A Note on a Vector-Variate Normal Distribution and a Stationary Autoregressive Process

T. W. Anderson

Stanford University

Received November 28, 1997

It is shown that weak stationarity of a first-order autoregressive process implies that eigenvalues of the coefficient matrix are less than 1 in absolute value.

Nguyen (1997) has shown (Theorem 2.1) that if X_1 and X_2 are identically distributed random vectors such that

$$X_2 = BX_1 + U_2,$$ \hspace{1cm} (1)

U_2 and X_1 are independent, and U_2 has the distribution $N(0, \Sigma)$ with Σ positive definite, then (a) the eigenvalues of B have modulus less than 1 and (b) X_1 and X_2 have a joint normal distribution with covariance matrix

$$E[X_1X_2'] = (\Gamma B \Gamma'),$$ \hspace{1cm} (2)

where

$$\Gamma = \sum_{s=0}^{\infty} B^s \Sigma B'^s.$$ \hspace{1cm} (3)

If the result is stated in the form of

$$X_t = BX_{t-1} + U_t,$$ \hspace{1cm} (4)
for \(t = 2 \), it may be recognized as a form of the statement that a strictly stationary (autoregressive) process defined by (4) implies that the eigenvalues of \(\mathbf{B} \) are less than 1 in absolute value and that if \(\mathbf{U}_t \) is normal

\[
\mathbf{X}_t = \sum_{s=0}^{\infty} \mathbf{B}^s \mathbf{U}_{t-s}
\]

(5)
is Gaussian.

The purpose of this note is to show in a simple way that only stationarity in the wide sense needed for conclusion (a).

Theorem. Let \(\mathbf{X}_1, \mathbf{X}_2, \) and \(\mathbf{U}_2 \) be related by (1) with \(\mathbf{X}_1 \) and \(\mathbf{X}_2 \) having the common covariance matrix \(\mathbf{\Gamma} \), \(\mathbf{U}_2 \) having a nonsingular covariance matrix \(\mathbf{\Sigma} \), and \(\mathbf{X}_1 \) and \(\mathbf{U}_2 \) uncorrelated. Then the eigenvalues of \(\mathbf{B} \) are less than 1 in absolute value.

Proof. An eigenvalue \(\lambda \) and eigenvector \(\mathbf{x} \) satisfy

\[
\mathbf{B} \mathbf{x} = \lambda \mathbf{x}.
\]

(6)

Then \(\mathbf{\Gamma} = \mathbf{B} \mathbf{B}^\prime + \mathbf{\Sigma} \) implies

\[
\mathbf{x}^\prime \mathbf{\Sigma} \mathbf{x} = |\lambda|^2 \mathbf{x}^\prime \mathbf{\Gamma} \mathbf{x} + \mathbf{x}^\prime \mathbf{x}.
\]

(7)

Since \(\mathbf{x}^\prime \mathbf{\Sigma} \mathbf{x} > 0 \), (7) implies \(\mathbf{x}^\prime \mathbf{\Gamma} \mathbf{x} > 0 \) and \(|\lambda|^2 < 1 \).

A sequence of random vectors \(\mathbf{X}_t \) can be constructed recursively by (4), \(t = 3, \ldots \). A consequence of the theorem is that (5) converges in the mean and \(\{ \mathbf{X}_t \} \) is stationary; if the \(\mathbf{U}_t \) is independent of the \(\mathbf{X}_{t-1} \), then \(\{ \mathbf{X}_t \} \) is Gaussian. See, for example, Anderson (1971, p. 179).

If \(\mathbf{X}_t \) has mean \(\mathbf{\mu}_t = \mu \) possibly different from \(\mathbf{0} \), then (1) is modified to \((\mathbf{X}_2 - \mu) = \mathbf{B}(\mathbf{X}_1 - \mu) + \mathbf{U}_2 \) or (1) holds with \(\mathbf{U}_2 \) having the distribution \(\mathcal{N}(\mathbf{v}, \mathbf{\Sigma}) \), where \(\mathbf{v} = (\mathbf{I} - \mathbf{B}) \mathbf{\mu} \).

REFERENCES