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Abstract. The Time-Frequency and Time-Scale communities have recently developed a large
number of overcompletewaveformdictionaries| stationarywavelets, wavelet packets, cosine packets,
chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and
several methods for decomposition have been proposed, including the Method of Frames (MOF),
Matching Pursuit (MP), and, for special dictionaries, the Best Orthogonal Basis (BOB).

Basis Pursuit (BP) is a principle for decomposing a signal into an \optimal" superposition of
dictionary elements, where optimal means having the smallest l1 norm of coe�cients among all such
decompositions. We give examples exhibiting several advantages over MOF, MP and BOB, including
better sparsity, and super-resolution. BP has interesting relations to ideas in areas as diverse as
ill-posed problems, in abstract harmonic analysis, total variation de-noising, and multi-scale edge
de-noising.

Basis Pursuit in highly overcomplete dictionaries leads to large-scale optimization problems.
With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program
of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances

in linear programming by interior-point methods. We obtain reasonable success with a primal-dual
logarithmic barrier method and conjugate-gradient solver.

Key words. Overcomplete signal representation, De-Noising, Time-Frequency Analysis, Time-

Scale Analysis, `1 norm optimization, Matching Pursuit, Wavelets, Wavelet Packets, Cosine Packets,
Interior-point methods for linear programming, Total Variation De-Noising, Multi-Scale Edges.

AMS subject classi�cations. 94A12, 65K05, 65D15, 41A45

1. Introduction. Over the last several years, there has been an explosion of

interest in alternatives to traditional signal representations. Instead of just represent-

ing signals as superpositions of sinusoids (the traditional Fourier representation) we

now have available alternate dictionaries { collections of parameterized waveforms { of

which the Wavelets dictionary is only the best known. Wavelets, Steerable Wavelets,

Segmented Wavelets, Gabor dictionaries, Multi-scale Gabor Dictionaries, Wavelet

Packets, Cosine Packets, Chirplets, Warplets, and a wide range of other dictionaries

are now available. Each such dictionary D is a collection of waveforms (�)2�, with

 a parameter, and we envision a decomposition of a signal s as

s =
X
2�

�� ;(1.1)

or an approximate decomposition

s =

mX
i=1

�i�i + R(m);(1.2)

where R(m) is a residual. Depending on the dictionary, such a representation de-

composes the signal into pure tones (Fourier dictionary), bumps (wavelet dictionary),

chirps (chirplet dictionary), etc.
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Most of the new dictionaries are overcomplete, either because they start out that

way, or because we merge complete dictionaries, obtaining a new mega-dictionary

consisting of several types of waveform (e.g. Fourier & Wavelets dictionaries). The

decomposition (1.1) is then nonunique, because some elements in the dictionary have

representations in terms of other elements.

1.1. Goals of Adaptive Representation. Nonuniqueness gives us the possi-

bility of adaptation, i.e., of choosing among many representations one that is most

suited to our purposes. We are motivated by the aim of achieving simultaneously the

following goals :

� Sparsity. We should obtain the sparsest possible representation of the object

| the one with the fewest signi�cant coe�cients.

� Superresolution. We should obtain a resolution of sparse objects that is

much higher-resolution than that possible with traditional non-adaptive ap-

proaches.

An important constraint, which is perhaps in conict with both the goals:

� Speed. It should be possible to obtain a representation in order O(n) or

O(n log(n)) time.

1.2. Finding a Representation. Several methods have been proposed for ob-

taining signal representations in overcomplete dictionaries. These range from general

approaches, like the Method of Frames [9], and the method of Matching Pursuit [25],

to clever schemes derived for specialized dictionaries, like the method of Best Orthog-

onal Basis [7]. These methods are described briey in Section 2.3.

In our view, these methods have both advantages and shortcomings. The principal

emphasis of the proposers of these methods is in achieving su�cient computational

speed. While the resulting methods are practical to apply to real data, we show below

by computational examples that the methods, either quite generally or in important

special cases, lack qualities of sparsity-preservation and of stable super-resolution.

1.3. Basis Pursuit. Basis Pursuit (BP) �nds signal representations in overcom-

plete dictionaries by convex optimization: it obtains the decomposition that minimizes

the `1 norm of the coe�cients occurring in the representation. Because of the non-

di�erentiability of the `1 norm, this optimization principle leads to decompositions

that can have very di�erent properties from the Method of Frames { in particular

they can be much sparser. Because it is based on global optimization, it can stably

super-resolve in ways that Matching Pursuit can not.

BP can be used with noisy data by solving an optimization problem trading o�

a quadratic mis�t measure with an `1 norm of coe�cients. Examples show that

it can stably suppress noise while preserving structure that is well-expressed in the

dictionary under consideration.

BP is closely connected with linear programming. Recent advances in large-

scale linear programming { associated with interior-point methods { can be applied

to BP, and make it possible, with certain dictionaries, to nearly-solve the BP op-

timization problem in nearly-linear time. We have implemented a primal-dual log

barrier interior-point method as part of a computing environment called Atomizer,

which accepts any of a wide range of dictionaries. Instructions for Internet access

of Atomizer are given in Section 6.6. Experiments with standard time-frequency

dictionaries indicate some of the potential bene�ts of BP. Experiments with some

nonstandard dictionaries { like the stationary wavelet dictionary and the Heaviside

dictionary { indicate important connections between BP and methods like Mallat
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and Zhong's Multi-Scale Edge Representation and Osher, Rudin and Fatemi's Total

Variation-based De-Noising methods.

1.4. Contents. In Section 2 we establish vocabulary and notation for the rest of

the article, describing a number of dictionaries and existing methods for overcomplete

representation. In Section 3 we discuss the principle of Basis Pursuit and its relations

to existing methods and to ideas in other �elds. In Section 4 we discuss methodological

issues associated with BP { in particular some of the interesting nonstandard ways

it can be deployed. In Section 5 we describe Basis Pursuit De-Noising, a method for

dealing with problem (1.2). In Section 6 we discuss recent advances in large-scale

linear programming, and resulting algorithms for BP.

For reasons of space we refer the reader to [4] for a discussion of related work in

statistics and analysis.

2. Overcomplete Representations. Let s = (st : 0 � t < n) be a discrete-

time signal of length n; this may also be viewed as a vector in Rn. We are interested

in the reconstruction of this signal using superpositions of elementary waveforms.

Traditional methods of analysis and reconstruction involve the use of orthogonal bases,

such as the Fourier basis, various discrete cosine transform bases, and orthogonal

wavelet bases. Such situations can be viewed as follows: given a list of n waveforms,

one wishes to represent s as a linear combination of these waveforms. The waveforms

in the list, viewed as vectors inRn, are linearly independent, and so the representation

is unique.

2.1. Dictionaries and Atoms. A considerable focus of activity in the recent

signal processing literature has been the development of signal representations outside

the basis setting. We use terminology introduced by Mallat and Zhang [25]. A dic-

tionary is a collection of parameterized waveforms D = (� :  2 �). The waveforms

� are discrete-time signals of length n called atoms. Depending on the dictionary,

the parameter  can have the interpretation of indexing frequency, in which case the

dictionary is a frequency or Fourier dictionary, of indexing time/scale jointly, in which

case the dictionary is a time-scale dictionary, or of indexing time/frequency jointly,

in which case the dictionary is a time-frequency dictionary. Usually dictionaries are

complete or overcomplete, in which case they contain exactly n atoms, or more than

n atoms, but one could also have continuum dictionaries containing an in�nity of

atoms, and undercomplete dictionaries for special purposes, containing fewer than n

atoms. Dozens of interesting dictionaries have been proposed over the last few years;

we focus in this paper on a half dozen or so; much of what we do applies in other

cases as well.

2.1.1. Trivial Dictionaries. We begin with some overly simple examples. The

Dirac dictionary is simply the collection of waveforms that are zero except in one point:

 2 f0; 1; : : : ; n � 1g and �(t) = 1ft=g. This is of course also an orthogonal basis

of Rn { the standard basis. The Heaviside dictionary is the collection of waveforms

that jump at one particular point:  2 f0; 1; : : : ; n � 1g; �(t) = 1ft�g. Atoms in

this dictionary are not orthogonal, but every signal has a representation

s = s0�0 +

n�1X
=1

(s � s�1)� :(2.1)

2.1.2. Frequency Dictionaries. A Fourier dictionary is a collection of sinu-

soidal waveforms � indexed by  = (!; �), where ! 2 [0; 2�) is an angular frequency
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variable and � 2 f0; 1g indicates phase type : sine or cosine. In detail,

�(!;0) = cos(!t); �(!;1) = sin(!t):

For the standard Fourier dictionary, we let  run through the set of all cosines with

Fourier frequencies !k = 2�k=n, k = 0; : : : ; n=2, and all sines with Fourier frequencies

!k, k = 1; : : : ; n=2� 1. This dictionary consists of n waveforms; it is in fact a basis,

and a very simple one : the atoms are all mutually orthogonal. An overcomplete

Fourier dictionary is obtained by sampling the frequencies more �nely. Let ` be a

whole number > 1 and let �` be the collection of all cosines with !k = 2�k=(`n),

k = 0; : : : ; `n=2, and all sines with frequencies !k, k = 1; : : : ; `n=2� 1. This is an `-

fold overcomplete system. We also use below complete and overcomplete dictionaries

based on discrete cosine transforms and sine transforms.

2.1.3. Time-Scale Dictionaries. There are several types of Wavelet dictio-

nary; to �x ideas, we consider the Haar dictionary, with \Father Wavelet" ' = 1[0;1]
and \Mother Wavelet"  = 1(1=2;1]�1[0;1=2]. The dictionary is a collection of transla-

tions and dilations of the basic mother wavelet, together with translations of a father

wavelet. It is indexed by  = (a; b; �), where a 2 (0;1) is a scale variable, b 2 [0; n]

indicates location, and � 2 f0; 1g indicates gender. In detail,

�(a;b;1) =  (a(t � b)) � pa; �(a;b;0) = '(a(t � b)) � pa:
For the standard Haar dictionary, we let  run through the discrete collection of

mother wavelets with dyadic scales aj = 2j=n, j = j0; : : : ; log2(n) � 1, and locations

that are integer multiples of the scale bj;k = k �aj, k = 0; : : : ; 2j�1, and the collection

of father wavelets at the coarse scale j0. This dictionary consists of n waveforms; it

is an orthonormal basis. An overcomplete wavelet dictionary is obtained by sampling

the locations more �nely : one location per sample point. This gives the so-called Sta-

tionary Haar dictionary, consisting of O(n log2(n)) waveforms. It is called stationary

since the whole dictionary is invariant under circulant shift.

A variety of other wavelet bases are possible. The most important variations are

smooth wavelet bases, using splines or using wavelets de�ned recursively from two-

scale �ltering relations [10]. Although the rules of construction are more complicated

(boundary conditions [28], orthogonality versus bi-orthogonality [10], etc.), these have

the same indexing structure as the standard Haar dictionary. In this paper, we use

Symmlet-8 smooth wavelets, i.e., Daubechies Nearly Symmetric wavelets with eight

vanishing moments; see [10] for examples.

2.1.4. Time-Frequency Dictionaries. Much recent activity in the wavelet

communities has focused on the study of time-frequency phenomena. The standard

example, the Gabor dictionary, is due to Gabor (1946); in our notation, we take

 = (!; �; �; �t), where ! 2 [0; �) is a frequency, � is a location, � is a phase, and �t

is the duration, and consider atoms �(t) = expf�(t� � )2=(�t)2g � cos(!(t� � ) + �).

Such atoms indeed consist of frequencies near ! and essentially vanish far away from � .

For �xed �t, discrete dictionaries can be built from time-frequency lattices, !k = k�!

and �` = `�� , and � 2 f0; �=2g; with �� and �! chosen su�ciently �ne these are

complete. For further discussions see e.g. [9].

Recently, Coifman and Meyer [6] developed the wavelet packet and cosine packet

dictionaries especially to meet the computational demands of discrete-time signal

processing. For 1-d discrete time signals of length n, these dictionaries each contain

about n log2(n) waveforms. A wavelet packet dictionary includes, as special cases,
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Fig. 2.1. Time-frequency phase plot of a wavelet packet atom.

a standard orthogonal wavelets dictionary, the Dirac dictionary, and a collection of

oscillating waveforms spanning a range of frequencies and durations. A cosine packet

dictionary contains, as special cases, the standard orthogonal Fourier dictionary, and a

variety of Gabor-like elements : sinusoids of various frequencies weighted by windows

of various widths and locations.

In this paper, we often use wavelet packet and cosine packet dictionaries as exam-

ples of overcomplete systems, and we give a number of examples decomposing signals

into these time-frequency dictionaries. A simple block-diagram helps us visualize the

atoms appearing in the decomposition. This diagram, adapted from Coifman and

Wickerhauser [7], associates with each cosine packet or wavelet packet a rectangle in

the time-frequency phase plane. The association is illustrated in Figure 2.1 for a cer-

tain wavelet packet. When a signal is a superposition of several such waveforms, we

indicate which waveforms appear in the superposition by shading the corresponding

rectangles in the time-frequency plane.

2.1.5. FurtherDictionaries. We can alwaysmerge dictionaries to create mega-

dictionaries; examples used below include mergers of Wavelets with Heavisides.

2.2. Linear Algebra. Suppose we have a discrete dictionary of p waveforms

and we collect all these waveforms as columns of an n by p matrix �, say. The

decomposition problem (1.1) can be written

�� = s;(2.2)

where � = (�) is the vector of coe�cients in (1.1). When the dictionary furnishes a

basis, then � is an n by n nonsingular matrix and we have the unique representation

� = ��1s . When the atoms are, in addition, mutually orthonormal, then ��1 = �T

and the decomposition formula is very simple.

2.2.1. Analysis versus Synthesis. Given a dictionary of waveforms, one can

distinguish analysis from synthesis. Synthesis is the operation of building up a signal
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Fig. 2.2. Analysis versus synthesis of the signal Carbon.

by superposing atoms; it involves a matrix that is n by p : s = ��. Analysis involves

the operation of associating with each signal a vector of coe�cients attached to atoms;

it involves a matrix that is p by n: ~� = �T s. Synthesis and analysis are very di�erent

linear operations, and we must take care to distinguish them. One should avoid

assuming that the analysis operator ~� = �T s gives us coe�cients that can be used

as is to synthesize s. In the overcomplete case we are interested in, p � n and � is

not invertible. There are then many solutions to (2.2), and a given approach selects

a particular solution. One does not uniquely and automatically solve the synthesis

problem by applying a simple, linear, analysis operator.

We now illustrate the di�erence between synthesis (s = ��) and analysis (~� =

�T s). Panel 2.2a shows the signal Carbon. Panel 2.2b shows the time-frequency

structure of a sparse synthesis of Carbon, a vector � yielding s = ��, using a wavelet

packet dictionary. To visualize the decomposition, we present a phase-plane display

with shaded rectangles, as described above. Panel 2.2c gives an analysis of Carbon, the

coe�cients ~� = �T s, again displayed in a phase-plane. Once again, between analysis

and synthesis there is a large di�erence in sparsity. In Panel 2.2d we compare the

sorted coe�cients of the overcomplete representation (synthesis) with the analysis

coe�cients.

2.2.2. Computational Complexity of � and �T . Di�erent dictionaries can

impose drastically di�erent computational burdens. In this paper we report compu-

tational experiments on a variety of signals and dictionaries. We study primarily 1-d

signals of length n several thousand. Signals of this length occur naturally in study

of short segments of speech (a quarter second to a half a second), and the output

of various scienti�c instruments (e.g. FT-NMR spectrometers). In our experiments,

we study dictionaries overcomplete by substantial factors, say 10. Hence the typical

matrix � we are interested in is of size \Thousands" by \Tens-of-Thousands".

The nominal cost of storing and applying an arbitrary n by p matrix to a p-
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vector is a constant times np. Hence with an arbitrary dictionary of the sizes we are

interested in, simply to verify whether (1.1) holds for given vectors � and s would

require tens of millions of multiplications and tens of millions of words of memory.

In contrast, most signal processing algorithms for signals of length 1000 require only

thousands of memory words and a few thousand multiplications.

Fortunately, certain dictionaries have fast implicit algorithms. By this we mean

that �� and �T s can be computed, for arbitrary vectors � and s, (a) without ever

storing the matrices � and �T , and (b) using special properties of the matrices to

accelerate computations.

The most well-known example is the standard Fourier dictionary, for which we

have the fast Fourier transform algorithm. A typical implementation requires 2 � n
storage locations and 4�n�J multiplications, if n is dyadic: n = 2J . Hence for very long

signals we can apply � and �T with much less storage and time than the matrices

would nominally require. Simple adaptation of this idea leads to an algorithm for

overcomplete Fourier dictionaries.

Wavelets give a more recent example of a dictionary with a fast implicit algorithm;

if the Haar or S8-Symmlet is used, both � and �T may be applied in O(n) time. For

the stationary wavelet dictionary, O(n log(n)) time is required. Cosine Packets and

Wavelet Packets also have fast implicit algorithms. Here both � and �T can be

applied in order O(n log(n)) time and order O(n log(n)) space { much better than the

nominal np = n2log2(n) one would expect from naive use of the matrix de�nition.

For the viewpoint of this paper, it only makes sense to consider dictionaries with

fast implicit algorithms. Among dictionaries we have not discussed, such algorithms

may or may not exist.

2.3. Existing Decomposition Methods. There are several currently popular

approaches to obtaining solutions to (2.2).

2.3.1. Frames. The Method of Frames (MOF) [9] picks out, among all solutions

of (2.2), one whose coe�cients have minimum l2 norm:

mink�k2 subject to �� = s:(2.3)

The solution of this problem is unique; label it �y. Geometrically, the collection of all

solutions to (2.2) is an a�ne subspace inRp; MOF selects the element of this subspace

closest to the origin. It is sometimes called a minimum-length solution. There is a

matrix �y, the generalized inverse of �, that calculates the minimum-length solution

to a system of linear equations:

�y = �ys = �T (��T )�1s :(2.4)

For so-called \Tight Frame" dictionaries MOF is available in closed form. Nice ex-

ample: the standard wavelet packet dictionary. One can compute that for all vectors

v, k�Tvk2 = Ln � kvk2; Ln = log2(n). In short �y = L�1n �T . Notice that �T is

simply the analysis operator.

There are two key problems with the Method of Frames. First, MOF is not

sparsity-preserving. If the underlying object has a very sparse representation in terms

of the dictionary, then the coe�cients found by MOF are likely to be very much less

sparse. Each atom in the dictionary that has nonzero inner product with the signal

is, at least potentially, and also usually, a member of the solution.

Figure 2.3a shows the signal Hydrogen, made of a single atom in a wavelet packet

dictionary. The result of a frame decomposition in that dictionary is depicted in a
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Fig. 2.3. MOF representation is not sparse.

phase-plane portrait, Figure 2.3c. While the underlying signal can be synthesized

from a single atom, the frame decomposition involves many atoms, and the phase-

plane portrait exaggerates greatly the intrinsic complexity of the object.

Second, MOF is intrinsically resolution-limited. No object can be reconstructed

with features sharper than those allowed by the underlying operator �y�. Suppose

the underlying object is sharply localized: � = 1f=0g. The reconstruction will not

be �, but instead �y�� which, in the overcomplete case, will be spatially spread out.

Figure 2.4 presents a signal TwinSine, consisting of the superposition of two sinusoids

that are separated by less than the so-called Rayleigh Distance 2�=n. We analyze

these in a 4-fold overcomplete discrete cosine dictionary. In this case, reconstruction

by MOF, Figure 2.4b, is simply convolution with the Dirichlet kernel. The result

is the synthesis from coe�cients with a broad oscillatory appearance, consisting not

of two but of many frequencies, and giving no visual clue that the object may be

synthesized from two frequencies alone.

2.3.2. Matching Pursuit. Mallat and Zhang [25] have discussed a general

method for approximate decomposition (1.2) that addresses the sparsity issue di-

rectly. Starting from an initial approximation s(0) = 0 and residual R(0) = s, it

builds up a sequence of sparse approximations stepwise. At stage k, it identi�es the

dictionary atom that best correlates with the residual and then adds to the current

approximation a scalar multiple of that atom, so that s(k) = s(k�1) + �k�k , where

�k = hR(k�1); �ki and R(k) = s � s(k). After m steps, one has a representation of

the form (1.2), with residual R = R(m). A similar algorithm was proposed for Gabor

dictionaries by S. Qian and D. Chen [35]. For an earlier instance of a related algorithm

see the article [5].

An intrinsic feature of the algorithm is that when stopped after a few steps, it

yields an approximation using only a few atoms. When the dictionary is orthogonal,

the method works perfectly. If the object is made up of only m � n atoms and the
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Fig. 2.4. Analyzing TwinSine with a 4-fold overcomplete discrete cosine dictionaries.

algorithm is run for m steps, it recovers the underlying sparse structure exactly.

When the dictionary is not orthogonal, the situation is less clear. Because the

algorithm is myopic, one expects that, in certain cases, it might choose wrongly in

the �rst few iterations and, in such cases, end up spending most of its time correcting

for any mistakes made in the �rst few terms. In fact this does seem to happen.

To see this, we consider an attempt at super-resolution. Figure 2.4a portrays

again the signal TwinSine consisting of sinusoids at two closely spaced frequencies.

When MP is applied in this case (Figure 2.4c), using the 4-fold overcomplete discrete

cosine dictionary, the initial frequency selected is in between the two frequencies

making up the signal. Because of this mistake, MP is forced to make a series of

alternating corrections that suggest a highly complex and organized structure. MP

misses entirely the doublet structure. One can certainly say in this case that MP has

failed to super-resolve.

Second, one can give examples of dictionaries and signals where MP is arbitrarily

sub-optimal in terms of sparsity. While these are somewhat arti�cial, they have a

character not so di�erent from the super-resolution example.

DeVore and Temlyakov's Example. Vladimir Temlyakov, in a talk at the IEEE

Conference on Information Theory and Statistics, October 1994, described an exam-

ple in which the straightforward greedy algorithm is not sparsity-preserving. In our

adaptation of this example, based on Temlyakov's joint work with R.A. DeVore [12],

one constructs a dictionary having n+1 atoms. The �rst n are the Dirac basis; the �-

nal atom involves a linear combination of the �rst n with decaying weights. The signal

s has an exact decomposition in terms of A atoms; but the greedy algorithm goes on

forever, with an error of size O(1=
p
m) after m steps. We illustrate this decay in Fig-

ure 2.5a. For this example we set A = 10 and choose the signal st = 10�1=2 �1f1�t�10g.
The dictionary consists of Dirac elements � = � for 1 �  � n, and

�n+1(t) =

�
c 1 � t � 10

c=(t� 10) 10 < t � n
;
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Fig. 2.5. Counter examples for MP.

with c chosen to normalize �n+1 to unit norm.

Shaobing Chen's Example. The DeVore-Temlyakov example applies to the origi-

nal MP algorithm as announced by Mallat and Zhang in 1992. A later re�nement of

the algorithm (see Pati [34] and Davis et al. [11]) involves an extra step of orthogo-

nalization. One takes all m terms that have entered at stage m and solves the least

squares problem

min
(�i)

ks�
mX
i=1

�i�ik2

for coe�cients (�
(m)

i ). Then one forms the residual �R[m] = s �Pm

i=1 �
(m)

i �i , which

will be orthogonal to all terms currently in the model. This method is called Orthogo-

nal Matching Pursuit (OMP) by Pati [34]. The DeVore-Temlyakov example does not

apply to OMP, but Shaobing Chen found in Summer 1993 an example of similar avor

that does. In this example, a special signal and dictionary are constructed, with the

following avor. The dictionary is composed of atoms � with  2 f1; : : : ; ng. The �rst
A atoms come from the Dirac dictionary, with  2 f1; : : : ; Ag, � = � . The signal is a

simple equiweighted linear combination of the �rst A atoms: s = A�1
PA

i=1 �i. Dictio-

nary atoms with  > A are a linear combination of the corresponding Dirac � and s.

OMP chooses all atoms except the �rst A before ever choosing one of the �rst A. As a

result, instead of the ideal behavior one might hope for, terminating after just A steps,

one gets n steps before convergence, and the rate is relatively slow. We illustrate the

behavior of the reconstruction error in Figure 2.5b. We chose A = 10 and n = 1024.

The dictionary was �i = �i for 1 � i � 10 and �i =
p
as +

p
1� aei for 11 � i � n,

where a = 2=10. With these parameters, k �R[m]k2 = (1� a)=
p
1 + (m � 1)a, whereas

one might have hoped for the ideal behavior �R[m] = 0;m � 11.

2.3.3. Best Orthogonal Basis. For certain dictionaries, it is possible to de-

velop speci�c decomposition schemes custom-tailored to the dictionary.
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Fig. 2.6. Analyzing the signal WernerSorrows with a cosine packet dictionary.

Wavelet packet and cosine packet dictionaries are examples; they have very special

properties. Certain special subcollections of the elements in these dictionaries amount

to orthogonal bases; one gets in this way a wide range of orthonormal bases (in fact

� 2n such orthogonal bases for signals of length n).

Coifman and Wickerhauser [7] have proposed a method of adaptively picking from

among these many bases a single orthogonal basis that is the \best basis". If (s[B]I)I
denotes the vector of coe�cients of s in orthogonal basis B, and if we de�ne the

\entropy" E(s[B]) =PI e(s[B]I), where e(s) is a scalar function of a scalar argument,

they give a fast algorithm for solving

minfE(s[B]) : B ortho basis � Dg:

The algorithm in some cases delivers near-optimal sparsity representations. In

particular, when the object in question has a sparse representation in an orthogonal

basis taken from the library, one expects that BOB will work well. However, when

the signal is composed of a moderate number of highly non-orthogonal components,

the method may not deliver sparse representations { the demand that BOB �nd an

orthogonal basis prevents it from �nding a highly sparse representation. An example

comes from the signal WernerSorrows, which is a superposition of several chirps,

sinusoids and Diracs; see Figure 2.6a. When analyzed with a cosine packet dictionary

and the original Coifman-Wickerhauser entropy, BOB �nds nothing: it chooses a

global sinusoid basis as best; the lack of time-varying structure in that basis means

that all chirp and transient structure in the signal is missed entirely; see Figure 2.6b.

3. Basis Pursuit. We now discuss our approach to the problem of overcomplete

representations. We assume that the dictionary is overcomplete, so that there are in

general many representations s =
P

 �� .

The principle of Basis Pursuit is to �nd a representation of the signal whose
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coe�cients have minimal `1 norm. Formally, one solves the problem

mink�k1 subject to �� = s:(3.1)

From one point of view, (3.1) is very similar to the Method of Frames (2.3): we

are simply replacing the `2 norm in (2.3) with the `1 norm. However, this apparently

slight change has major consequences. The Method of Frames leads to a quadratic

optimization problem with linear equality constraints, and so involves essentially just

the solution of a system of linear equations. In contrast, Basis Pursuit requires the

solution of a convex, nonquadratic optimization problem, which involves considerably

more e�ort and sophistication.

3.1. Linear Programming. To explain the last comment, and the name Basis

Pursuit, we develop a connection with linear programming (LP).

The linear program in so-called standard form [8, 18] is a constrained optimization

problem de�ned in terms of a variable x 2 Rm by

mincTx subject to Ax = b; x � 0 ;(3.2)

where cTx is the objective function, Ax = b is a collection of equality constraints,

and x � 0 is a set of bounds. The main question is, which variables should be zero.

The Basis Pursuit problem (3.1) can be equivalently reformulated as a linear

program in the standard form (3.2) by making the following translations:

m, 2p ; x, (u;v) ; c, (1; 1) ; A, (�;��) ; b, s :

Hence, the solution of (3.1) can be obtained by solving an equivalent linear program.

(The equivalence of minimum `1 optimizations with linear programming has been

known since the 1950's; see [2]). The connection between Basis Pursuit and linear

programming is useful in several ways.

3.1.1. Solutions as Bases. In the linear programming problem (3.2), suppose

A is an n by m matrix with m > n, and suppose an optimal solution exists. It is

well know that a solution exists in which at most n of the entries in the optimal x

are nonzero. Moreover, in the generic case, the solution is so-called nondegenerate,

and there are exactly n nonzeros. The nonzero coe�cients are associated with n

columns of A, and these columns make up a basis of Rn. Once the basis is identi�ed,

the solution is uniquely dictated by the basis. Thus �nding a solution to the LP is

identical to �nding the optimal basis. In this sense, linear programming is truly a

process of Basis Pursuit.

Translating the LP results into BP terminology, we have the decomposition

s =

nX
i=1

�?i�i :

The waveforms (�i ) are linearly independent but not necessarily orthogonal. The

collection i is not, in general, known in advance, but instead depends on the problem

data (in this case s). The selection of waveforms is therefore signal-adaptive.

3.1.2. Algorithms. BP is an optimization principle, not an algorithm. Over

the last forty years, a tremendous amount of work has been done on the solution of

linear programs. Until the 1980's, most work focused on variants of Dantzig's simplex
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algorithm, which many readers have no doubt studied. In the last ten years, some

spectacular breakthroughs have been made by the use of so-called \interior-point

methods", which use an entirely di�erent principle.

From our point of view, we are free to consider any algorithm from the LP lit-

erature as a candidate for solving the BP optimization problem; both the simplex

and interior-point algorithms o�er interesting insights into BP. When it is useful to

consider BP in the context of a particular algorithm, we will indicate this by label:

either BP-Simplex or BP-Interior.

BP-Simplex. In standard implementations of the simplex method for LP, one �rst

�nds an initial basis B consisting of n linearly independent columns of A for which the

corresponding solutionB�1b is feasible (non-negative). Then one iteratively improves

the current basis by, at each step, swapping one term in the basis for one term not

in the basis, using the swap that best improves the objective function. There always

exists a swap that improves or maintains the objective value, except at the optimal

solution. Moreover, LP researchers have shown how one can select terms to swap in

such a way as to guarantee convergence to an optimal solution (anti-cycling rules)

[18]. Hence the simplex algorithm is explicitly a process of \Basis Pursuit": iterative

improvement of a basis until no improvement is possible, at which point the solution

is achieved.

Translating this LP algorithm into BP terminology, one starts from any linearly

independent collection of n atoms from the dictionary. One calls this the current

decomposition. Then one iteratively improves the current decomposition by swapping

atoms in the current decomposition for new atoms, with the goal of improving the

objective function. By application of anti-cycling rules, there is a way to select swaps

that guarantees convergence to an optimal solution (assuming exact arithmetic).

BP-Interior. The collection of feasible points fx : Ax = b;x � 0g is a convex

polyhedron in Rm (a \simplex"). The simplexmethod, viewed geometrically, works by

walking around the boundary of this simplex, jumping fromone vertex (extreme point)

of the polyhedron to an adjacent vertex at which the objective is better. Interior-

point methods instead start from a point x(0) well inside the interior of the simplex

(x(0) � 0) and go \through the interior" of the simplex. Since the solution of a LP is

always at an extreme point of the simplex, as the interior-point method converges, the

current iterate x(k) approaches the boundary. One may abandon the basic interior-

point iteration and invoke a \crossover" procedure that uses simplex iterations to �nd

the optimizing extreme point.

Translating this LP algorithm into BP terminology, one starts from a solution to

the overcomplete representation problem ��(0) = s with �(0) > 0. One iteratively

modi�es the coe�cients, maintaining feasibility ��(k) = s, and applying a transfor-

mation that e�ectively sparsi�es the vector �(k). At some iteration, the vector has

� n signi�cantly nonzero entries, and it \becomes clear" that those correspond to

the atoms appearing in the �nal solution. One forces all the other coe�cients to

zero and \jumps" to the decomposition in terms of the � n selected atoms. (More

general interior-point algorithms start with a(0) > 0 but don't require the feasibility

��(k) = s throughout; they achieve feasibility eventually.)

3.2. Examples. We now give computational examples of BP in action.

3.2.1. Carbon. The synthetic signal Carbon is a composite of 6 atoms: a Dirac,

a sinusoid, and 4 mutually orthogonal wavelet packet atoms, adjacent in the time-

frequency plane. The wavelet packet dictionary of depth D = log2(n) is employed,
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Fig. 3.1. Analyzing the signal Carbon with a wavelet packet dictionary.

based on �lters for Symmlets with 8 vanishing moments. (Information about problem

sizes for all examples is given in Table 6.1).

Figure 3.1 displays the results in phase-plane form; for comparison, we include

the phase planes obtained using MOF, MP, and BOB. First, note that MOF uses all

basis functions that are not orthogonal to the 6 atoms, i.e. all the atoms at times and

frequencies that overlap with some atom appearing in the signal. The corresponding

phase plane is very di�use or smeared out. Second, MP is able to do a relatively good

job on the sinusoid and the Dirac, but makes mistakes in handling the 4 close atoms.

Third, BOB cannot handle the nonorthogonality between the Dirac and the cosine;

it gives a distortion (a coarsening) of the underlying phase plane picture. Finally, BP

�nds the \exact" decomposition in the sense that the four atoms in the quad, the

Dirac and the sinusoid are all correctly identi�ed.

3.2.2. TwinSine. Recall that the signal TwinSine in Figure 2.4a consists of 2

cosines with frequencies closer together than the Rayleigh distance. In Figure 2.4d,

we analyze these in the 4-fold overcomplete discrete cosine dictionary. Recall that

in this example, MP began by choosing at the �rst step a frequency in between the

two ideal ones and then never corrected the error. In contrast, BP resolves the two

frequencies correctly.

3.2.3. FM Signal. Figure 3.2a displays the arti�cial signal FM-Cosine con-

sisting of a frequency-modulated sinusoid superposed with a pure sinusoid: s =

cos(�0t) + cos((�0t+ � cos(�1t))t). Figure 3.2b shows the ideal phase plane.

In Figure 3.2c-f we analyze it using the cosine packet dictionary based on a prim-

itive bell of width 16 samples. It is evident that BOB cannot resolve the nonorthogo-

nality between the sinusoid and the FM signal. Neither can MP. However, BP yields

a clean representation of the two structures.

3.2.4. Gong. Figure 3.3a displays the Gong signal, which vanishes until time t0
and then follows a decaying sinusoid for t > t0.
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Fig. 3.2. Analyzing the signal FM-Cosine with a cosine packet dictionary.

In Figures 3.3b-3.3d, we analyze it with the cosine packet dictionary based on a

primitive bell of width 16 samples. BP gives the �nest representation of the decay

structure; visually somewhat more interpretable than the BOB and MP results.

3.3. Comparisons. We briey compare BP with the three main methods intro-

duced in Section 2.3.

3.3.1. Matching Pursuit. At �rst glance MP and BP seem quite di�erent.

MP is an iterative algorithm, which does not explicitly seek any overall goal, but

merely applies a simple rule repeatedly. In contrast, BP is a principle of global

optimization without any speci�ed algorithm. The contrast of Orthogonal MP with

a speci�c algorithm, BP-Simplex, may be instructive. Orthogonal Matching Pursuit

starts from an \empty model" and builds up a signal model an atom at a time, at each

step adding to the model only the most important new atom among all those not so far

in the model. In contrast, BP-Simplex, starts from a \full" model (i.e. representation

of the object in a basis) and then iteratively improves the \full" model, by taking

relatively useless terms out of the model, swapping them for useful new ones. Hence,

MP is a sort of build-up approach, while BP-Simplex is a sort of swap-down approach.

3.3.2. Best Orthogonal Basis. To make BP and BOB most comparable, sup-

pose that they are both working with a cosine packet dictionary, and note that the

`1-norm of coe�cients is what Coifman and Wickerhauser [7] call an \additive mea-

sure of information". So suppose we apply the Coifman-Wickerhauser Best Basis

algorithm with entropy E = `1. Then the two methods compare as follows: in BOB,

we are optimizing E only over orthogonal bases taken from the dictionary, while in BP

we are optimizing E over all bases formed from the dictionary.

This last remark suggests that it might be interesting to apply the BOB procedure

with the `1 norm as entropy in place of the standard Coifman-Wickerhauser entropy.

In Figure 2.6c we try this on the WernerSorrows example of Section 2.3.3. The
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Fig. 3.3. Analyzing the signal Gong with a cosine packet dictionary.

signal is analyzed in a cosine packet dictionary, with primitive bell width 16. The

`1 entropy results in a time-varying basis that reveals clearly some of the underlying

signal structure. The `1 entropy by itself improves the performance of BOB; but BP

does better still (Figure 2.6d).

This connection between BP and BOB suggests an interesting algorithmic idea.

In the standard implementation of the simplex method for LP, one starts from an

initial basis and then iteratively improves the basis by swapping one term in the basis

for one term not in the basis, using the swap that best improves the objective function.

Which initial basis? It seems natural in BP-Simplex to use the Coifman-Wickerhauser

algorithm and employ as a start the best orthogonal basis.

With this choice of starting basis, BP can be seen as a method of re�ning BOB

by swapping in non-orthogonal atoms in place of orthogonal ones whenever this will

improve the objective.

3.3.3. Method of Frames. As already discussed, MOF and BP di�er in the

replacement of an l2 objective function by an l1 objective. BP-Interior has an inter-

esting relation to the Method of Frames. BP-Interior initializes with the Method of

Frames solution. Hence one can say that BP sequentially \improves" on the Method

of Frames. Figure 3.4 shows a \movie" of BP-Interior in action on the FM-Cosine ex-

ample, using a cosine packet dictionary. Six stages in the evolution of the phase plane

are shown, and one can see how the phase plane improves in clarity, step-by-step.

4. Variations. The recent development of time-frequency dictionaries motivates

most of what we have done so far. However, the methods we have developed are

general and can be applied to other dictionaries, with interesting results.

4.1. Stationary Smooth Wavelets. The usual (orthonormal) dictionaries of

(periodized) smooth wavelets consist of wavelets at scales indexed by j = j0; : : : ; log2(n)�
1; at the j-th scale, there are 2j wavelets of width n=2j. The wavelets at this scale

are all circulant shifts of each other, the shift being n=2j samples. Some authors [37]
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Fig. 3.4. Phase plane evolution at BP-Interior iteration.

have suggested that this scheme can be less than satisfactory, essentially because the

shift between adjacent wavelets is too large. They would say that if the important

\features" of the signal are (fortuitously) \aligned with" the wavelets in the dictio-

nary, then the dictionary will provide a sparse representation of the signal; however,

because there are so few wavelets at level j, then most likely, the wavelets in the dic-

tionary are not \precisely aligned" with features of interest, and the dictionary may

therefore provide a very di�use representation.

The stationary wavelet dictionary has, at the j-th level, n (not 2j) wavelets; these

are all the circulant shifts of the basic wavelet of width � n=2j. Since this dictionary

always contains wavelets \aligned with" any given feature, the hope is that such a

dictionary provides a superior representation.

Panel 4.1a shows the signal HeaviSine, and 4.1b shows the result of BP with

the Stationary Symmlet-8 dictionary mentioned in Section 2.1; the coe�cients are

displayed in a multi-resolution fashion, where at level j all the coe�cients of scale

2j=n are plotted according to spatial position.

There is a surprisingly close agreement of the BP representation in a stationary

wavelet dictionary with ideas about signal representation associated with the \Multi-

Scale Edges" ideas of Mallat and Zhong [26, 24]. The Multi-Scale Edge method

analyzes the continuous wavelet transform (CWT) at scale 2�j and identi�es the

maxima of this transform. Then it selects maxima that are \important" by thresh-

olding based on amplitude. These \important" maxima identify important features

of the signal. Mallat and Zhong proposed an iterative method that reconstructs an

object having the same values of the CWT at \maxima". This is almost (but not

quite) the same thing as saying that one is identifying \important" wavelets located

at the corresponding maxima, and reconstructing the object using just those maxima.

Panel 4.1c shows a CWT of HeaviSine based on the same Symmlet-8 wavelet,

again in multi-resolution fashion; Panel 4.1d shows the maxima of the CWT. At �ne

scales, there is virtually a 1-1 relationship between the maxima of the transform and
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Fig. 4.1. Analyzing the signal HeaviSine with a stationary wavelet dictionary.

the wavelets selected by BP; compare panel 4.1b. So in a stationary wavelet dictionary,

the global optimization principle BP yields results that are close to certain heuristic

methods.

An important contrast: Meyer has a counterexample to multi-scale edge ap-

proaches, showing that the Mallat-Zhong approach may fail in certain cases [29];

but there can be no such counterexamples to BP.

4.2. Dictionary Mergers. An important methodological tool is the ability to

combine dictionaries to make bigger, more expressive dictionaries. We mention here

two possibilities. Examples of such decompositions are given in Section 5 below.

Jump+Sine. Merge the Heaviside dictionary with a Fourier dictionary. Either

dictionary can e�ciently represent objects that the other cannot; for example, Heavi-

sides have di�culty representing sinusoids, while sinusoids have di�culty representing

jumps. Their combination might therefore be able to o�er the advantages of both.

Jump+Wavelet. For similar reasons, one might want to merge Heavisides with

Wavelets. In fact, we have found it sometimes preferable instead to merge \tapered

heavisides" with wavelets; these are step discontinuities that start at 0, jump at time

t0 to a level one unit higher, and later decay to the original 0 level.

5. De-Noising. We now adapt BP to the case of noisy data. We assume data

of the form

y = s+ �z

where (zi) is a standard white Gaussian noise, � > 0 is a noise level, and s is the

clean signal. In this setting, s is unknown, while y is known. We don't want to get

an exact decomposition of y, so we don't apply BP directly. Instead decompositions

like (1.2) become relevant.
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5.1. Proposal. Basis Pursuit De-Noising (BPDN) refers to solution of

min
�

1

2
ky ���k22 + � � k�k1(5.1)

The solution �(�) is a function of the parameter �. It yields a decomposition into

signal-plus-residual:

y = s(�) + r(�) ;

where s(�) = ��(�). The size of the residual is controlled by �. As �! 0, the residual

goes to zero and the solution behaves exactly like BP applied to y. As � ! 1, the

residual gets large; we have r(�) ! y and s(�) ! 0.

Recently Michael Saunders and Shaobing Chen have shown [4] that (5.1) is equiv-

alent to the following perturbed linear program:

mincTx+
1

2
kpk2 subject to Ax+ �p = b; x � 0; � = 1

where A = (�;��); b = y; c = �1. Perturbed linear programming is really quadratic

programming, but retains structure similar to linear programming [17]. Hence we can

have a similar classi�cation of algorithms, into BPDN-Simplex and BPDN-Interior-

Point types. (In quadratic programming, "simplex like" algorithms are usually called

Active Set algorithms, so our label is admittedly nonstandard.)

5.2. Choice of �. Assuming the dictionary is normalized so that k�k2 = 1 for

all , we set � to the value

�p = �
p
2 log(p) ;

where p is the cardinality of the dictionary.

This can be motivated as follows. In the case of a dictionary that is an orthonor-

mal basis, a number of papers [13, 16] have carefully studied an approach to de-noising

by so-called \soft-thresholding in an orthonormal basis". In detail, suppose that � is

an orthogonal matrix, and de�ne empirical �-coe�cients by

~y = �Ty:

De�ne the soft threshold nonlinearity ��(y) = sgn(y) � (jyj � �)+ and de�ne the

thresholded empirical coe�cients by

�̂ = ��n(~y );  2 �:

This is soft thresholding of empirical orthogonal coe�cients. The papers just cited

show that thresholding at �n has a number of optimal and near-optimal properties

as regards mean-squared error.

We claim that (again in the case of an ortho-basis) the thresholding estimate �̂ is

also the solution of (5.1). Observe that the soft thresholding nonlinearity solves the

scalar minimum problem:

��(y) =
1

2
argmin

�

(y � �)2 + �j�j :(5.2)
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Note that, because of the orthogonality of �, ky � ��k2 = k~y � �k2 and so we can

rewrite (5.1) in this case as

min
�

1

2

X


(~y � �)
2 + �

X


j� j :(5.3)

Now applying (5.2) coordinatewise establishes the claim.

The scheme we have suggested here { to be applied in overcomplete as well as

orthogonal settings { therefore includes soft-thresholding in ortho-bases as a special

case. Formal arguments similar to those in [15] can be used to give a proof that mean-

squared error properties of the resulting procedure are near-optimal under certain

conditions.

5.3. Examples. We present two examples of BPDN in action with time-frequency

dictionaries. We compare BPDN with three other de-noising methods adapted from

MOF, MP and BOB. Method-of-Frames De-Noising (MOFDN) refers to minimizing

the squared l2 error plus an l2 penalizing term:

min
�
ks���k22 + �k�k22

where � is a penalizing parameter; we chose � in these examples to be �
p
2 log(p).

Matching Pursuit De-Noising (MPDN) runs Matching Pursuit until the coe�cient

associated with the selected atom gets below the threshold �
p
2 log(p). Best Orthog-

onal Basis De-Noising (BOBDN) is a thresholding scheme in the best orthogonal basis

chosen by the BOB algorithm with a special entropy [14].

5.3.1. Gong. Figure 5.1 displays de-noising results on the signal Gong, at signal

to noise ratio 1, using a cosine packet dictionary. Panel a) displays the noiseless signal

and panel b) displays a noisy version. Panels c)-f) display de-noising results for MOF,

BOB, MP, and BP, respectively. BP outperforms the other methods visually.

5.3.2. TwinSine. Figure 5.2 employs the signal TwinSine, described earlier, to

investigate super-resolution in the noisy case. Panels a) and b) give the noiseless and

noisy TwinSine, respectively. Using a 4-fold overcomplete discrete cosine dictionary,

reconstructions by the MOF, MP, and by BPDN are given. MOF gives a reconstruc-

tion that is inherently resolution-limited and oscillatory. As in the noiseless case, MP

gives a reconstruction that goes wrong at step 1 { it selects the average of the two

frequencies in the TwinSine signal. BP correctly resolves the non-negative doublet

structure.

5.4. Total Variation De-Noising. Recently, Rudin, Osher and Fatemi [31]

have called attention to the possibility of de-noising images using total-variation pe-

nalized least-squares. More speci�cally, they propose the optimization problem

min
g

1

2
ky � gk22 + � � TV (g)(5.4)

where TV (g) is a discrete measure of the total variation of g. A solution of this

problem is the de-noised object. Li and Santosa [22] have developed an alternative

algorithm for this problem based on interior-point methods for convex optimization.

For the 1-dimensional case (signals rather than images) it is possible to imple-

ment what amounts to total variation de-noising by applying BPDN with a Heaviside
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Fig. 5.1. De-Noising noisy Gong with a cosine packet dictionary.
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Fig. 5.2. De-Noising noisy TwinSine-2 with a 4-fold overcomplete discrete cosine dictionary.

dictionary. Indeed, if s is an arbitrary object, it has a unique decomposition in Heav-

isides (recall (2.1)). Suppose that the object is 0 at t = 0 and t = n� 1, and that the

decomposition is s =
P

i�iHti; then the total variation is given by

TV (s) =
X
i6=0

j�ij:

Moreover to get approximate equality even for objects not obeying zero-boundary
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Fig. 5.3. De-Noising noisy Blocks.

conditions, one has only to normalize �0 appropriately. Consequently, total variation

de-noising is essentially a special instance of our proposal (5.1).

We have studied BPDN in the Heaviside dictionary, thereby obtaining essentially

a series of tests of TV De-Noising. For comparison, we considered also soft threshold-

ing in orthogonal wavelet dictionaries based on the S8-Symmlet smooth wavelet. We

also constructed a new dictionary, based on the Jump+Wave merger of S8-Symmlet

wavelets with \Smoothly Tapered Heavisides", which is to say, atoms � that jump

at a given point  and then decay smoothly away from the discontinuity. For compa-

rability with the Heaviside dictionary, we normalized the Jump+Wave dictionary so

that every k�kTV � 1.

A typical result, for the object Blocky, is presented in Figure 5.3. From the point

of view of visual appearance, total variation reconstruction (panel d) far outperforms

the other methods.

Of course, the object Blocky has a very sparse representation in terms of Heavi-

sides. When we consider an object like Cusp, which is piecewise smooth rather than

piecewise constant, the object will no longer have a sparse representation. On the

other hand, using the Jump+Wave dictionary based on a merger of wavelets with

tapered Heavisides will lead to a sparse representation { see Figure 5.4c. One can

predict that a Heaviside dictionary will perform less well than this merged dictionary.

This completely obvious comment, translated into a statement about total varia-

tion de-noising, becomes a surprising prediction. One expects that the lack of sparse

representation of smooth objects in the Heaviside dictionary will translate into worse

performance of TV de-noising than of BPDN in the merged Jump+Wave dictionary.

To test this, we conducted experiments. Figure 5.4 compares TV de-noising,

wavelet de-noising, and BPDN in the merged Jump+Wave dictionary. TV De-Noising

now exhibits visually distracting stairstep artifacts; the dictionary Jump+Wave seems

to us to behave much better.
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Fig. 5.4. De-Noising noisy Cusp.

6. Solutions of Large-Scale Linear Programs. As indicated in Section 3.1,

the optimization problem (3.1) is equivalent to a linear program (3.2). Also, as in

Section 5.1, the optimization problem (5.1) is equivalent to a perturbed linear program

(5.3). The problems in question are large-scale; we have conducted decompositions of

signals of length n = 8192 in a wavelet packet dictionary, leading to a linear program

of size 8192 by 212; 992.

Over the last ten years there has been a rapid expansion in the size of linear

programs that have been successfully solved using digital computers. A good overview

of the recent rapid progress in this �eld and the current state of the art is a�orded by

the article of Lustig, Marsten and Shanno [23] and the accompanying discussions by

Bixby [1], Saunders [36], Todd [38], and Vanderbei [39]. Much of the rapid expansion

in the size of linear programs solved is due to the \Interior Point revolution" initiated

by Karmarkar's proof that a pseudo-polynomial time algorithm could be based on an

interior-point method [20]. Since then a very wide array of interior-point algorithms

have been proposed and considerable practical [23] and theoretical [30] understanding

is now available. In this section we describe our algorithm and our experience with

it.

6.1. Duality Theory. We consider the linear program in the standard form

mincTx subject to Ax = b; x � 0:(6.1)

This is often called the primal linear program. The primal linear program is equivalent

to the dual linear program

maxbTy subject to ATy + z = c; z � 0:(6.2)

x is called the primal variable; y and z are called the dual variables. The term \primal

infeasibility" refers to the quantity kb� Axk2; the term \dual infeasibility" refers to
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kc � z � ATyk2; the term \duality gap" refers to the di�erence between the primal

objective and the dual objective: cTx� bTy.

A fundamental theorem of linear programming states that (x;y; z) solves the

linear program (6.1) if and only if the primal infeasibility, the dual infeasibility and

the duality gap are all zero. Therefore when (x;y; z) are nearly primal feasible and

nearly dual feasible, the duality gap o�ers a good description about the accuracy of

(x;y; z) as a solution: the smaller the duality gap is, the closer (x;y; z) are to the

optimal solution.

6.2. A Primal-Dual Log-Barrier LP Algorithm. Mathematical work on

interior-point methods over the last ten years has led to a large variety of approaches,

with names like projective scaling, (primal/dual) a�ne scaling, (primal/dual) loga-

rithmic barrier and predictor-corrector. We cannot summarize all these ideas here;

many of them are mentioned in [23] and others are covered in the references of that

article.

Our approach is based on a primal-dual log-barrier algorithm. In order to regu-

larize standard LP, Gill et al. [17] proposed solving the following perturbed LP:

mincTx +
1

2
kxk2 + 1

2
kpk2 subject to Ax+ �p = b; x � 0 ;(6.3)

where  and � are normally small (e.g. 10�4) regularization parameters. (We comment

that such a perturbed LP with � = 1 solves the BPDN problem (5.1).) The main

steps of the interior point algorithm are as follows:

1. Set parameters: the feasibility tolerance FeaTol, the duality gap tolerance

PDGapTol, the two regularization parameters  and �.

2. Initialize x > 0;y; z > 0; � > 0. Set k = 0.

3. Loop

(a) Set

t = c + 2x� z �ATy

r = b�Ax � �2y

v = �e� Zx

D = (X�1Z + 2I)�1

where X and Z are diagonal matrices composed from x and z; e is a

vector of ones.

(b) Solve

(ADAT + �2I)4 y = r�AD(X�1v � t)(6.4)

for 4y and set

4x = DAT 4 y +D(X�1v � t) ; 4z = X�1v �X�1Z 4 x:

(c) Calculate the primal and dual step sizes �p; �d and update the variables:

�p = :99�maxf� : x+ �4 x � 0g ; �d = :99�maxf� : z+ �4 z � 0g;

x = x+�p4x ; y = y+�d4y ; z = z+�d4z ; � = (1�min(�p; �d; :99))�:

(d) Increase k by 1.
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4. Until the following three conditions are satis�ed:

(a) Primal Infeasibility =
krk2

1+kxk2
< FeaTol.

(b) Dual Infeasibility: =
ktk2

1+kyk2
< FeaTol.

(c) Duality Gap = z
T
x

1+kzk2kxk2
< PDGapTol:

For fuller discussions of this and related algorithms, again see [17] or references there.

Note that when � > 0, the central equation (6.4) may be written as the least-

squares problem

min


 
D1=2AT

�I

!
�y �

 
D1=2(t�X�1v)

r=�

!
2

;(6.5)

which may be better suited to numerical solution if � is not too small.

While in principle we could have based our approach on other interior-point

schemes, the primal-dual approach naturally incorporates several features we found

useful. First, the iterates x;y; z do not have to be feasible. We are only able to

choose a starting point that is nearly feasible and remain nearly feasible throughout

the sequence of iterations. Second, after both primal and dual feasibility have been

nearly achieved, it is easy to check for closeness to the solution value; at the limiting

solution cTx� = bTy�, and the duality gap cTx�bTy � xTz quanti�es the distance

from this ideal.

6.3. Implementation Heuristics. The primal-dual log barrier algorithm we

just described works in a fashion similar to other interior-point methods [23]. It

starts from an initial feasible (or nearly feasible) solution located at or near the \cen-

ter" of the feasible region, and iteratively improves the current solution until the

iterates (x;y; z) achieve the desired accuracy. It requires a relatively small number

of iterations: for example, a few dozen iterations would be common. Each iteration

requires the solution of a system of equations involving A, AT , and other problem

data like x;y; z. In the primal-dual log barrier method, the system is (6.4). Thus

the numerical solution to a linear program by interior-point methods amounts to a

sequence of several dozen solutions of special systems of linear equations. This leads

to a slogan: if those systems can be solved rapidly, then it is possible to solve the LP

rapidly.

Of course, in general solving systems of equations is not rapid: a general n by n

system Bw = h takes order O(n3) time to solve by standard elimination methods or

by modern stable factorization schemes [19, 18]. In order for practical algorithms to

be based on the interior-point heuristic, it is necessary to be able to solve the systems

of equations much more rapidly than one could solve general systems. In the current

state of the art of linear programming [36], one attempts to do this by exploiting

sparsity of the underlying matrix A.

However, the optimizationproblems we are interested in have a key di�erence from

the successful large-scale applications outlined in [23]. The matrix A we deal with is

not at all sparse; it is generally completely dense. For example, if A is generated from

a Fourier dictionary, most of the elements of A will be of the same order of magnitude.

Because of this density, it is unlikely that existing large-scale interior-point computer

codes could be easily applied to the problems described in this paper.

In our application we have a substitute for sparsity. We consider only dictionar-

ies that have fast implicit algorithms for �� and �T s, and therefore lead to linear

programs where the A matrix admits fast implicit algorithms for both Au and ATv.
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Table 6.1

CPU Running Times of the Examples

CPU Running Time in Seconds
Figure Signal Problem Size

MOF BOB MP BP

Figure 2.4 TwinSine 256 .3500 { .6667 7.517

Figure 2.6 WernerSorrows 1024 { .9500 { 158.2

Figure 3.1 Carbon 1024 .2000 2.617 2.650 11.70

Figure 3.2 FM-Cosine 1024 1.050 .9333 182.9 150.2

Figure 3.3 Gong 1024 1.433 5.683 50.63 448.2

Figure 4.1 HeaviSine 256 { { { 26.92

Figure 5.1 Noisy Gong 1024 2.117 6.767 8.600 142.2

Figure 5.2 Noisy TwinSine 256 .4167 { .6833 5.717

Compare section 2.2.2. Now whenever one has fast implicit algorithms, it is natural to

think of solving equations by conjugate-gradient methods; such methods allow one to

solve equations Bw = h using only products Bv with various strategically chosen vec-

tors v. Adapting such ideas, one develops fast implicit algorithms for (ADAT +�2I)v

and attempts to solve the central equations (6.4) iteratively, avoiding the costly step

of explicitly forming the matrices (ADAT + �2I). Similarly, the algorithms for Au

and ATv can be used directly in conjugate-gradient methods such as LSQR [32, 33]

for solving the least-squares problem (6.5).

In our application, we do not really need an exact solution of the optimization

problem. Moreover, we have a natural initial solution { from MOF { that would be

viewed by some researchers as already an acceptable method of atomic decomposition.

By starting from this decomposition and applying a strategy based on a limited num-

ber of iterations of our algorithm, we get what we view as an iterative improvement

on MOF. Compare Figure 3.4. We stress that our strategy is to \pursue an optimal

basis"; while we would like to reach the optimal basis, we make no speci�c claims

that we can always reach it in reasonable time; perhaps the \pursuit" language will

help remind one of this fact. We do believe that the pursuit process, carried out for

whatever length of time we are willing to invest in it, makes a useful improvement

over the Method of Frames.

6.4. Routine Settings For BP. Our strategy for routine signal processing by

BP is as follows:

� We employ the \primal-dual logarithmic barrier method" for perturbed LP

[17].

� We assume fast implicit algorithms for Au and ATv.

� We only aim to reach an approximate optimum. FeaTol = 10�1 and PDGapTol=

10�1 would usually su�ce for this.

� Each barrier iteration involves approximate solution of the central equations

(6.4) using the conjugate-gradient method, e.g. with CGAccuracy = 10�1.

We refer the reader to [4] for more detailed discussion of our implementation.

6.5. Complexity Analysis. Table 6.1 displays the CPU times in seconds spent

in running various atomic decomposition techniques in our experiments; all computa-

tion was done on a Sun Sparc20 workstation. We employ a conjugate-gradient solver

for the generalized inverse in the MOF solution (2.4); the resulting algorithm for MOF

has a complexity order O(n log(n)). We implement Coifman and Wickerhauser's BOB

algorithm [7], which also has a complexity of order O(n log(n)). We observe that BP
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is typically slower than MOF and BOB. BP is also slower than MP (which has a

quasi-linear complexity, depending on the number of chosen atoms) except on the

FM-Cosine signal in Figure 3.2.

Several factors inuence the running time of Basis Pursuit:

1. Problem Sizes. The complexity goes up \quasi-linearly" as the problem size

increases [4]. By this we mean merely that the inner most computational step { a

conjugate gradient iteration { has a complexity that scales with problem size like O(n)

or O(n log(n)) depending on the type of dictionary we are using. We generally run the

algorithm using parameters set so that the number of invocations of this innermost

step increases only gradually with problem size.

2. Parameter Settings. The complexity of our primal-dual logarithmic barrier

interior-point implementation depends on both the the accuracy of the solution and

the accuracy of the conjugate-gradient solver. The accuracy of the solution is deter-

mined by the two parameters FeaTol, PDGapTol controlling the number of barrier

iterations, and the parameter CGAccuracy, which decides the accuracy of the CG

solver and consequently the number of CG iterations. As the required solution ac-

curacy goes up, the complexity goes up drastically. We recommend setting FeaTol,

PDGapTol and CGAccuracy at 10�1 for routine signal processing; we recommend 10�2

or 10�3 when one is interested in superresolution. We used the setting 10�1 for the

computational experiments presented in Figures 2.6, 3.1, 3.2, 3.3, 5.1 and 5.1. In Fig-

ures 2.5, 3.2 and 5.1, we attempted to super-resolve two cosines with close frequencies;

thus we use the setting 10�2. In Figure 4.1, we used the setting 10�3.

3. Signal Complexity. When the signal has a very sparse representation, the

algorithm converges quickly. The signal Carbon, which contains only 6 atoms from a

wavelet packet dictionary, takes about 10 seconds, whereas it takes about 7 minutes

for the signal Gong, which is much more complex.

4. Basis Pursuit versus Basis Pursuit De-Noising. We employ the same interior-

point implementation for BP and BPDN, except for a di�erence in the value of the

regularization parameter �: � is small, e.g. 10�4 for BP, while � = 1 for BPDN. The

choice � = 1 helps: it regularizes the central equations to be solved at each barrier

iteration. Thus the BPDN implementation seems to converge more quickly than the

BP implementation. For example, according to our experiments [4], it takes only

3 minutes to perform BPDN on the noisy Gong signal of length 1024 with a cosine

packet dictionary at the parameter setting 10�3; it takes about 8 hours to perform

BP on the signal Gong at the same parameter setting.

6.6. Reproducible Research. This paper has been written following the dis-

cipline of Reproducible Research described in [3]. As a complement to this article, we

are releasing the underlying software environment by placing it on internet for access

either by anonymous FTP or WWW browsers.

Web Browser: http://www-stat.stanford.edu/~schen/Atomizer.html

FTP Client: rgmiller.stanford.edu file: pub/chen_s/Atomizer0600.tar.Z
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