
Introduction

The inner circle in Figure 1 represents normal theory, the preferred venue of classical applied

statistics. Exact inference — t tests, F tests, chi-squared statistics, ANOVA, multivariate analysis

— were feasible within the circle. Outside the circle was a general theory based on large-sample

asymptotic approximation involving Taylor series and the central limit theorem.
 

NORMAL THEORY
(exact calculations)

EXPONENTIAL FAMILIES
(partly exact)

GENERAL THEORY
(asymptotics)

Figure 1.1: Three levels of statistical modeling

Figure 1: Three levels of statistical modeling

A few special exact results lay outside the normal circle, relating to specially tractable dis-

tributions such as the binomial, Poisson, gamma and beta families. These are the figure’s green

stars.

A happy surprise, though a slowly emerging one beginning in the 1930s, was that all the special
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cases were examples of a powerful general construction: exponential families. Within this super-

family, the intermediate circle in Figure 1, “almost exact” inferential theories such as generalized

linear models (GLMs) are possible. This course will examine the theory of exponential families in

a relaxed manner with an eye toward applications. A much more rigorous approach to the theory

is found in Larry Brown’s 1986 monograph, Fundamentals of Statistical Exponential Families, IMS

series volume 9.

A salient fact is that no one name is credited with the development of exponential families,

though it will be clear from these notes that R.A. Fisher’s work was seminal. The name “exponential

families” is relatively new. Until the late 1950s they were often referred to as “ Koopman–Darmois–

Pitman” families ( the names of three prominent statisticians working separately in three different

countries), the long name suggesting little influence attached to the ideas.

Our title, “Exponential families in theory and practice,” might well be amended to “. . . between

theory and practice.” These notes collect a large amount of material useful in statistical appli-

cations, but also of value to the theoretician trying to frame a new situation without immediate

recourse to asymptotics. My own experience has been that when I can put a problem, applied

or theoretical, into an exponential family framework, a solution is imminent. There are almost

no proofs in what follows, but hopefully enough motivation and heuristics to make the results

believable if not obvious. References are given when this doesn’t seem to be the case.



Part 1

One-parameter Exponential Families

1.1 Definitions and notation (pp 2–4) General definitions; natural and canonical parameters;

sufficient statistics; Poisson family

1.2 Moment relationships (pp 4–7) Expectations and variances; skewness and kurtosis; relation-

ships; unbiased estimate of η

1.3 Repeated sampling (pp 7–8) i.i.d. samples as one-parameter families

1.4 Some well-known one-parameter families (pp 8–13) Normal; binomial; gamma; negative

binomial; inverse Gaussian; 2 × 2 table (log-odds ratio); ulcer data; the structure of one-

parameter families

1.5 Bayes families (pp 13–16) Posterior densities as one-parameter families; conjugate priors;

Tweedie’s formula

1.6 Empirical Bayes (pp 16–19) Posterior estimates from Tweedie’s formula; microarray exam-

ple (prostate data); false discovery rates

1.7 Some basic statistical results (pp 19–23) Maximum likelihood and Fisher information; func-

tions of µ̂; delta method; hypothesis testing

1.8 Deviance and Hoeffding’s formula (pp 23–29) Deviance; Hoeffding’s formula; repeated sam-

pling; relationship with Fisher information; deviance residuals; Bartlett corrections; example

of Poisson deviance analysis

1.9 The saddlepoint approximation (pp 29–32) Hoeffding’s saddlepoint formula; Lugananni–

Rice formula; large deviations and exponential tilting; Chernoff bound

1.10 Transformation theory (pp 32–33) Power transformations; table of results

One-parameter exponential families are the building blocks for the multiparameter theory de-

veloped in succeeding parts of this course. Useful and interesting in their own right, they unify a

vast collection of special results from classical methodology. Part I develops their basic properties

and relationships, with an eye toward their role in the general data-analytic methodology to follow.
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2 PART 1. ONE-PARAMETER EXPONENTIAL FAMILIES

1.1 Definitions and notation

This section reviews the basic definitions and properties of one-parameter exponential families. It

also describes the most familiar examples — normal, Poisson, binomial, gamma — as well as some

less familiar ones.

Basic definitions and notation

The fundamental unit of statistical inference is a family of probability densities G, “density” here

including the possibility of discrete atoms. A one-parameter exponential family has densities gη(y)

of the form

G = {gη(y) = eηy−ψ(η)g0(y)m(dy), η ∈ A, y ∈ Y}, (1.1)

A and Y subsets of the real line R1.

Terminology

• η is the natural or canonical parameter; in familiar families like the Poisson and binomial, it

often isn’t the parameter we are used to working with.

• y is the sufficient statistic or natural statistic, a name that will be more meaningful when we

discuss repeated sampling situations; in many cases (the more interesting ones) y = y(x) is a

function of an observed data set x (as in the binomial example below).

• The densities in G are defined with respect to some carrying measure m(dy), such as the

uniform measure on [−∞,∞] for the normal family, or the discrete measure putting weight

1 on the non-negative integers (“counting measure”) for the Poisson family. Usually m(dy)

won’t be indicated in our notation. We will call g0(y) the carrying density.

• ψ(η) in (1.1) is the normalizing function or cumulant generating function; it scales the den-

sities gη(y) to integrate to 1 over the sample space Y,∫
Y
gη(y)m(dy) =

∫
Y
eηyg0(y)m(dy)

/
eψ(η) = 1.

• The natural parameter space A consists of all η for which the integral on the left is finite,

A =

{
η :

∫
Y
eηyg0(y)m(dy) <∞

}
.

Homework 1.1. Use convexity to prove that if η1 and η2 ∈ A then so does any point in the

interval [η1, η2] (implying that A is a possibly infinite interval in R1).

Homework 1.2. We can reparameterize G in terms of η̃ = cη and ỹ = y/c. Explicitly describe

the reparameterized densities g̃η̃(ỹ).
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We can construct an exponential family G through any given density g0(y) by “tilting” it

exponentially,

gη(y) ∝ eηyg0(y)

and then renormalizing gη(y) to integrate to 1,

gη(y) = eηy−ψ(η)g0(y)

(
eψ(η) =

∫
Y
eηyg0(y)m(dy)

)
.

It seems like we might employ other tilting functions, say

gη(y) ∝ 1

1 + η|y|
g0(y),

but only exponential tilting gives convenient properties under independent sampling.

If η0 is any point on A we can write

gη(y) =
gη(y)

gη0(y)
gη0(y) = e(η−η0)y−[ψ(η)−ψ(η0)]gη0(y).

This is the same exponential family, now represented with

η −→ η − η0, ψ −→ ψ(η)− ψ(η0), and g0 −→ gη0 .

Any member gη0(y) of G can be chosen as the carrier density, with all the other members as

exponential tilts of gη0 . Notice that the sample space Y is the same for all members of G, and that

all put positive probability on every point in Y.

The Poisson family

As an important first example we consider the Poisson family. A Poisson random variable Y having

mean µ takes values on the non-negative integers Z+ = {0, 1, 2, . . . },

Pr
µ
{Y = y} = e−µµy/y! (y ∈ Z+).

The densities e−µµy/y!, taken with respect to counting measure on Y = Z+, can be written in

exponential family form as

gη(y) = eηy−ψ(η)g0(y)


η = log(µ) (µ = eη)

ψ(η) = eη (= µ)

g0(y) = 1/y! (not a member of G).

Homework 1.3. (a) Rewrite G so that g0(y) corresponds to the Poisson distribution with µ = 1.

(b) Carry out the numerical calculations that tilt Poi(12), seen in Figure 1.1, into Poi(6).
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Figure 1.1: Poisson densities for µ = 3, 6, 9, 12, 15, 18; heavy curve with dots for µ = 12.

1.2 Moment relationships

Expectation and variance

Differentiating exp{ψ(η)} =
∫
Y e

ηyg0(y)m(dy) with respect to η, indicating differentiation by dots,

gives

ψ̇(η)eψ(η) =

∫
Y
yeηyg0(y)m(dy)

and

[
ψ̈(η) + ψ̇(η)2

]
eψ(η) =

∫
Y
y2eηyg0(y)m(dy).

(The dominated convergence conditions for differentiating inside the integral are always satisfied in

exponential families; see Theorem 2.2 of Brown, 1986.) Multiplying by exp{−ψ(η)} gives expressi-

ons for the mean and variance of Y ,

ψ̇(η) = Eη(Y ) ≡ “µη”

and

ψ̈(η) = Varη{Y } ≡ “Vη”;

Vη is greater than 0, implying that ψ(η) is a convex function of η.
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Notice that

µ̇ =
dµ

dη
= Vη > 0.

The mapping from η to µ is 1 : 1 increasing and infinitely differentiable. We can index the family G
just as well with µ, the expectation parameter, as with η. Functions like ψ(η), Eη, and Vη can just

as well be thought of as functions of µ. We will sometimes write ψ, V , etc. when it’s not necessary

to specify the argument. Notations such as Vµ formally mean Vη(µ).

Note. Suppose

ζ = h(η) = h (η(µ)) = “H(µ)”.

Let ḣ = ∂h/∂η and H ′ = ∂H/∂µ. Then

H ′ = ḣ
dη

dµ
= ḣ/V.

Skewness and kurtosis

ψ(η) is the cumulant generating function for g0 and ψ(η)− ψ(η0) is the CGF for gη0(y), i.e.,

eψ(η)−ψ(η0) =

∫
Y
e(η−η0)ygη0(y)m(dy).

By definition, the Taylor series for ψ(η)− ψ(η0) has the cumulants of gη0(y) as its coefficients,

ψ(η)− ψ(η0) = k1(η − η0) +
k2

2
(η − η0)2 +

k3

6
(η − η0)3 + . . . .

Equivalently,

ψ̇(η0)= k1, ψ̈(η0) = k2,
...
ψ(η0) = k3,

....
ψ (η0) = k4[

= µ0 = V0 = E0{y0 − µ0}3 = E0{y0 − µ0}4 − 3V 2
0

]
etc., where k1, k2, k3, k4, . . . are the cumulants of gη0 .

By definition, for a real-valued random variable Y ,

SKEW(Y ) =
E(Y − EY )3

[Var(Y )]3/2
≡ “γ” =

k3

k
3/2
2

and

KURTOSIS(Y ) =
E(Y − EY )4

[Var(Y )]2
− 3 ≡ “δ” =

k4

k2
2

.
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Putting this all together, if Y ∼ gη(·) in an exponential family,

Y ∼
[

ψ̇, ψ̈1/2,
...
ψ
/
ψ̈3/2,

....
ψ
/
ψ̈2

]
↑ ↑ ↑ ↑

expectation standard skewness kurtosis

deviation

where the derivatives are taken at η.

For the Poisson family

ψ = eη = µ

so all the cumulants equal µ

ψ̇ = ψ̈ =
...
ψ =

....
ψ = µ,

giving

Y ∼
[

µ,
√
µ, 1

/√
µ, 1/µ

]
↑ ↑ ↑ ↑

exp st dev skew kurt

A useful result

Continuing to use dots for derivatives with respect to η and primes for derivatives with µ, notice

that

γ =

...
ψ

ψ̈3/2
=

V̇

V 3/2
=

V ′

V 1/2

(using H ′ = ḣ/V ). Therefore

γ = 2(V 1/2)′ = 2
d

dµ
sdµ

where sdµ = V
1/2
µ is the standard deviation of y. In other words, γ/2 is the rate of change of sdµ

with respect to µ.

Homework 1.4. Show that

(a) δ = V ′′ + γ2 and (b) γ′ =

(
δ − 3

2
γ2

)/
sd .

Note. All of the classical exponential families — binomial, Poisson, normal, etc. — are those with

closed form CGFs ψ. This yields neat expressions for means, variances, skewnesses, and kurtoses.

Unbiased estimate of η

By definition y is an unbiased estimate of µ (and in fact by completeness the only unbiased estimate

of form t(y)). What about η?
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• Let l0(y) = log{g0(y)} and l′0(y) = dl0(y)
dy .

• Suppose Y = [y0, y1] (both possibly infinite)

and that m(y) = 1.

Lemma 1.

Eη
{
−l′0(y)

}
= η − [gη(y1)− gη(y0)] .

Homework 1.5. Prove the lemma. (Hint : integration by parts.)

So, if gη(y) = 0 (or → 0) at the extremes of Y, then −l′0(y) is a unbiased estimate of η.

Homework 1.6. Numerically investigate how well Eη{−l′0(y)} approximates η in the Poisson

family.

1.3 Repeated sampling

Suppose that y1, y2, . . . , yn is an independent and identically distributed (i.i.d.) sample from an

exponential family G:

y1, y2, . . . , yn
iid∼ gη(·),

for an unknown value of the parameter η ∈ A. The density of y = (y1, y2, . . . , yn) is

n∏
i=1

gη(yi) = e
∑n

1 (ηyi−ψ)
n∏
i=1

g0(yi)

= en(ηȳ−ψ)
n∏
i=1

g0(yi),

where ȳ =
∑n

i=1 yi/n. Letting gYη (y) indicate the density of y with respect to
∏n
i=1m(dyi),

gYη (y) = en[ηȳ−ψ(η)]
n∏
i=1

g0(yi). (1.2)

This is one-parameter exponential family, with:

• natural parameter η(n) = nη (so η = η(n)/n)

• sufficient statistic ȳ =
∑n

1 yi/n (µ̄ = Eη(n){ȳ} = µ)

• normalizing function ψ(n)(η(n)) = nψ(η(n)/n)

• carrier density
∏n
i=1 g0(yi) (with respect to

∏
m(dyi))

Homework 1.7. Show that ȳ ∼ [µ,
√
V/n, γ/

√
n, δ/n].
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Note. In what follows, we usually index the parameter space by η rather than η(n).

Notice that y is now a vector, and that the tilting factor eη
(n)ȳ is tilting the multivariate density∏n

1 g0(yi). This is still a one-parameter exponential family because the tilting is in a single direction,

along 1 = (1, 1, . . . , 1).

The sufficient statistic ȳ also has a one-parameter exponential family of densities,

gYη (ȳ) = en(ηȳ−ψ)gY0 (ȳ),

where gY0 (ȳ) is the g0 density with respect to mY (dȳ), the induced carrying measure.

The density (1.2) can also be written as

eηS−nψ, where S =

n∑
i=1

yi.

This moves a factor of n from the definition of the natural parameter to the definition of the sufficient

statistic. For any constant c we can re-express an exponential family {gη(y) = exp(ηy − ψ)g0(y)}
by mapping η to η/c and y to cy. This tactic will be useful when we consider multiparameter

exponential families.

Homework 1.8. y1, y2, . . . , yn
iid∼ Poi(µ). Describe the distributions of Y and S, and say what are

the exponential family quantities (η, y, ψ, g0,m, µ, V ) in both cases.

1.4 Some well-known one-parameter families

We’ve already examined the Poisson family. This section examines some other well-known (and

not so well-known) examples.

Normal with variance 1

G is the normal family Y ∼ N (µ, 1), µ in R1. The densities, taken with respect to m(dy) = dy,

Lebesque measure,

gµ(y) =
1√
2π

e−
1
2

(y−µ)2

can be written in exponential family form (1.1) with

η = µ, y = y, ψ =
1

2
µ2 =

1

2
η2, g0(y) =

1√
2π

e−
1
2
y2
.

Homework 1.9. Suppose Y ∼ N (µ, σ2) with σ2 known. Give η, y, ψ, and g0.
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Binomial

Y ∼ Bi(N, π), N known, so

g(y) =

(
N

y

)
πy(1− π)N−y

with respect to counting measure on {0, 1, . . . , N}. This can be written as(
N

y

)
e(log π

1−π )y+N log(1−π),

a one-parameter exponential family, with:

• η = log[π/(1− π)] (so π = 1/(1 + e−η), 1− π = 1/(1 + eη))

• A = (−∞,∞)

• y = y

• expectation parameter µ = Nπ = N/(1 + e−η)

• ψ(η) = N log(1 + eη)

• variance function V = Nπ(1− π) (= µ(1− µ/N))

• g0(y) =
(
N
y

)
Homework 1.10. Show that for the binomial

γ =
1− 2π√
Nπ(1− π)

and δ =
1− 6π(1− π)

Nπ(1− π)
.

Homework 1.11. Notice that A = (−∞,∞) does not include the cases π = 0 or π = 1. Why

not?

Gamma

Y ∼ λGN where GN is a standard gamma variable, N known, and λ an unknown scale parameter,

g(y) =
yN−1e−y/λ

λNΓ(N)
[Y = (0,∞)] .

This is a one-parameter exponential family with:

• η = −1/λ

• µ = Nλ = −N/η

• V = N/η2 = Nλ2 = µ2/N
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• ψ = −N log(−η)

• γ = 2/
√
N

• δ = 6/N

Negative binomial

A coin with probability of heads θ is flipped until exactly k + 1 heads are observed. Let Y = # of

tails observed. Then

g(y) =

(
y + k

k

)
(1− θ)yθk+1

=

(
y + k

k

)
e[log(1−θ)]y+(k+1) log θ [Y = (0, 1, 2, . . . )] .

This is a one-parameter exponential family with:

• η = log(1− θ) • ψ = −(k + 1) log(1− eη)

Homework 1.12. (a) Find µ, V , and γ as a function of θ. (b) Notice that ψ = (k + 1)ψ0 where

ψ0 is the normalizing function for k = 0. Give a simple explanation for this. (c) How does it affect

the formula for µ, V , and γ?

Inverse Gaussian

Let W (t) be a Wiener process with drift 1/µ, so W (t) ∼ N (t/µ, t) (Cov[W (t),W (t + d)] = t).

Define Y as the first passage time to W (t) = 1. Then Y has the “inverse Gaussian” or Wald

density

g(y) =
1√

2πy3
e
− (y−µ)2

2µ2y .

This is an exponential family with:

• η = −1/(2µ2)

• ψ = −
√
−2η

• V = µ3

Reference Johnson and Kotz, Continuous Univariate Densities Vol. 1, Chapter 15

Homework 1.13. Show Y ∼ [µ, µ3/2, 3
√
µ, 15µ] as the mean, standard deviation, skewness, and

kurtosis, respectively.

Note. The early Generalized Linear Model literature was interested in the construction of non-

standard exponential families with relations such as V = µ1.5.
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Normal Poisson Gamma Inverse normal

V ∝ constant µ µ2 µ3

2× 2 table

Let X = (x1, x2, x3, x4) be a multinomial

sample of size N from a 4-category multi-

nomial layout, where the categories form

a double dichotomy as shown.

(x1, x2, x3, x4) ∼ Mult4 [N, (π1, π2, π3, π4)]

10

Men

Women

Yes No

Column totals

Row totals

with π = (π1, π2, π3, π4) the true probabilities,
∑4

1 πi = 1. Given the table’s marginal totals

(N, r1, c1), we need only know x1 to fill in (x1, x2, x3, x4). (Fisher suggested analyzing the table

with marginals thought of as fixed ancillaries, for reasons discussed next.)

The conditional density of x1 given (N, r1, c1) depends only on the log odds parameter

θ = log

(
π1

π2

/
π3

π4

)
,

so conditioning has reduced our four-parameter inferential problem to a simpler, one-parameter

situation. Notice that θ = 0 corresponds to π1/π2 = π3/π4, which is equivalent to independence

between the two dichotomies.

The conditional density of x1 | (N, r1, c1), with respect to counting measure, is

gθ(x1 | N, r1, c1) =

(
r1

x1

)(
r2

c1 − x1

)
eθx1/C(θ),

C(θ) =
∑
x1

(
r1

x1

)(
r2

c1 − x1

)
eθx1 ,

(1.3)

the sum being over the sample space of possible x1 values,

max(0, c1 − r2) ≤ x1 ≤ min(c1, r1).

Reference Lehmann, “Testing statistical hypotheses”, Section 4.5



12 PART 1. ONE-PARAMETER EXPONENTIAL FAMILIES

This is a one-parameter exponential family with:

• η = θ

• y = x

• ψ = log(C) (θ = 0 corresponds to the hy-

pergeometric distribution.)

11
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Figure 1.2: ulcdata #14; likelihood function for crossproduct ratio θ; max at θ = 0.600; −l̈ = 2.56

Example. The 14th experiment on ulcdata involved 45 patients in a clinical trial comparing a new

experimental surgery for stomach ulcers with the standard control procedure. The obvious estimate

of θ is

θ̂ = log

(
9

12

/
7

17

)
= 0.600.

Figure 1.2 graphs the likelihood, i.e., expression (1.3) as a function of θ, with the data held fixed

as observed (normalized so that max{L(θ)} = 1).

Homework 1.14. (a) Compute the likelihood numerically and verify that it is maximized at

θ̂ = 0.600. (b) Verify numerically that

−d
2 logL(θ)

dθ2

∣∣∣∣
θ̂

= 2.56.

(c) Using this result, guess the variance of θ̂.
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The structure of one-parameter exponential families

Suppose fθ(x), θ and x possibly vectors, is a family of densities satisfying

log fθ(x) = A(θ)B(x) + C(θ) +D(x),

A,B,C,D real. Then {fθ(x)} is a one-parameter

exponential family with:

• η = A(θ)

• y = B(x)

• ψ = −C(θ)

• log g0 = D(x)

A two-way table of log fθ(x) would have additive components C(θ)+D(x), and an interaction term

A(θ)B(x).

Homework 1.15. I constructed a 14× 9 matrix P with ijth element

pij = Bi(xi, θj , 13),

the binomial probability of xi for probability θj , sample size n = 13, where

xi = i for i = 0, 1, 2, . . . , 13

θj = 0.1, 0.2, . . . , 0.9.

Then I calculated the singular value decomposition (svd) of logP . How many non-zero singular

values did I see?

1.5 Bayes families

Suppose we observe Y = y from

gη(y) = eηy−ψ(η)g0(y), (1.4)

where η itself has a prior density

η ∼ π(η) (with respect to Lebesgue measure on A).

Bayes rule gives posterior density for η

π(η | y) = π(η)gη(y)/g(y),



14 PART 1. ONE-PARAMETER EXPONENTIAL FAMILIES

where g(y) is the marginal density

g(y) =

∫
A
π(η)gη(y) dη.

(Note that gη(y) is the likelihood function, with y fixed and η varying.) Plugging in (1.4) gives

π(η | y) = eyη−log[g(y)/g0(y)]
[
π(η)e−ψ(η)

]
. (1.5)

We recognize this as a one-parameter exponential family with:

• natural parameter η = y

• sufficient statistic y = η

• CGF ψ = log[g(y)/g0(y)]

• carrier g0 = π(η)e−ψ(η)

Homework 1.16. (a) Show that prior π(η) for η corresponds to prior π(η)/Vη for µ. (b) What is

the posterior density π(µ | y) for µ?

Conjugate priors

Certain choices of π(η) yield particularly simple forms for π(η | y) or π(µ | y), and these are called

conjugate priors. They play an important role in modern Bayesian applications. As an example,

the conjugate prior for Poisson is the gamma.

Homework 1.17. (a) Suppose y ∼ Poi(µ) and µ ∼ mGν , a scale multiple of a gamma with ν

degrees of freedom. Show that

µ | y ∼ m

m+ 1
Gy+ν .

(b) Then

E{µ | y} =
m

m+ 1
y +

1

m+ 1
(mν)

(compared to E{µ} = mν a priori, so E{µ | y} is a linear combination of y and E{µ}). (c) What

is the posterior distribution of µ having observed y1, y2 . . . , yn
iid∼ Poi(µ)?

Diaconis and Ylvisaker (1979, Ann. Statist. 269–281) provide a general formulation of conju-

gacy:

y1, y2, . . . , yn
iid∼ gη(y) = eηy−ψ(η)g0(y);

the prior for µ wrt Lebesgue measure is

πn0,y0(µ) = c0e
n0[ηy0−ψ(η)]/Vη,
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where y0 is notionally the average of n0 hypothetical prior observations of y (c0 the constant making

πn0,y0(µ) integrate to 1).

Theorem 1.

π(µ | y1, y2, . . . , yn) = πn+,y+(µ),

where

n+ = n0 + n and y+ =

(
n0y0 +

n∑
1

yi

)/
n+.

Moreover,

E{µ | y1, y2, . . . , yn} = y+.

Binomial case

y ∼ Bi(n, π), with hypothetical prior observations y0 successes out of n0 tries. Assuming a “beta”

prior (Part 2) yields Bayes posterior expectation

θ̂ = E{π | y} =
y0 + y

n0 + n
.

Current Bayes practice favors small amounts of hypothetical prior information, in the binomial case

maybe y0 = 1 and n0 = 2, giving

θ̂ =
1 + y

2 + n
,

pulling the MLE y/n a little toward 1/2.

Tweedie’s formula

Equation (1.5) gave

π(η | y) = eyη−λ(y)π0(y)

where

π0(y) = π(η)e−ψ(η) and λ(y) = log [g(y)/g0(y)] ,

g(y) the marginal density of y. Define

l(y) = log [g(y)] and l0(y) = log [g0(y)] .

We can now differentiate λ(y) with respect to y to get the posterior moments (and cumulants) of

η given y,

E{η | y} = λ′(y) = l′(y)− l′0(y)
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and

Var{η | y} = λ′′(y) = l′′(y)− l′′0(y).

Homework 1.18. Suppose y ∼ N (µ, σ2), σ2 known, where µ has prior density π(µ). Show that

the posterior mean and variance of µ given y is

µ | y ∼
{
y + σ2l′(y), σ2

[
1 + σ2l′′(y)

]}
. (1.6)

Reference Efron (2012), “Tweedie’s formula and selection bias”, JASA

1.6 Empirical Bayes

With y ∼ N (µ, σ2) and µ ∼ π(µ), Tweedie’s formula gives posterior expectation

θ̂ = E{µ | y} = y + σ2l′(y);

y is the MLE of µ so we can think of this as

θ̂ = MLE + Bayes correction.

That’s fine if we know the prior π(µ), but what if not? In some situations, where we have many

parallel experiments observed at the same time, we can effectively learn π(µ) from the data. This

is the empirical Bayes approach, as illustrated next.

A microarray analysis

In a study of prostate cancer, n = 102 men each

had his genetic expression level xij measured on

N = 6033 genes,

xij =

i = 1, 2, . . . , N genes,

j = 1, 2, . . . , n men.

There were:

• n1 = 50 healthy controls

• n2 = 52 prostate cancer patients

5

2

4

3

1

42

1

3

Men

50 controls        52 patients

Genes
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For genei let ti = two-sample t statistic comparing patients with controls and

zi = Φ−1 [F100(ti)] (F100 cdf of t100 distribution);

zi is a z-value, i.e., a statistic having a N (0, 1) distribution under the null hypothesis that there

is no difference in genei expression between patients and controls. (Note: in terms of our previous

notation, y = zi and µ = δi.) fig1.4  Prostate data microarray study; 6033 z−values;
Heavy curve is fhat(z) from GLM fit; Red is N(0,1)

z values
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Figure 1.3: Prostate data microarray study. 6033 z-values; heavy curve is ĝ(z) from GLM fit; dashed line
is N (0, 1).

A reasonable model is

zi ∼ N (δi, 1),

where δi is the effect size for gene i. The investigators were looking for genes with large values of

δi, either positive or negative. Figure 1.3 shows the histogram of the 6033 zi values. It is a little

wider than a N (0, 1) density, suggesting some non-null (δi = 0) genes. Which ones and how much?

Empirical Bayes analysis

1.1 Compute z1, z2, . . . , zN ; N = 6033.

1.2 Fit a smooth parametric estimate ĝ(z) to histogram (details in Part 2).

1.3 Compute

λ̂(z) = log [ĝ(z)/g0(z)]

(
g0(z) =

1√
2π

e−
1/2z2

)
.
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1.4 Differentiate λ̂(z) to give Tweedie estimates

Ê{δ | z} = λ̂′(z) and V̂ar{δ | z} = λ̂′′(z).

−4 −2 0 2 4 6

−
2

0
2

4

fig1.5 Tweedie estimate of E{mu|z}, Prostate study;
Red curve is estimated local false discovery rate fdr(z)

at z=3: E{mu|z}=1.31,  fdr(z)=.37
z value

E
{m

u|
z}

●

●

5.29

3.94

3

Figure 1.4: Tweedie estimate of E{µ | z}, prostate study. Dashed curve is estimated local false discovery
rate fdr(z).

Figure 1.4 shows Ê{δ | z}. It is near zero (“nullness”) for |z| ≤ 2. At z = 3, Ê{δ | z} = 1.31.

At z = 5.29, the largest observed zi value (gene #610), E{δ | z} = 3.94.

The “winner’s curse” (regression to the mean)

Even though each zi is unbiased for its δi, it isn’t true that zimax is unbiased for δimax (imax = 610

here). The empirical Bayes estimates δ̂i = Ê{δi | zi} help correct for the winner’s curse (“selection

bias”), moving the estimates for the extreme zi values closer to zero.

False discovery rates

Let π0 be the prior probability of a null gene, i.e., δ = 0. The “local false discovery rate” is the

posterior null probability,

fdr(z) = Pr{δ = 0 | z}.

Homework 1.19. (a) Show that

fdr(zi) = π0g0(zi)/g(zi),
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where g(·) is the marginal density. (b) In the normal case z ∼ N (δ, 1), what is the relationship

between fdr(z) and E{δ | z}?

In practice, fdr(z) is often estimated by

f̂dr(z) = g0(z)/ĝ(z),

setting π0 = 1, an upper bound. This is the dashed curve in Figure 1.4.

1.7 Some basic statistical results

This section briefly reviews some basic statistical results on estimation and testing as they apply

to exponential families. A good reference is Lehmann and Romano’s Theory of Point Estimation

(2008), 3rd edition, from Springer.

Maximum likelihood and Fisher information

We observe a random sample y = (y1, y2, . . . , yn) from a member gη(y) of an exponential family G,

yi
iid∼ gη(y), i = 1, 2, . . . , n.

According to (1.2) in Section 1.3, the density of y is

gYη (y) = en[ηȳ−ψ(η)]
n∏
i=1

g0(yi),

where ȳ =
∑n

1 yi/n. The log likelihood function lη(y) = log gYη (y), y fixed and η varying, is

lη(y) = n [ηȳ − ψ(η)] ,

giving score function l̇η(y) = ∂/∂η lη(y) equaling

l̇η(y) = n(ȳ − µ) (1.7)

(remembering that ψ̇(η) = ∂/∂ηψ(η) equals µ, the expectation parameter).

The maximum likelihood estimate (MLE) of η is the value η̂ satisfying

l̇η̂(y) = 0.

Looking at (1.7), η̂ is that η such that µ = ψ̇(η) equals ȳ,

η̂ : Eη=η̂{Y } = ȳ.

In other words, the MLE matches the theoretical expectation of Y to the observed mean ȳ.
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We can also take the score function with respect to µ,

∂

∂µ
lη(y) = l̇η(y)

∂η

∂µ
= l̇η(y)

/
V

= n(ȳ − µ)/V.

(1.8)

This gives
∂

∂µ
lη(y)

∣∣∣∣
µ=ȳ

= 0,

which shows that the MLE of µ is

µ̂ = ȳ.

But µ = ψ̇(η), a monotone one-to-one function,

so, since MLEs map in the obvious way, we get

η̂ = ψ̇−1(ȳ).

For the Poisson η̂ = log(ȳ), and for the binomial,

according to Section 1.4,

η̂ = log
π̂

1− π̂
where π̂ = y/N.

Fisher information is the expected square of the score function — which, since the expected

score is always zero, is also its variance — denoted

i(n)
η = nV

for the information for η, and writing simply iη for the case n = 1. The information for µ is

i(n)
η (µ) = n/V,

using (1.8), the notation being understood as the information for µ in a sample of size n, evaluated

at gη(y). As always, V stands for Vη, the variance of a single observation y from gη(·).

Let ζ = h(η) be any function of η, also expressed as, say,

ζ = H(µ) = h
(
ψ̇−1(µ)

)
.

Then ζ has MLE ζ̂ = h(η̂) = H(µ̂) and score

∂

∂ζ
lη(y) = l̇η(y)

/
ḣ(η).

The figure and table which follow show the MLE and information relationships.
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Score Functions

η : l̇η(y) = n(ȳ − µ)

µ :
∂lη(y)

∂µ
=
n(ȳ − µ)

V

ζ :
∂lη(y)

∂ζ
=
n(ȳ − µ)

ḣ(η)

Fisher Information

i(n)
η = Varη

[
l̇η(y)

]
= nV = niη

i(n)
η (µ) =

n

V
= niη(µ)

i(n)
η (ζ) =

nV

ḣ(η)2
= niη(ζ)

In general the Fisher information iθ for a one-parameter family fθ(x) has two expressions, in

terms of the 1st and 2nd derivatives of the log likelihood,

iθ = E

{(
∂lθ
∂θ

)2
}

= −E
{
∂2lθ
∂θ2

}
.

For i
(n)
η , the Fisher information for η in y = (y1, y2, . . . , yn), we have

−l̈η(y) = − ∂2

∂η2
n(ηȳ − ψ) = − ∂

∂η
n(ȳ − µ)

= nVη = i(n)
η ,

so in this case −l̈η(y) gives i
(n)
η without requiring an expectation over y.

Homework 1.20. (a) Does

i(n)
η (µ) = − ∂2

∂µ2
lη(y)?

(b) Does

i
(n)
η=η̂(µ) = − ∂

∂µ2
lη(y)

∣∣∣∣
η=η̂

(η̂ the MLE) ?
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Cramér–Rao lower bound

The CRLB for an unbiased estimator ζ̄ for a general parameter ζ is

Varη(ζ̄) ≥ 1

i
(n)
η (ζ)

= ḣ(η)2
/
nVη.

For ζ ≡ µ,

Var(µ̄) ≥
V 2
η

nVη
=
Vη
n
.

In this case the MLE µ̂ = ȳ is unbiased and achieves the CRLB. This happens only for µ or linear

functions of µ, and not for η, for instance.

In general, the MLE ζ̂ is not unbiased for ζ = h(η), but the bias is of order 1/n,

Eη{ζ̂} = ζ +B(η)/n.

A more general form of the CRLB gives

Varη(ζ̂) ≥

[
ḣ(η) + Ḃ(η)/n

]2

nVη
=
ḣ(η)2

nVη
+O

(
1

n2

)
.

Usually ḣ(η)2/(nVη) is a reasonable approximation for Varη(ζ̂).

Delta method

If X has mean µ and variance σ2, then Y = H(X)
.
= H(µ) +H ′(µ)(X − µ) has approximate mean

and variance

Y ∼̇
{
H(µ), σ2

[
H ′(µ)

]2}
.

Homework 1.21. Show that if ζ = h(η) = H(µ), then the MLE ζ̂ has delta method approximate

variance

Varη(ζ̂)
.
=
ḣ(η)2

nVη
,

in accordance with the CRLB 1/i
(n)
η (ζ). (In practice we must substitute η̂ for η in order to estimate

Varη(ζ̂).)

Hypothesis testing (Lehmann)

Suppose we wish to test

H0 : η = η0 versus HA : η = η1 (η1 > η0).

• log{gη1(y)/gη0(y)} = (η1 − η0)y − [ψ(η1)− ψ(η0)] ↑ y
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• By the Neyman–Pearson lemma, MPα test rejects for y ≥ Y
(1−α)

0 where Y
(1−α)

0 is (1− α)th

quantile of Y under H0.

• This doesn’t depend on η1, so the test is UMPα.

• For non-exponential families, such as Cauchy translation family, the MPα test depends on

η1: “A one-parameter exponential family is a straight line through the space of probability

distributions.” (Efron 1975, Ann. Statist. pp. 1189-1281)

1.8 Deviance and Hoeffding’s formula

Deviance is an analogue of Euclidean distance applied to exponential families gη(y) = eηy−ψ(η)g0(y).

By definition the deviance D(η1, η2) between gη1 and gη2 in family G is

D(η1, η2) = 2Eη1

{
log

(
gη1(y)

gη2(y)

)}
= 2

∫
Y
gη1(y) log [gη1(y)/gη2(y)] m(dy).

We will also write D(µ1, µ2) or just D(1, 2); the deviance is the distance between the two densities,

not their indices.

Homework 1.22. Show that D(η1, η2) ≥ 0, with strict inequality unless the two densities are

identical.

Note. In general, D(η1, η2) 6= D(η2, η1).

Older name

The “Kullback–Leibler distance” equals D(η1, η2)/2. Information theory uses “mutual information”

for D[f(x, y), f(x)f(y)]/2, where f(x, y) is a bivariate density and f(x) and f(y) its marginals.

Homework 1.23. Verify these formulas for the deviance:

Poisson Y ∼ Poi(µ) : D(µ1, µ2) = 2µ1

[
log

(
µ1

µ2

)
−
(

1− µ2

µ1

)]
Binomial Y ∼ Bi(N, π) : D(π1, π2) = 2N

[
π1 log

(
π1

π2

)
+ (1− π1) log

(
1− π1

1− π2

)]
Normal Y ∼ N (µ, 1) : D(µ1, µ2) = (µ1 − µ2)2

Gamma Y ∼ λGN : D(λ1, λ2) = 2N

[
log

(
λ2

λ1

)
+

(
λ1

λ2
− 1

)]
= 2N

[
log

(
µ2

µ1

)
+

(
µ1

µ2
− 1

)]
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Hoeffding’s formula

Let η̂ be the MLE of η having observed y. Then

gη(y) = gη̂(y)e−D(η̂,η)/2.

Indexing the family with the expectation parameter µ rather than η, and remembering that µ̂ = y,

we get a more memorable version of Hoeffding’s formula,

gµ(y) = gµ̂(y)e−D(µ̂,µ)/2

= gy(y)e−D(y,µ)/2.
(1.9)

This last says that a plot of the log likelihood log[gµ(y)] declines from its maximum at µ = y

according to the deviance,

log [gµ(y)] = log [gy(y)]−D(y, µ)/2.

In our applications of the deviance, the first argument will always be the data, the second a proposed

value of the unknown parameter.

Proof. The deviance in an exponential family is

D(η1, η2)

2
= Eη1 log

gη1(y)

gη2(y)
= Eη1 {(η1 − η2)y − ψ(η1) + ψ(η2)}

= (η1 − η2)µ1 − ψ(η1) + ψ(η2).

Therefore

gη(y)

gη̂(y)
=
eηy−ψ(η)

eη̂y−ψ(η̂)
= e(η−η̂)y−ψ(η)+ψ(η̂) = e(η−η̂)µ̂−ψ(η)+ψ(η̂).

Taking η1 = η̂ and η2 = η, this last is D(η̂, η)/2. �

Repeated sampling

If y = (y1, y2, . . . , yn) is an iid sample from gη(·) then the deviance based on y, say Dn(η1, η2), is

Dn(η1, η2) = 2Eη1 log
[
gYη1

(y)
/
gYη2

(y)
]

= 2Eη1

{
log

n∏
i=1

[
gη1(yi)

gη2(yi)

]}

= 2
n∑
i=1

{
Eη1 log

[
gη1(yi)

gη2(yi)

]}
= nD(η1, η2).

(This fact shows up in the binomial, Poisson, and gamma cases of Homework 1.16.)

Note. We are indexing the possible distributions of Y with η, not η(n) = nη.

Homework 1.24. What is the deviance formula for the negative binomial family?
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Relationship with Fisher information

For η2 near η, the deviance is related to the Fisher information iη1 = Vη1 (in a single observation

y, for η1 and at η1):

D(η1, η2) = iη1(η2 − η1)2 +O(η2 − η1)3.

Proof.

∂

∂η2
D(η1, η2) =

∂

∂η2
2 {(η1 − η2)µ1 − [ψ(η1)− ψ(η2)]} = 2(−µ1 + µ2) = 2(µ2 − µ1).

Also
∂2

∂η2
2

D(η1, η2) = 2
∂µ2

∂η2
= 2Vη2 .

Therefore
∂

∂η2
D(η1, η2)

∣∣∣∣
η2=η1

= 0 and
∂2

∂η2
2

D(η1, η2)

∣∣∣∣
η2=η1

= 2Vη1 ,

so

D(η1, η2) = 2Vη1

(η2 − η1)2

2
+O(η2 − η1)3. �

Homework 1.25. What is ∂3D(η1, η2)/∂η3
2?

An informative picture

ψ(η) is a convex function of η since ψ̈(η) =

Vη > 0. The picture shows ψ(η) passing through

(η1, ψ(η1)) at slope µ1 = ψ̇(η1). The diffe-

rence between ψ(η2) and the linear bounding line

ψ(η1)+(η2−η1)µ1 is ψ(η2)−ψ(η1)+(η1−η2)µ1 =

D(η1, η2)/2.

The previous picture, unlike our other results, depends on parameterizing the deviance as

D(η1, η2). A version that uses D(µ1, µ2) depends on the dual function φ(y) to ψ(y),

φ(y) = max
η
{ηy − ψ(η)} .

Reference Efron (1978), “Geometry of exponential families”, Ann. Statist.
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Homework 1.26. Show that (a) φ(µ) = ηµ −
ψ(η), where µ = ψ̇(η); (b) φ(µ) is convex as a

function of µ; and (c) dφ(µ)/dµ = η. (d) Verify

the picture at right.

Homework 1.27. Parametric bootstrap: we res-

ample y∗ from gη̂(·), η̂ = MLE based on y. Show

that

gη(y
∗) = gη̂(y

∗)e(η−η̂)(y∗−y)−D(η̂,η)/2.

Deviance residuals

The idea: if D(y, µ) is the analogue of (y − µ)2 in a normal model, then

sign(y − µ)
√
D(y, µ)

should be the exponential family analogue of a normal residual y − µ.

We will work in the repeated sampling framework

yi
iid∼ gµ(·), i = 1, 2, . . . , n,

with MLE µ̂ = ȳ and total deviance Dn(µ̂, µ) = nD(ȳ, µ). The deviance residual, of µ̂ = ȳ from

true mean µ, is defined to be

R = sign(ȳ − µ)
√
Dn(ȳ, µ). (1.10)

The hope is that R will be nearly N (0, 1), closer to normal than the obvious “Pearson residual”

RP =
ȳ − µ√
Vµ/n

(called “zi” later). Our hope is bolstered by the following theorem, verified in Appendix C of

McCullagh and Nelder, Generalized Linear Models.

Theorem 2. The asymptotic distribution of R as n→∞ is

R ∼̇ N
[
−an, (1 + bn)2

]
, (1.11)

where an and bn are defined in terms of the skewness and kurtosis of the original (n = 1) exponential

family,

an = (γµ/6)
/√

n and bn =
[
(7/36) γ2

µ − δµ
] /
n.

The normal approximation in (1.11) is accurate through Op (1/n), with errors of order Op (1/n3/2),
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e.g.,

Pr

{
R+ an
1 + bn

> 1.96

}
= 0.025 +O (1/n3/2)

(so-called “third order accuracy”).

Corollary 1.

Dn(ȳ, µ) = R2 ∼̇

(
1 +

5γ2
µ − 3δµ

12n

)
· χ2

1,

χ2
1 a chi-squared random variable with degrees of freedom 1. Since

Dn(ȳ, µ) = 2 log
[
gYµ̂ (y)

/
gYµ (y)

]
according to Hoeffding’s formula, the corollary is an improved version of Wilks’ theorem, i.e.,

2 log(gµ̂/gµ)→ χ2
1 in one-parameter situations.

The constants an and bn are called “Bartlett corrections”. The theorem says that

R ∼̇ (Z + an)/(1 + bn) where Z ∼ N (0, 1).

Since an = O(1/
√
n) and bn = O(1/n), the expectation correction in (1.11) is more important than

the variance correction.

Homework 1.28. Gamma case, y ∼ λGN with N fixed (N can be thought of as n). (a) Show

that the deviance residual sign(y − λN)
√
D(y, λN) has the same distribution for all choices of λ.

(b) What is the skewness of the Pearson residual (y − λN)/λ
√
N?

Homework 1.29. Use our previous results to show that

Dn(ȳ, µ)
.
= R2

P +
γ

6
√
n
R3
P +OP (1/n) .

An example

Figure 1.5 shows the results of 2000 replications of y ∼ G5 (or equivalently,

ȳ =
5∑
1

yi/5,

where yi are independent G1 variates, that is, standard one-sided exponentials). The qq-plot shows

the deviance residuals (black) much closer to N (0, 1) than the Pearson residuals (red).

Homework 1.30. Compute a version of Figure 1.5 applying to y ∼ Poi(16).
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figure 1.6  qq comparison of Deviance residuals (black) with
Pearson residuals (red); Gamma N=1, lambda=1, n=5; B=2000 sims
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Figure 1.5: qq comparison of deviance residuals (black) with Pearson residuals (red); gamma N = 1, λ = 1,
n = 5; B = 2000 simulations.

An example of Poisson deviance analysis

Reference Thisted and Efron (1987), “Did Shakespeare write a newly discovered poem?”, Bi-

ometrika

• A newly discovered poem is of total length 429 words, comprising 258 different words. An

analysis is done to test the hypothesis that Shakespeare wrote the poem.

• 9 of the 258 words never appeared in the 884,647 total words of known Shakespeare; 7 of the

258 words appeared once each in the known Shakespeare, etc., as presented in column “y” of

the table.

• A simple theory predicts 6.97 for the expected number of “new” words, given Shakespearean

authorship, 4.21 “once before” words, etc., presented in column “ν” of the table. The theory

also predicts independent Poisson distributions for the y values,

yi
ind∼ Poi(νi) for i = 1, 2, . . . , 11.

• “Dev” shows the Poisson deviances; the total deviance 19.98 is moderately large compared

to a chi-squared distribution with 11 degrees of freedom, P{χ2
11 > 19.98} = 0.046. This casts

some moderate doubt on Shakespearan authorship.

• “R” is the signed square root of the deviance; “an” is the correction 1/6× ν1/2 suggested by

the theorem (1.11); “RR” is the corrected residual R + an. These should be approximately
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N (0, 1) under the hypothesis of Shakespearean authorship. The residual for 20–29 looks

suspiciously large.

• 8 out of 11 of the RR’s are positive, suggesting that the y’s may be systematically larger than

the ν’s. Adding up the 11 cases,

y+ = 118, ν+ = 94.95.

This gives D+ = Dev(y+, ν+) = 5.191, R+ = 2.278, and RR+ = 2.295. The normal proba-

bility of exceeding 2.295 is 0.011, considerably stronger evidence (but see the paper). The

actual probability is

Pr{Poi(94.95) ≥ 118} = 0.011.

# Prev y ν Dev R an RR

0 9 6.97 .5410 .736 .0631 .799

1 7 4.21 1.5383 1.240 .0812 1.321

2 5 3.33 .7247 .851 .0913 .943

3–4 8 5.36 1.1276 1.062 .0720 1.134

5–9 11 10.24 .0551 .235 .0521 .287

10–19 10 13.96 1.2478 −1.117 .0446 −1.072

20–29 21 10.77 7.5858 2.754 .0508 2.805

30–39 16 8.87 4.6172 2.149 .0560 2.205

40–59 18 13.77 1.1837 1.088 .0449 1.133

60–79 8 9.99 .4257 −.652 .0527 −.600

80–99 5 7.48 .9321 −.965 .0609 −.904

1.9 The saddlepoint approximation

We observe a random sample of size n from some

member of an exponential family G,

y1, y2, . . . , yn
iid∼ gµ(·)

(now indexed by expectation parameter µ), and wish to approximate the density of the sufficient

statistic µ̂ = ȳ for some value of µ̂ perhaps far removed from µ. Let g
(n)
µ (µ̂) denote this density.

The normal approximation

g(n)
µ (µ̂)

.
=

√
n

2πVµ
e
− 1

2
n
Vµ

(µ̂−µ)2

is likely to be inaccurate if µ̂ is say several standard errors removed from µ. Hoeffding’s formula
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gives a much better result, called the saddlepoint approximation:

g(n)
µ (µ̂) = g

(n)
µ̂ (µ̂)e−Dn(µ̂,µ)/2 [Dn(µ̂, µ) = nD(µ̂, µ)]

.
=

√
n

2πVµ̂
e−Dn(µ̂,µ)/2

(1.12)

Here Vµ̂ = ψ̈(η̂), the variance of a single yi if µ = µ̂.

The approximation

g
(n)
µ̂ (µ̂)

.
=

√
n

2πVµ̂

comes from applying the central limit theorem at the center of the g
(n)
µ̂ (·) distribution, just where it

is most accurate. There is an enormous literature of extensions and improvements to the saddlepoint

approximation: a good review article is Reid (1988) in Statistical Science.

The Lugananni–Rice formula

The saddlepoint formula can be integrated to give

an approximation to α(µ), the attained signifi-

cance level or “p-value” of parameter value µ ha-

ving observed ȳ = µ̂:

α(µ) =

∫ ∞
µ̂

g(n)
µ (t)m(dt).

Numerical integration is required to compute α(µ) from the saddlepoint formula itself, but the

Lugananni–Rice formula provides a highly accurate closed-form approximation:

α(µ)
.
= 1− Φ(R)− ϕ(R)

(
1

R
− 1

Q

)
+O

(
1

n3/2

)
,

where Φ and ϕ are the standard normal cdf and density,

R = sign(µ̂− µ)
√
nD(µ̂, µ)

the deviance residual, and

Q =
√
nVµ̂ · (η̂ − η)

the crude form of the Pearson residual based on the canonical parameter η, not on µ. (Remember

that ŝd(η̂)
.
= 1/

√
nV̂ , so Q = (η̂− η)/ŝd(η̂).) Reid (1988) is also an excellent reference here, giving

versions of the L-R formula that apply not only to exponential family situations but also to general

distributions of ȳ.

Homework 1.31. Suppose we observe y ∼ λGN , GN gamma df = N , with N = 10 and λ = 1.

Use the L-R formula to calculate α(µ) for y = µ̂ = 15, 20, 25, 30, and compare the results with the

exact values. (You can use any function above for R.)
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Homework 1.32. Another version of the L-R formula is

1− α(µ)
.
= Φ(R′),

where

R′ = R+
1

R
log

(
Q

R

)
.

How does this relate to the first form?

Large deviations and exponential tilting

In a generic “large deviations” problem, we observe an iid sample

y1, y2, . . . , yn
iid∼ g0(·)

from a known density g0 having mean and standard deviation

yi ∼ (µ0, σ0).

We wish to compute

αn(µ) = Pr0{ȳ ≥ µ}

for some fixed value µ > µ0. As n → ∞, the number of standard errors
√
n(µ − µ0)/σ0 gets big,

rendering the central limit theorem useless.

Homework 1.33 (“Chernoff bound”). Let gη(y) = eηy−ψ(η)g0(y) (“the exponential family through

g0”).

(a) For any λ > 0 show that αn(µ) = Pr0{ȳ ≥ µ} satisfies

αn(µ) ≤ βn(µ) ≡
∫
Y
enλ(ȳ−µ)g0(y) dy.

(b) Show that βn(µ) is minimized at λ = η, the value of λ corresponding to µ.

(c) Finally, verify Chernoff’s large deviation bound

Pr0{ȳ ≥ µ} ≤ e−nD(µ,0),

where D(µ, 0) is the deviance between gη(y) and g0(y).

Notice that for fixed µ, αn(µ)→ 0 exponentially fast, which is typical for large deviation results.

Homework 1.34. Extra credit: Suppose g0(y) = 1 for y in [0, 1] and 0 otherwise. Calculate the

Chernoff bound for Pr0{ȳ ≥ 0.9}.
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1.10 Transformation theory

Reference Hougaard (1982), JRSS-B ; DiCiccio (1984) Biometrika; Efron (1982), Ann. Statist.

Power transformations are used to make exponential families more like the standard normal

translation family Y ∼ N (µ, 1). For example, Y ∼ Poi(µ) has variance Vµ = µ depending on the

expectation µ, while the transformation

Z = H(Y ) = 2
√
Y

yields, approximately, Var(Z) = 1 for all µ. In a regression situation with Poisson responses

y1, y2, . . . , yn, we might first change to zi = 2
√
yi and then employ standard linear model met-

hods. (That’s not how we will proceed in Part 2, where generalized linear model techniques are

introduced.)

The following display summarizes an enormous number of transformation results for one-

parameter exponential families. Let

ζ = H(µ)

and likewise Z = H(Y ) and ζ̂ = H(µ̂). The choice of transformation H(·) satisfying

H ′(µ) = V δ−1
µ

then results in:

δ 1/3 1/2 2/3

result normal stabilized normal

likelihood variance density

The stabilized variance result follows from the delta method:

ζ̂ = H(µ̂) with H ′(µ) =
1√
Vµ

implies that

sdµ(ζ̂)
.
=

sdµ(µ̂)√
Vµ

= 1.

For the Poisson family, with Vµ = µ,

H ′(µ) =
1
√
µ

gives

H(µ) = 2
√
µ+ any constant

as above.
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“Normal likelihood” means that the transfor-

mation ζ̂ = H(µ̂) results in

∂3lµ(y)

∂ζ3

∣∣∣∣
ζ̂

= 0

where lµ(y) = log gµ(y), the densities indexed by

µ. This makes the log likelihood look parabolic

near its maximum at ζ = ζ̂. For the Poisson the

transformation is H ′ = V −2/3 = µ−2/3, or

H(µ) = 3µ1/3 + constant.

“Normal density” means that ζ̂ = H(µ̂) ∼̇ N (0, 1). For the Poisson H ′ = µ−1/3 or

H(µ) =
3

2
µ2/3 + constant (makes skewness ζ̂

.
= 0).

One sees all three transformations 2µ1/2, 3µ1/3, and 3/2µ2/3 referred to as “the” transformation for

the Poisson.

Homework 1.35. Numerically compare the three transformations for the Poisson for n = 5, 10, 15,

20, and 25.

Our transformation results apply to any sample size n, with V
(n)
µ = Vµ/n. Verification of the

normal density and normal likelihood cases appear in Efron (1982).

Homework 1.36. We observe independent χ2 variables

σ̂2
i ∼ σ2

i χ
2
νi/νi,

the νi being known degrees of freedom, and wish to regress σ̂2
i versus some known covariates. Two

frequently suggested transformations are log(σ̂2
i ) and (σ̂2

i )
1/3, the latter being the “Wilson–Hilferty”

transformation. Discuss the two transformations in terms of the previous results table.


