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I. INTRODUCTION

In the goodness–of–fit testing problem one is given
a data set of N measured observations {xi}

N
1 each

of which is presumed to be randomly drawn indepen-
dently from some probability distribution with den-
sity p(x). The goal is to test the hypothesis that
p(x) = p0(x), where p0(x) is is some specified refer-
ence probability density. Ideally, the test should have
power against all alternatives. That is as the sample
size N becomes arbitrarily large, N → ∞, the test
will reject the hypothesis for all distributions p 6= p0

at any non zero significance α level.
A related problem is two–sample testing. Here one

has two data sets: {xi}
N
1 drawn from p(x), and {zi}

M
1

drawn from q(z). The goal is to test the hypothesis
that p = q, again with power against all alternatives;
as N → ∞ and M → ∞ the test will always reject
when p 6= q. Two–sample testing can be used to do
goodness–of–fit testing. A random sample {zi}

M
1 is

drawn from the reference distribution q = p0 and then
a two–sample test is performed on {xi}

N
1 and {zi}

M
1 .

In univariate (one–dimensional) problems each ob-
servation xi (and zi) consists of only a single measure-
ment. In this case there are a wide variety of useful
and powerful goodness–of–fit and two–sample testing
procedures. Some of these can be extended to two or
perhaps three dimensions if the sample size is large
enough. However, when each observation consists of
many measured attributes xi = {xi1, xi2, · · ·, xin}
(and zi = {zi1, zi2, · · ·, zin}) , for large n, these
tests rapidly loose power because all finite samples
are sparse in high dimensional settings owing to the
“curse–of–dimensionality” (Bellman 1961).

II. MACHINE LEARNING CLASSIFICATION

The purpose of a learning machine is to predict (es-
timate) the unknown value of an attribute y given a
set of jointly measured values x of other attributes.
The quantity y is called the “output” or “response”
variable, and x = {x1, · · ·, xn} are referred to as the
“input” or “predictor” variables. In the binary clas-
sification problem, the response variable realizes two
values, i.e. y ∈ {−1, 1}. The goal is to produce a
model F (x) that represents a score reflecting confi-
dence that y = 1, given a set of joint values for the

predictor variables x. This score can then be used in
a decision rule to obtain a corresponding prediction

ŷ(x) =

{

1 if F (x) > t∗

−1 otherwise.

Here t∗ is a threshold whose value is chosen to mini-
mize error rate.

There are a variety of ways one can go about try-
ing to find a good predicting function F (x). In pre-
dictive or machine learning a “training” data base
{yi,xi}

N
1 of N previously solved cases is used for

which the values of all variables (response and pre-
dictors) have been jointly measured. A “learning ma-
chine” is applied to these data in order to extract (esti-
mate) a good scoring function F (x). There are a great
many commonly used learning machines. These in-
clude linear/logistic regression, neural networks, ker-
nel methods, decision trees, support vector machines,
etc. Many are intended for use with large numbers of
predictor variables. For descriptions of a wide variety
of such learning procedures see Hastie, Tibshirani and
Friedman 2001.

III. TWO–SAMPLE TESTING

Binary classification procedures can be used for
two–sample testing. A predictor variable training
data set is created by pooling the two samples

{ui}
N+M
1 = {xi}

N
1 ∪ {zi}

M
1 .

Those observations that originated from the first sam-
ple (1 ≤ i ≤ N) are assigned a response value yi = 1
while those from the second sample (N + 1 ≤ i ≤
N + M) are assigned yi = −1. A binary classification
learning machine is applied to this training data to
produce a scoring function F (u). This is then used to

score each of the observations {si = F (ui)}
N+M
1 .

Consider the two sets of score values S+ = {si}
N
1

and S− = {si}
N+M
N+1 . These are the scores respectively

assigned by the learning machine F (u) to the first
sample {xi}

N
1 and the second sample {zi}

M
1 . Each

of these sets of numbers S± can be viewed as a ran-
dom sample from respective probability distributions
with densities p+(s) and p−(s). Consider a univariate
two–sample test T for the equality of these densities
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p+(s) = p−(s)̇. Let t̂ represent the value of the corre-
sponding test statistic

t̂ = T ({si}
N
1 , {si}

N+M
N+1 ). (1)

Examples of commonly applied univariate two–sample
tests include chi–squared, Kolmogorov–Smirnov,
Mann–Whitney, t–test, etc. This quantity (1) is taken
to be the statistic for the multivariate two–sample
test for the equality of the distributions of {xi}

N
1 and

{zi}
M
1 (p = q).

A. Null distribution

In order to test the “null” hypothesis p = q it is
necessary to know the distribution H0(t) of (1) when
the hypothesis is in fact true. One rejects the null
hypothesis at significance level α if the value t̂ actu-
ally observed is greater than or equal to the 1 − α
quantile of H0(t), assuming smaller values of t repre-
sent greater likelihood of p = q. For commonly ap-
plied univariate two–sample tests the corresponding
null distributions are known and have been tabulated.
These distributions are valid for the multivariate ap-
plication provided that separate independent data sets
are respectively used for training the learning machine
and evaluating the scores (1).

When the same data is used for both training and
subsequent scoring, these univariate null distributions
are not valid. In this case one can perform a permuta-
tion (“Fisher’s exact”) test. Let {j(i)}N+M

i=1 represent

a a random permutation of the integers {i}N+M
1 . One

constructs a data set {yj(i),ui}
N+M
1 in which the ac-

tual response values {yi}
N+M
1 are randomly permuted

among the predictors {ui}
N+M
1 . These data are then

used to train the learning machine, score the observa-
tions, and compute the test statistic (1). This random
permutation process is repeated many (say P ) times
producing a set of test statistic values {t̂l}

P
1 . One

can then reject the null hypothesis with significance
level α if the value t̂ computed form the original data
{yi,ui}

N+M
1 is greater than or equal to the 1−α quan-

tile of {t̂l}
P
1 . This is valid for any number of random

permutations P , but power increases with increasing
P , reaching a diminishing return for large enough val-
ues.

IV. GOODNESS–OF–FIT TESTING

As noted in Section I, two–sample testing can be
used to perform goodness–of–fit tests. One draws an
artificial (“Monte Carlo”) sample {zi}

M
1 from the ref-

erence distribution q = p0 and tests the hypothesis
p = q, where p(x) is the unknown probability density
of the data sample {xi}

N
1 . The test is valid for any

size M of the Monte Carlo sample, but power increases

with increasing M , reaching a diminishing return for
M >> N .

In two–sample testing a null distribution H0(t)
is constructed by repeated random perturbations of
the responses {yi}

N+M
1 over the predictors {ui}

N+M
1 .

This is valid for the goodness–of–fit application as
well. However in the goodness–of–fit context there is
an alternative method for creating a null distribution
that can increase power at the expense of increased
computation. One repeatedly draws many (say P ) in-
dependent Monte Carlo samples of size M from the
reference distribution. Each of these Monte Carlo
samples {z

(l)
i }M

1 is used, along with the actual data
{xi}

N
1 , for training the learning machine and subse-

quent scoring to produce a test statistic value t̂l from
(1). This produces a set of values {t̂l}

P
1 that can

be used as a null distribution to test the hypothesis
p = p0 in the usual manner.

The permutation procedure used with two–sample
testing to construct a null distribution conditions on
the observed data values {xi}

N
1 and {zi}

M
1 ; only infor-

mation from the labels {yi = ±1}N+M
1 that identify

the sample from which each observation originated is
used. When used for goodness–of–fit testing this con-
ditions on the values of the single Monte Carlo sample
{zi}

M
1 drawn from the reference distribution q = p0.

Goodness–of–fit testing using repeated Monte Carlo
samples as described above does not involve such con-
ditioning and thereby uses information from the val-
ues of {zi}

M
1 , as well as the labels {yi = ±1}N+M

1 ,
in testing the null hypothesis. Using this additional
information has the potential for increased power at
the expense of having to generate many Monte Carlo
samples, instead of just one.

V. DISCUSSION

As noted in the introduction, a desirable property of
goodness–of–fit and two–sample tests is power against
all alternatives to the null hypothesis. This will be the
case provided that the chosen leaning machine is uni-
versal. That is, as the number of observations used
to train it grows arbitrarily large, N,M → ∞, an
“optimal” scoring function F (u) is produced that is a
strictly monotone function of Pr(y = +1 | u). Some
examples of universal learning machines are decision
trees, neural networks, and support vector machines
based on appropriate kernels. Additionally, a consis-
tent univariate test statistic must be used in (1). That
is, as N,M → ∞ they will always reject the null hy-

pothesis when p+(s) 6= p−(s)̇.
This notion of power against all alternatives ap-

plies in the asymptotic limit of infinite data. It has
at best limited meaning in actual finite data applica-
tions. With finite data, tests based on different types
of (even universal) learning machines will have differ-
ential power against different alternative distributions
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p 6= p0 or p 6= q. Depending upon the actual data dis-
tribution(s) p(x) (and q(z)) encountered in a particu-
lar application, some learning machines will have more
power than others. Thus, the power of these tests can
be highly sensitive to the learning machine employed.
Particular choices depend on the types of potential
differences between the distributions that are deemed
most important to detect. For example, if the distri-
butions tend to be different on a large fraction of the
variables, near–neighbor or kernel methods will pro-
vide high power. On the other hand if they tend to
differ on only a relatively small number of variables,
decision trees will provide greater sensitivity.

Some multivariate two–sample tests based on near–
neighbors have an advantage in that the permutation
null distribution can be computed analytically. For
these tests repeated learning machine training and
scoring based on randomly generated permutations
is not required (see Friedman and Rafsky 1979 and
1983).

In contrast to the particular learning machine em-
ployed, the multivariate procedures described here are
not likely to be very sensitive to the choice of a uni-
variate test statistic (1).

It should be noted that as a data analytic proce-
dure hypothesis testing extracts very little informa-
tion from the data. This summary information can
be encoded in a single binary bit: b = 0/1 ⇒ ac-
cept/reject the null hypothesis. This represents a
rather terse summary of a data set often consisting
of many millions of bits. Furthermore, such tests will
nearly always reject given enough data. Null hypothe-
ses are seldom strictly true. It is unlikely that the hy-
pothesized reference distribution p0(x), or the distri-
bution of the second sample q(z), will be exactly equal
to that of the observed data p(x). Especially if a uni-

versal learning machine is employed, enough data will
detect the differences however small between them.

If the null hypothesis cannot be rejected then, at
least for the size of the samples used, little additional
information concerning the nature of the differences
between the distributions is likely to be obtainable.
However, rejection should serve as a signal to ex-
amine the data further in a attempt to extract the
ways in which the distributions differ. Some learn-
ing machines such as neural networks, near–neighbor
and kernel methods, and support vector machines are
“black box” procedures that produce little or no inter-
pretable information. Thus, they are not appropriate
for this part of the exercise. Other methods such as
decision trees are highly interpretable. For example,
a decision tree produces sequences of simple inequali-
ties (“cuts”) that identify joint values of the measured
variables x for which p(x) >> p0(x), p(x) << p0(x),
and p(x) w p0(x). Such information might yield con-
siderable insight into the mechanism that produced
the data.
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