision boundaries is estimated as accurately as possible without imposing



the constraint (3.2) that a common set of K conditional probability estimates {fk (%)} be used for
all (12( ) decisions

K
b = ars mas 3 LA (00) > Lif ™ (). (3.5)

Here f,gkl)(x) is the conditional probability estimate for y = ¢; when separating its class solely from
that of 4y = ¢;, without considering any of the other classes y # ¢;.

4. Pairwise target functions

With the standard approach to polychotomous classification the (unknown true) “target” functions to
be estimated are {f5(x)}¥ (1.2) (2.1) (2.2). Estimates for them {fz(x)} are used in the classification

decision rule (1.7). These estimates can also be used in ( 3.2) producing identical results. The extension
(3.5) of (3.2) allows one to consider instead an expanded set of (12() target functions

D (x) = ) Eld | x& (d, = 1 or dy = 1)]

Tr(x) + fi(x)
_ Pr(x |y = ) Priy = o)
= Pr(x|y = Ck) Pr(y = Ck) +Pr(x|y — Cl) Pr(y — Cl) . (41)

Note that since f,gkl)(x) + fl(kl)(x) = 1 only one of the two need be considered. Also note that using
(4.1) in (3.5) produces the Bayes optimal rule.

Each of the targets (4.1) can be separately estimated by applying the regression approach (Section
2) to the reduced training set

T = {xi,yi |yi = cx or yi =} ,. (4.2)

The density estimation approach could also be applied in this manner. If the probability density
functions Pr(x |y = ¢;) are each estimated totally separately from the others then the result will be
the same as that of standard polychotomous classification. However, it is often the case that the
various smoothing (meta) parameters associated with the density estimation method are chosen so
as to minimize an estimate of the prediction error of the resulting classification procedure. If instead
they are chosen separately to minimize an error estimate of each two-class rule based on (4.2) then
different results will be produced.

A potential disadvantage of this alternative procedure (3.5) (4.1) is that more target functions must
be estimated [(12() versus K| each with less training data [(4.2) versus (1.1)]. As compensation for this
each of the targets (4.1) is likely to be a (much) simpler function of the input variables with respect to
the estimation procedure being used. This is especially likely when each class is well separated from
most of the others resulting in low Bayes error rate and potentially accurate classification. This is
illustrated by the trivial example depicted in Fig. 4.1. Here there are two input variables and three
classes. Their respective probability density functions have support in the input space within the
respective circle and two ellipses. The (pairwise) decision boundaries between each pair of classes are
simple and estimating each target (4.1) with a linear function will produce accurate classification using
the alternative approach (3.5). In the context of the standard approach one essentially estimates the
decision boundary between each class and the union of the K — 1 other classes (2.1). For the situation
depicted in Fig. 4.1 one of these is also linear. However, the decision boundary is more complicated
between each of the left two classes and the union of their complement classes (solid line). Using a
simple linear function to approximate their corresponding respective targets (2.2) would not achieve
accurate classification using the standard approach (1.7). A more complicated approximator would
be required.

Although this example is especially simple it illustrates the essential concepts. All function approx-
imation methods are limited in that for each there are broad classes of (“complex”) target functions
with which they have difficulty. Even for universal approximators the training sample size places



Figure 4.1: A simple three-class problem where the standard polychotomous approach leads to a
nonlinear decision boundary.

such limits. In cases where the (“simpler”) pairwise targets (4.1) more nearly match those that are
amenable to the particular approximator being used, one might expect the alternative polychotomous
classification strategy based on (3.5) (4.1) to outperform the standard one based on (1.7) and (2.1) or
(2.2).

The above discussion suggests that the alternative polychotomous approach suggested here is
basically a bias reduction strategy. The bias of an estimator reflects its inability to represent the
target as averaged over repeated (random) training samples of the same size [Geman, Bienenstock, and
Doursat (1992) and Friedman (1996)]. The hope is that the less complex pairwise targets (4.1) can be
estimated with less bias than the individual ones (1.2) (2.1) (2.2). However, there is a potential increase
in variance since smaller samples (4.2) are used to estimate each one. This effect is mitigated by the fact
that most function estimation methods have smoothing (meta) parameters that are adjusted to trade
increased bias for reduced variance through model selection [e.g. cross-validation - Stone (1974)].
If the pairwise targets are simple enough so that the inherent bias is small then the opportunity
(at least potentially) exists for large variance reduction through such model selection, which can be
done separately for each pairwise estimate. The situation is further complicated by the fact that
the bias and variance of the target function estimates affect the resulting misclassification risk in
a complex manner [Friedman (1996)] so the ultimate outcome is seldom clear. The relative merits
of the different approaches to polychotomous classification (like everything else) will depend on the
specifics of particular problems such as the true unknown target functions, training sample size, and
approximation method being used. This must be gauged separately for each particular problem
through some model selection technique such as cross-validation. In the following section situations
are presented where the alternative approach produces superior results.

5. Illustrations

In this section both the standard approach and the alternative suggested here are applied with three
classification methods over a large number of randomly generated targets. The methods are nearest-
neighbors, decision tree induction methods (CART) using axis oriented splits (only), and CART



allowing linear combination splits [Breiman, et. al. (1984)]. All three are examples of the regression
paradigm discussed in Section 2.
With the standard nearest-neighbor approach the conditional density estimates are given by

N
Fux) = 3 31 =il < ds (] 1 = ) + 4 (5.1)

where d;(x) is the Jth order statistic of {||x — x;||}}. The summation in (5.1) evaluates the fraction
of class y = ¢;, training observations among the J closest to x. The second term %;, is a global “bias”
[Friedman (1996)] or “threshold” [Rosen, Burke, and Goodman (1995)] adjustment used to compensate
for bias. Meta parameters of the procedure are J, {tk}{( , and the (n x n) matrix M used to define
the metric distance

I|x — x| > = (x — x;)' M (x — x;). (5.2)

Each of these are either prespecified or are (jointly) determined through model selection (cross-
validation). These estimates (5.1) are inserted into (1.7) to form the classification decision rule.
With the alternative approach each pairwise estimate is given by

A,Ekl)(x) - Jikl Z 1[]]x = x| [ < dra(x)] Wy = cx) + 1w (5.3)

yi€{ck,cr}

where dj;(x) is the Jy,th order statistic of {||x — x;||x |v: € {cx, cl}}ﬁl. Note that with this strategy
a separate set of meta parameters [Jy, {1, and metric My, (5.2)] are used for each pairwise estimate

f,ikl)(x). These estimates are inserted into (3.5) to form the decision rule.

With the standard approach (5.1) there are K bias adjustment parameters {tk}{( Good joint
values for them are highly problem dependent [Friedman (1996)] and are difficult to judge in advance.
Therefore their values must be jointly optimized (along with the other meta parameters) through model
selection. An exhaustive search through a discretized set of potential joint values requires computation
that grows exponentially with the number of classes K. Heuristic search techniques may reduce this
somewhat but it is still likely to be prohibitive. For this reason when K > 2 one usually sets {t;, = 0}{( .
With the alternative strategy (3.5) (5.3) there are (12() bias adjustment parameters, but each one is
separately optimized for its particular two-class problem. Thus, with the alternative approach a K-
parameter joint optimization is replaced by (12() single parameter optimizations. Computation for the
latter grows (at most) linearly with the number of classes (see Section 6) so the alternative approach
provides a computationally feasible way to extend the bias adjustment strategy to polychotomous
classification.

For the examples presented here the bias adjustments {tk}{( were set to zero with the standard
approach (5.1) and the metric (5.2) was taken to be

M = diag{q. -, 47} (5.4)

where ¢; is the interquartile range of the jth input variable over the training data (1.1). The only
meta parameter selected by cross-validation was the number of nearest-neighbors J. For the alternative
approach the metric was taken to be similar to (5.4) but with the interquartile ranges taken over the
reduced training sets (4.2). The respective number of nearest-neighbors Jy; and bias adjustments t,
(5.3) were jointly optimized (by cross-validation) separately for each respective two-class (y € {cx, ¢ })
problem.

With decision tree induction (CART) there is one (basic) meta parameter (“cost complexity”) that
controls the size (number of terminal nodes) of the resulting decision tree. With the standard approach
a single tree is constructed for polychotomous classification with a single associated cost complexity
parameter. The conditional probability estimates (1.2) (2.2) are the fraction of class y = ¢;, training
observations among those in the terminal node containing the prediction point x. These are inserted
into (1.7) to produce a decision rule. With the alternative approach (12() decision trees are constructed
each on the reduced training sets (4.2) using a separately estimated cost complexity parameter for



each one. The conditional probability estimates { f,gkl) (x)} are taken to be the fraction of class y = ¢,
of the two classes (y € {ci,¢}), in each of the respective (12() terminal nodes containing x. These are

inserted into (3.5) to form the decision rule.

5.1. Random Gaussian classes

As noted above the relative merits of different approaches to polychotomous classification will likely
depend on the specifics of each particular problem, most notably the true target functions (1.2) and
the approximation method being used. To investigate this the three methods ( J - nearest neighbors
“J-NN”, CART with axis oriented splits only “CART-AX”, and CART with linear combination splits
allowed “CART-LC”) were applied to a series of 50 randomly generated problems. FEach involved
n = 20 input variables and K = 10 classes. Equal misclassification losses {1, = 1}%0 (1.5) were used
so the figure of (lack of) merit is error rate (1.8). The classes were given equal prior probabilities
{Priy=cp) = 0.1}%0. The probability density distribution for each class was taken to be a Gaussian

1 1

- - e tn—1(e
Gz &P T3 (T x) Vi (x| (5.5)

Pr(x|y=cx) =
The locations {x;}1¢ were randomly generated from a uniform distribution x; ~ U2[0,1] in the
20 dimensional input space. The respective covariance matrices {Vk}}o were random as well. The
eigenvectors for each were randomly generated from a uniform distribution on the unit 20-sphere
subject to orthogonality constraints. The square-roots of the eigenvalues were each randomly generated
from a uniform distribution U[0.01,1.01]. The optimal decision boundaries separating the classes
are (random) piecewise quadratic functions in 20 variables most of which are not well suited to the
approximation methods being considered here. The optimal Bayes error rates are all less that 1%
whereas those for the methods considered here are seen (below) to be substantially larger.

For each of the 50 problems a different set of K = 10 random Gaussians were generated to serve as
probability density functions (5.5). Thus, different problems of varying degrees of difficulty for each
of the three methods were realized. For each problem 100 observations for each class were randomly
sampled from each respective Gaussian distribution to produce a training sample of N = 1000. An
(additional) independent sample of 200 observations per class served as an evaluation data set of size
2000 to estimate average error rates (1.8).

Figure 5.1 summarizes with boxplots the distribution of the 50 error rates for each of the six
approaches. They are (from left to right) J-NN using the alternative and standard approaches, CART-
LC using each respective approach, and CART-AX with both approaches. The dark area of each
boxplot shows the interquartile range of the distribution with the enclosed white bar being the median.
The outer hinges represent the points closest to (plus/minus) 1.5 interquartile range units from the
(upper/lower) quartiles. The isolated narrow (dark) bars represent individual points outside this range
(outliers). One sees that for J-NN and CART-LC the alternative strategy tends to produce error rate
distributions with smaller values than with the standard one. For CART-AX the two distributions
look quite similar. Also, over these 50 problems, J-NN dominates the other two methods.

A more direct comparison between the two polychotomous strategies is provided by Figure 5.2.
Here the distribution of the 50 values of the scaled error rate differences

_ em(std) — ep(alt)]
D = em(alt)

(5.6)

over each of the 50 problems is shown, where e, (std) is the error rate for method m (J-NN, CART-LC,
or CART-AX) using the standard strategy and e, (alt) is the corresponding error for the alternative
strategy.

One sees that the fractional increase in error rate (5.6) by using the standard strategy over that
of the alternative one varies greatly over these 50 problems for the first two methods. For J-NN the
range of values is from 0.0 to 0.72 with median value 0.31 and for CART-LC 0.13 to 0.71 with median
0.40. For CART-AX the situation is quite different. The range of values of (5.6) goes from -0.09 to
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Figure 5.1: Distribution of error rates for the six approaches over the 50 randomly generated ten-class
problems.
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Figure 5.2: Distribution of (fractional) increase in error rate using the standard rather that the
alternative strategy for the ten-class problems.

0.15 with median value of 0.01. Therefore, both strategies are giving very similar error rates for each
of the 50 problems with CART-AX. Sometimes one is better sometimes the other, but they are always
fairly close.

Figure 5.3 shows the corresponding plot for a different set of 50 randomly generated problems.
These problems were generated according to the same prescription as the ones above except that there
were K = 5 rather than K = 10 classes. The results are seen to be qualitatively similar but there
are differences in detail. On average there is less advantage associated with the alternative strategy
for J-NN and CART-LC with the smaller number of classes, and a small increased advantage for
CART-AX. However as before this varies considerably between individual problems. For J—NN the
range of values was -0.10 to 2.0 (not show in Fig. 5.3) with a median value of 0.26. There were two
problems out of the 50 with negative values indicating that they had (slightly) higher accuracy with
the standard approach. For CART-LC the range was -0.05 to 0.55 with median 0.22 and one negative
value. For CART-AX the range was -0.12 to 0.23 with median 0.08 and 12 out of the 50 with negative
values where the standard approach was (again slightly) superior.

Figure 5.4 shows a corresponding plot for the K = 5 class case but this time with twice as much
training data (200 observations per class). The distributions of relative improvements (5.6) are very
similar to that of the smaller sample five-class problems for CART-LC and CART-AX with medians
of 0.22 and 0.07 respectively. However for J-NN the additional data has resulted in greater relative
improvement (on average). The range of values for J-NN here was 0.03 to 1.5 with a median of 0.52.

5.2. Discussion

The most important lesson to be gleaned from the above exercise is that the relative performance
of different approaches can strongly depend on the particular problem to which they are applied.
Like all other aspects of learning methodology no (reasonable) approach dominates any other over all
(reasonable) situations. Even within the restricted class of target functions generated through (5.5)
there was a wide range of relative performance increase values (5.6) between the two polychotomous
approaches for each classification method. In addition there were large differences among the methods
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Figure 5.3: Distribution of (fractional) increase in error rate using the standard rather than the
alternative strategy for the five-class problems with N = 500.
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Figure 5.4: Distribution of (fractional) increase in error rate using the standard approach rather than
the alternative strategy for the five-class problems with N = 1000.
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(J-NN, CART-LC, and CART-AX) themselves. Generally it cannot be known in advance which
approach will be the most successful with any given problem at hand. Model selection must be used
to estimate this separately for each application.

Bearing this in mind, one can still speculate on the reasons underlying the results obtained here.
For J-NN the general superiority of the alternative polychotomous approach is probably due the its
ability to separately tune the procedural (meta) parameters for each two-class decision, particularly
the bias adjustment parameters %z; (5.3). This is consistent with its increased relative performance
for the larger training samples (Fig. 5.4). With more data there is less variance so that reducing bias
(through bias adjustment) becomes more profitable. Experiments in Friedman (1996) also indicated
increased performance enhancement for (J = 2) NN with bias adjustment, as the training sample size
is increased. For CART-LC the general increase in performance using the alternative polychotomous
strategy may be due to particularities of the algorithm it uses for finding linear combinations. Namely,
this algorithm may be more effective for K = 2 classes than when used in the context of many classes.
Also, linear combination estimates tend to be fairly stable against perturbations of the training data
and so (generally) have less variance than individual coordinate axis estimates. In the presence of less
variance the bias reduction through the alternative strategy may be more effective.

The reason for the quite small (average) improvement obtained for CART-AX may be due to the
high variance inherent in the procedure [Breiman (1995)]. As noted above, the alternative polychoto-
mous strategy attempts to make gains largely through bias reduction, and so will tend to be less
effective when applied in the context of high variance methods. Effective techniques for reducing the
variance of CART-AX have been proposed [“bagging” - Breiman (1995) and “bumping” - Tibshirani
and Knight (1995)]. The alternative polychotomous strategy can be applied to these lower variance
axis-oriented tree-based procedures as well. The result may be greater relative performance advantage
over the corresponding standard approach due to their reduced variance.

6. Computation

The relative computational requirement of the standard and alternative polychotomous approaches
depends on how computation for the former grows with increasing values of the various problem
dependent factors. Clearly both have the same dependence on the number of input variables n. The
worst case in terms of increased computation for the alternative strategy occurs when the computation
for the standard one is independent of the number of classes K and grows linearly with the training
sample size N. With the alternative there are K (K —1)/2 two-class classification problems each using
(on average) a fraction 2/K of the data. Thus computation in this case is increased by a factor of
K — 1. If computation for the standard approach grows with increasing K then the trade-off becomes
less severe (or perhaps more favorable) to the alternative approach. For example with bias adjustment,
computation for the standard approach grows exponentially with K and the alternative is much faster.
If computation for the standard strategy grows more rapidly than linearly with N, then there will
always be (larger) training sample sizes for which the alternative is faster. Also, the alternative clearly
lends itself to parallel implementation even if the standard one upon which it is based does not.

7. Previous work

There have been two previous proposals for polychotomous classification strategies different from the
standard one. These are “flexible discriminant analysis” (FDA) [Hastie, Tibshirani, and Buja(1994)]
and the “error-correcting output codes” (ECOC) technique of Dietterich and Bakiri (1995). With
FDA estimates of the K conditional probabilities (1.2) are obtained through the regression approach
(2.2) (2.4). Instead of inserting these directly into a decision rule such as (1.7) they are instead used
as input variables for a (kind of) K'-class linear discriminant analysis (LDA). LDA is (asymptotically)
optimal when the probability density functions for each class are normal with a common covariance
matrix, here in the K-dimensional space of the joint values of the conditional probability estimates.
The covariance matrix estimates for each class are pooled to form a common estimate used for all
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of the classes. Exact normality is usually not essential to good LDA performance but departures
from elliptical symmetry can be detrimental. Also very different covariance matrices among the class
distributions can degrade performance.

LDA (and thereby FDA) can be generalized by substituting the alternative strategy (3.5) in place of
classical LDA. Here a different linear discriminant is estimated for separating each pair of classes. (For
FDA this is done in the conditional probability space.) These (12() decision boundaries are then used
with the voting rule (3.5) to form the final decision. This strategy eases the assumption of a common
covariance matrix for all of the classes since a different one can be used to discriminate between each
class pair. However, the real potential of this approach may be realized if a bias adjustment [analog
of tz; (5.3) for J-NN] is incorporated and separately optimized for each pairwise decision boundary
estimate. Such adjustments can compensate for the bias associated with LDA when the individual
class probabilities depart from elliptical symmetry. When employing bias adjustments in this manner
one can (but need not) pool the covariance matrix estimates. Whether this alternative to classical
LDA improves performance will likely depend (as always) upon the specifics of particular problems.

The spirit of the error-correcting output codes (ECOC) approach [Dietterich and Bakiri(1995)]
is more nearly the same as that of the alternative polychotomous strategy presented here. Namely,
the overall K-class decision is constructed from the results of a series of two-class problems. The
techniques differ in the formulation of the two-class problems and how their results are combined.
With ECOC the first (“super”) class C s, of each pair is the union of a subset A(m) C {1,---,K}
of the original K-classes. That is, Cs(,y = {cr |k € A(m)}, and the other contrasting (super) class
is the complement subset Cg,,,y = {cx |k € A(m)}. The regression approach (Section 2) is used to
estimate the target conditional probabilities

Faomy(x) =Prly € Capmy X1 = D ful(x) (7.1)

keA(m)

where { f1.(x)}5 are the original class conditional probabilities (1.2) (2.1). A potentially large number
1 < 'm < M of such two-class problems are defined and the estimates { f A(m)(x)}{w of the targets (7.1)
are then used as input variables to a (post) classification procedure. Note that here all of the original
classes participate in each (two-class) problem and the entire training set (1.1) is used to obtain each
fammy(x).

A particular procedure based on this paradigm is defined by the strategy used to assign the super-
classes { A(m)}¥, the method used to estimate the conditional probabilities (7.1), and the post classi-
fication procedure employed. Dietterich and Bakiri (1995) used the theory of error-correcting codes to
assign super-classes in a way that evenly covers the M-dimensional (super-class) space. Decision tree
induction (C4.5) and neural networks were the estimation methods used for comparison. The post
process was a nearest prototype classifier where the prototype vectors (in the M-dimensional space)
were derived from the error-correcting codes used to assign the super-classes.

The underlying connections between ECOC and the alternative polychotomous strategy presented
here do not seem obvious. The central theme of ECOC is “class aggregation”. The super-class target
functions (7.1) are likely to be more complex than the individual ones (1.2) defining them. This can
potentially result in increased bias in their estimation. However this is mitigated by the use of all of the
training data (1.1) to estimate each one, and by the averaging effect of the final (post) decision rule.
By contrast, the central theme of the alternative presented here is “class separation”. The expectation
is that the individual two-class targets (4.1) will be less complex than the original targets (1.2) so
that they can be estimated with less bias. However increased variance may result due to the reduced
training sample (4.2) used to estimate them. This will depend upon the success of model selection in
reducing the variance of each two-class rule.

Evidence so far suggests that ECOC is more successful in improving unstable high variance proce-
dures such as axis-oriented decision trees and neural networks, and does not help the more stable ones
like J-NN and radial basis functions [Kong and Dietterich (1995)]. Conversely, over the 150 problems
of Section 5, it was seen that the alternative suggested here had small impact on axis-oriented decision
trees, but was able to achieve considerable improvement with J-NN. Therefore, the relative merits of
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these two approaches (like all others) will likely depend upon the estimation method with which they
are being used. The best estimation method in turn depends upon the properties of the particular
problem encountered. For example, over the problems considered in Section 5 the performance of
J-NN dominated that of CART-LC and especially CART-AX, as seen in Fig. 5.1. [The corresponding
plots for the two five-class problems (not shown) were nearly identical.] However, there are surely
many problems for which the converse is true. An understanding of these issues may emerge from
future research. But for now, model selection techniques (such as cross-validation) seem to be the best
(if imperfect) way to make such choices.

8. Concluding remarks

The central idea underlying the alternative polychotomous classification strategy presented here is
casting the K-class problem into a series of (12() (smaller) two-class problems. In each a different
decision boundary is estimated to separate its two classes. The voting rule (3.5) is applied to form the
final (K-class) decision. The goal is to achieve maximum accuracy with each two-class decision. So
far, the (tacit) assumption has been that the same classification procedure is used to estimate each
two-class rule. This clearly is not a requirement. As with all classification problems the best procedure
depends on the specifics of the problem itself (target function, training sample size, etc.). Thus each
individual two-class problem may best be served by using a different method. Some of them may involve
boundaries that are easily linearly separable so LDA may be most appropriate for them. Others may
involve complex boundaries that are more accurately estimated by more flexible techniques such as
J-NN, decision trees, or large neural networks. The point is that with the alternative polychotomous
strategy each two-class decision rule can be treated as a completely separate classification problem.
Model selection techniques can be used to estimate the best method individually for each one.

As repeatedly emphasized, the relative merits of different classification approaches depend on the
problem at hand, and are not generally known in advance. In such cases model selection can be used
to obtain performance estimates. As shown in Section 5 this is also the case for the standard and
alternate polychotomous strategies. To the extent that the results in Section 5 can serve as a guide
however, it would appear the alternative strategy is the more conservative choice between the two.
Over the 150 problems considered there, the alternative seldom produced a substantial decrease in
performance relative to the standard one. The worst case was a relative error rate (5.6) increase of 12%
whereas the best case was a 200% decrease (1/3 the standard error rate). Typical values (medians)
ranged around 30% relative improvement. However, as with all such empirical studies, caution must
be exercised in extrapolating such results beyond those situations actually considered.

Important discussions with Trevor Hastie on the subject of this work are gratefully acknowledged.
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