On a Conjecture Concerning a Theorem of Cramér and Wold*

Guenther Walther

Stanford University

A conjecture concerning the Cramér–Wold device is answered in the negative by giving a Fourier-free, probabilistic proof using only elementary techniques. It is also shown how a geometric idea allows one to interpret the Cramér–Wold device as a special case of a more general concept.

1997 Academic Press

1. INTRODUCTION

A fundamental and widely used theorem states that for checking convergence in distribution of multivariate random variables it is enough to check convergence for all one-dimensional projections. More specifically, the so-called “Cramér–Wold device,” due to Cramér and Wold [3] where the technique was initiated, establishes the following two assertions:

(I) A probability measure on Euclidean space is uniquely determined by the values it gives to halfspaces.

(II) In Euclidean d-space, a sequence of random variables X_n converges in distribution to a random variable X if and only if $\langle a, X_n \rangle$ converges in distribution to $\langle a, X \rangle$ for each $a \in \mathbb{R}^d$.

Both theorems, (I) and the stronger (II), although they are very simple in their statements, have been conjectured to require Fourier analysis for their proofs; see, e.g., p. 396 of Billingsley [2] for the first and p. 49 of Billingsley [1] for the second part.

This note gives probabilistic proofs of the two theorems and thus answers this conjecture to the negative. The main argument of the proof is a simple probabilistic idea that goes back to the early stages of probability theory. Also, a geometric idea that belongs to the standard repertoire in

Received February 19, 1997.
AMS 1991 subject classification numbers: 60B10, 60E10.
Key words and phrases: Cramér–Wold device, determining class, Fourier analysis, halfspace, polar set.

* This research was partially supported by NSF Grant DMS-92-24868 at U.C. Berkeley.

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.
convex geometry shows how the Cramér-Wold device can be interpreted as a special case of a more general concept.

2. SOME FACTS ABOUT DETERMINING CLASSES

The setting throughout will be the Euclidean d-space \mathbb{R}^d equipped with the standard inner product $\langle \cdot , \cdot \rangle$ and the Euclidean norm $|\cdot|$. Write \mathcal{M}^d for the set of probability measures on \mathbb{R}^d and \mathcal{B}^d for the set of bounded, measurable, and real-valued functions on \mathbb{R}^d. Recall that a set $\mathcal{D} \subset \mathcal{B}^d$ is called a determining class if $P, Q \in \mathcal{M}^d$ and $\int f \,dP = \int f \,dQ$ for all $f \in \mathcal{D}$ imply $P = Q$. A basic observation now is that the following lemma has a simple probabilistic proof that does not require Fourier analysis:

Lemma 1. Let $f \in \mathcal{B}^d$ be nonnegative and satisfy $0 < \int f(x) \,dx < \infty$. Then $\{f(\cdot - a)/b, a \in \mathbb{R}^d, b > 0\}$ is a determining class.

Proof. Let $P, Q \in \mathcal{M}^d$ and assume

$$\int f\left(\frac{a-x}{b}\right) P(dx) = \int f\left(\frac{a-x}{b}\right) Q(dx) \quad \text{for all } a \in \mathbb{R}^d, b > 0. \quad (1)$$

Normalize f so that $\int f(x) \,dx = 1$ and define $F \in \mathcal{B}^d$ via its density f. Let X_P, X_Q, and X_F be independent random variables in \mathbb{R}^d with distribution P, Q, and F, respectively. Then $X_P + \varepsilon X_F$ has density $e^{-\varepsilon} \int f(\cdot - x)/\varepsilon P(dx)$, so (1) shows that $\mathcal{L}(X_P + \varepsilon X_F) = \mathcal{L}(X_Q + \varepsilon X_F)$ for all $\varepsilon > 0$. Now let h be any continuous function in \mathcal{B}^d. Then bounded convergence gives

$$\mathbb{E} h(X_P) = \lim_{\varepsilon \downarrow 0} \mathbb{E} h(X_P + \varepsilon X_F) = \lim_{\varepsilon \downarrow 0} \mathbb{E} h(X_Q + \varepsilon X_F) = \mathbb{E} h(X_Q).$$

$P = Q$ follows.

The idea of determining a probability measure by its convolutions with an appropriate class of measures goes back at least to Liapounoff [4] and Lindeberg [5], who employed convolutions in their proofs of the Central Limit Theorem to make use of the resulting smoothness properties.

As an aside, note that Lemma 1 can be sharpened with the use of Fourier analysis and the additional assumption that $\int e^{i\langle t, x \rangle} f(x) \,dx \neq 0$ for all t. Requiring (1) only for $b = 1$ gives $P * F = Q * F$. The characteristic functions of these convolutions factor, so dividing by the nonzero characteristic function of F and using the uniqueness theorem of characteristic functions shows $P = Q$. The resulting determining class apparently is much
smaller than the one required in Lemma 1, but in the case of interest here this is only seemingly so:

For fixed \(u \neq 0 \) the function \(f(x) := 1(\langle x, u \rangle \leq 1) \) is the indicator of a halfspace and one readily checks that \(\{ f(a \cdot), a \in \mathbb{R}^d \} = \{ f((a \cdot)/b), a \in \mathbb{R}^d, b > 0 \} \), so nothing is lost by forgoing Fourier analysis in this context.

Of course the above function \(f \) is not integrable, so Lemma 1 does not apply. But an application of Fubini's theorem to the result of Lemma 1 gives

\[\text{Lemma 2. Let } f(x, u) \in b\mathbb{M}^{d \times r}, \mu_1, ..., \mu_m \in \mathbb{M}^r, \text{ and } a_1, ..., a_m \in \mathbb{R} \text{ such that } F(x) := \sum_{k=1}^m a_k f(x, u) \mu_k(du) \text{ is nonnegative and satisfies } 0 < \int F(x) \, dx < \infty. \text{ Then } \{ f((a \cdot)/b, u), a \in \mathbb{R}^d, u \in \mathbb{R}^r, b > 0 \} \text{ is a determining class.} \]

\[\text{PROOF OF (1)} \]

Set \(f(x, u) := 1(\langle x, u \rangle \leq 1) \). Then Lemma 2 leads one to consider functions of the form

\[f^*_\phi(\cdot) := \int_{\langle \cdot, u \rangle < 1} \mu(du). \]

Denote by \(\Phi \) and \(\phi \) the distribution function and the density function, respectively, of the standard normal distribution on \(\mathbb{R} \), and set \(\Phi_{\alpha}(\cdot) = \Phi(\cdot/\alpha) \). We will show in a moment:

\[\text{(L) There exists a linear combination } g(t) := \sum_{k=1}^{d+1} a_k \phi_{\alpha_k}(t) + a_{d+2} \text{ with} \]

\begin{itemize}
 \item \(g(0) = 0 \),
 \item \(g(t) \) is strictly increasing for \(t \geq 0 \),
 \item \(g(t) = O(t^{d+1}) \) as \(t \downarrow 0 \).
\end{itemize}

Now apply Lemma 2 with \(F(x) := \sum_{k=1}^{d+2} a_k f^*_\phi(x), \text{ where } \mu_k = N(0, \sigma_k^2 I_d) \text{ for } 1 \leq k \leq d+1 \text{ and } \mu_{d+2} = \delta_0. \text{ Here } I_d \text{ and } \delta_0 \text{ denote the } d \times d \text{ identity matrix and point mass at } 0, \text{ respectively. Observe that } f^*_\phi \equiv 1, \text{ and as projections of standard normal distributions are standard normal (which can be shown without Fourier analysis),} \]

\[f_{N(0, \sigma I_d)}(x) = \Phi_{\sigma d}(1/|x|) \quad \text{(if } x = 0 \text{ interpret } \Phi_{\sigma d}(1/|x|) = 1). \]
Hence \(F(x) = g(1/|x|) = O(1/|x|^{d+1}) \) as \(|x| \to \infty\). Together with the properties of \(g \) one sees that \(F \) is nonnegative and satisfies \(0 < \int F(x) \, dx < \infty \).

The Cramér–Wold theorem (1) now follows from Lemma 2 and the fact that \(f((a - \cdot)/b, u) \) is the indicator of a closed halfspace or \(\mathbb{R}^d \) for all \(a, u \in \mathbb{R}^d, b > 0 \).

It remains to prove (L). We will choose the \(a_k \) in the linear combination \(g(t) \) to eliminate the \(d \) coefficients of the \(t^n, n = 1, \ldots, d \), in the Taylor series expansion about 0,

\[
\Phi_n(t) = 1/2 + \sum_{n=1}^{d} \frac{1}{n!} \Phi^{(n)}(0) t^n + O(t^{d+1}).
\]

For simplicity of exposition we will not make use of the fact that \(\Phi^{(n)}(0) = 0 \) for \(n \geq 1 \). Using pairwise different \(\sigma_k > 0 \) and setting \(x := \sigma_{d+1}^{-1} \) in the polynomial interpolation formula

\[
x^n = \sum_{k=1}^{d} \sigma_k^{-n} \prod_{i=1, i \neq k}^{d} \left(\frac{x - \sigma_i^{-1}}{\sigma_k^{-1} - \sigma_i^{-1}} \right), \quad n = 0, \ldots, d - 1,
\]

one sees that \(b_k := \prod_{i=1, i \neq k}^{d} (\sigma_{d+1}^{-1} - \sigma_i^{-1})/(\sigma_k^{-1} - \sigma_i^{-1}), \quad k = 1, \ldots, d, \) and \(b_{d+1} = -1 \) solve the system of \(d \) equations

\[
\sum_{k=1}^{d+1} \sigma_k^{-n} b_k = 0, \quad n = 0, \ldots, d - 1.
\]

Employing the increasing sequence \(\sigma_k := 4^k \), one concludes that

\[
a_k := -\sigma_k b_k = (-1)^{d+1-k} 4^{d-k} \prod_{i=1, i \neq k}^{d} \left[\frac{4^{-(d+1)} - 4^{-i}}{4^k - 4^{-i}} \right], \quad k = 1, \ldots, d + 1,
\]

solve the system (4) for \(n = 1, \ldots, d \). Hence the expansion (3) gives

\[
g(t) = \sum_{k=1}^{d+1} a_k \Phi_n(t) - \sum_{k=1}^{d+1} a_k/2 = O(t^{d+1}) \quad \text{as} \quad t \to 0.
\]

Further,

\[
g'(t) = \sum_{k=1}^{d+1} a_k \frac{\phi(\frac{t}{\sigma_k})}{\sigma_k}.
\]
and for $1 \leq k \leq d$,
\[
\frac{(a_{k+1}/\sigma_{k+1}) \phi(t/\sigma_{k+1})}{(a_k/\sigma_k) \phi(t/\sigma_k)}
= \prod_{i=1, i \neq k}^{d} \left[4^{-d(i+1)} - 4^{-(i+1)} \right] \cdot \prod_{i=1}^{d} \left[4^{-(k+1)} - 4^{-(k+1)} \right] \cdot 4^{d-1} \\
\times \frac{\phi(t/4\sigma_k)}{\phi(t/\sigma_k)}
= \frac{|4^{-(d+1)} - 4^{-k}| \cdot 4^{d-1}}{|4^{-(d+1)} - 4^{-1}|} \cdot \left(\frac{\phi(t/\sigma_k)}{\phi(t/\sigma_k)} \right)^{1/16}
= \frac{|4^{-1} - 4^{d-k}| \cdot 4^k}{|1 - 4^d|} \cdot \left(\frac{\phi(t/\sigma_k)}{\phi(t/\sigma_k)} \right)^{-15/16}
\geq 1,
\]
because $|4^{-1} - 4^{d-k}| \geq 3/4$ and $\phi(t/\sigma_k) \leq \phi(0) = 1/\sqrt{2\pi} \leq (3/4)^{16/15}$.

As the signs of the a_k, $k \geq 1$, are alternating with the sign of a_{d+1} being positive, it follows that $g'(t) > 0$ for $t > 0$. Clearly, $g(0) = 0$.

4. PROOF OF (II) AND A GENERALIZATION

Part II of the Crâmer–Wold theorem follows readily from Part I: $X_n \overset{\text{dist}}{\rightarrow} X$ implies
\[\langle a, X_n \rangle \overset{\text{dist}}{\rightarrow} \langle a, X \rangle \quad \text{for each} \quad a \in \mathbb{R}^d \] (5)
by the continuous mapping theorem. Conversely, suppose (5) holds. Let $\{e_1, \ldots, e_d\}$ be an orthonormal system in \mathbb{R}^d. For $\delta > 0$, $\cap_{i=1}^{d} \{ x, \langle \delta e_i, x \rangle \leq 1 \} \cap_{i=1}^{d} \{ x, \langle -\delta e_i, x \rangle \leq 1 \}$ is a cube centered at 0 with side length $2/\delta$. Hence a variation of Boole’s inequality together with (5) shows that the sequence $\{ \mathcal{L}(X_n) \}$ is uniformly tight. By Prohorov’s theorem and the subsequence criterion for metric spaces it is therefore enough to show that any weakly convergent subsequence $\{ \mathcal{L}(X_{n_k}) \}$ converges to $\mathcal{L}(X)$. But this follows from the already proved implication (5) together with the uniqueness theorem (1).

There is a fundamental geometric concept involved in (2) that allows the Crâmer–Wold theorem to be interpreted as a special case of a more general statement.

Codes: 2427 Signs: 1375. Length: 48 pic 0 pts, 190 mm
The dual (polar) set of a set $X \subseteq \mathbb{R}^d$ is defined as

$$X^* := \{ u \in \mathbb{R}^d : \langle x, u \rangle \leq 1 \text{ for all } x \in X \},$$

see e.g. Stoer and Witzgall [6]. If $x \in \mathbb{R}^d \setminus \{0\}$ then $\{x^*\} = \{ u \in \mathbb{R}^d : \langle x, u \rangle \leq 1 \}$ is a closed halfspace containing 0 in its interior; if $x = 0$ then $\{x^*\}$ is all of \mathbb{R}^d. This geometric concept leads one to define for a probability measure $\mu \in \mathcal{M}^d$ the dual measure μ^* via its density f^*_μ given in (2). One checks that f^*_μ is upper semicontinuous, hence is measurable. Thus f^*_μ is indeed the density of a σ-finite measure μ^*. μ^* is always an infinite measure. See Walther [7], where also statistical motivations are given for constructing such measures. μ^* can formally also be motivated as follows: For simplicity consider a one-dimensional setting and let F denote the distribution function of a probability measure. For real x write

$$F(x) = \int 1_{\{u \leq x\}}(u) \, F(du)$$

$$= \int 1_{\{u \leq x\}}(x) \, F(du). \quad (6)$$

Formally, (6) can be read as a mixture of uniform densities (albeit not of probability densities).

Now the Cramér–Wold theorem is a consequence of the following more general theorem about dual measures a proof of which can be found in Walther [8]:

Theorem 1. Let $X, X_1, X_2, \ldots \subseteq \mathbb{R}^d$ be a sequence of random variables with $\mathcal{L}(X) = F$, $\mathcal{L}(X_n) = F_n$, $n \geq 1$. Then the following are equivalent:

(i) \quad $F_n \overset{\text{weakly}}{\longrightarrow} F$

(ii) \quad $\langle a, X_n \rangle \overset{\text{dual}}{\longrightarrow} \langle a, X \rangle$ for all $a \in \mathbb{R}^d$

(iii) \quad $f^*_\mu \overset{u.e.}{\longrightarrow} f^* \mu$

(iv) \quad $F^*_n \rightarrow F^*$ in variation norm on compacts

(v) \quad $F^*_n \overset{\text{vaguely}}{\longrightarrow} F^*$.

If F_n is the empirical measure of F, then (iii) can be strengthened to uniform convergence F-almost surely.

As a corollary one obtains the following identifiability property: $F^* = G^*$ iff $F = G$.
ACKNOWLEDGMENT

I thank Richard Olshen for his interest in the paper and for valuable suggestions.

REFERENCES