Detecting linear sequences and subsequences†

Yanming Di⁎, Michael D. Perlman⁎

⁎Department of Statistics, University of Washington, Seattle, WA 98195, USA

9 October 2007

Abstract

Greenwood (1946), using an L_2 distance, and others have addressed the question of detecting a too-linear fit of the occurrence times $T_0 < T_1 < \cdots < T_n$ of a sequence of random events. Two convenient distances are introduced here, then applied to the more challenging problem of detecting too-linear subsequences, where the multiple subsequence effect must be taken into account. Two interpretations of “linear subsequence” are considered.

MSC: primary 62M02; secondary 62E15

Keywords: Poisson process; Exponential distribution; Arrival times; Linear subsequence; Gap-linear subsequence; Order statistics; Dirichlet distribution; Product of beta random variables

†Research supported in part by U. S. National Security Agency Grant No. MSPF-05G-014. This paper has now appeared in Journal of Statistical Planning and Inference (2008) 138 2634-2648.

⁎ Corresponding author, Tel.: +1 206 543 7735; fax: +1 206 685 7428.

E-mail addresses: diy@stat.washington.edu, michael@stat.washington.edu