
Chapter 1

Empirical Bayes and the
James–Stein Estimator

Charles Stein shocked the statistical world in 1955 with his proof that maximum likeli-
hood estimation methods for Gaussian models, in common use for more than a century,
were inadmissible beyond simple one- or two-dimensional situations. These methods are
still in use, for good reasons, but Stein-type estimators have pointed the way toward
a radically different empirical Bayes approach to high-dimensional statistical inference.
We will be using empirical Bayes ideas for estimation, testing, and prediction, beginning
here with their path-breaking appearance in the James–Stein formulation.

Although the connection was not immediately recognized, Stein’s work was half
of an energetic post-war empirical Bayes initiative. The other half, explicitly named
“empirical Bayes” by its principal developer Herbert Robbins, was less shocking but
more general in scope, aiming to show how frequentists could achieve full Bayesian
efficiency in large-scale parallel studies. Large-scale parallel studies were rare in the
1950s, however, and Robbins’ theory did not have the applied impact of Stein’s shrinkage
estimators, which are useful in much smaller data sets.

All of this has changed in the twenty-first century. New scientific technologies,
epitomized by the microarray, routinely produce studies of thousands of parallel cases
— we will see several such studies in what follows — well-suited for the Robbins point
of view. That view predominates in the succeeding chapters, though not explicitly
invoking Robbins’ methodology until the very last section of the book.

Stein’s theory concerns estimation whereas the Robbins branch of empirical Bayes
allows for hypothesis testing, that is, for situations where many or most of the true
effects pile up at a specific point, usually called 0. Chapter 2 takes up large-scale hy-
pothesis testing, where we will see, in Section 2.6, that the two branches are intertwined.
Empirical Bayes theory blurs the distinction between estimation and testing as well as
between frequentist and Bayesian methods. This becomes clear in Chapter 2, where we
will undertake frequentist estimation of Bayesian hypothesis testing rules.
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1.1 Bayes Rule and Multivariate Normal Estimation

This section provides a brief review of Bayes theorem as it applies to multivariate normal
estimation. Bayes rule is one of those simple but profound ideas that underlie statistical
thinking. We can state it clearly in terms of densities, though it applies just as well to
discrete situations. An unknown parameter vector µ with prior density g(µ) gives rise
to an observable data vector z according to density fµ(z),

µ ∼ g(·) and z|µ ∼ fµ(z). (1.1)

Bayes rule is a formula for the conditional density of µ having observed z (its posterior
distribution),

g(µ|z) = g(µ)fµ(z)/f(z) (1.2)

where f(z) is the marginal distribution of z,

f(z) =
∫
g(µ)fµ(z) dµ, (1.3)

the integral being over all values of µ.
The hardest part of (1.2), calculating f(z), is usually the least necessary. Most often

it is sufficient to note that the posterior density g(µ|z) is proportional to g(µ)fµ(z),
the product of the prior density g(µ) and the likelihood fµ(z) of µ given z. For any
two possible parameter values µ1 and µ2, (1.2) gives

g(µ1|z)
g(µ2|z)

=
g(µ1)
g(µ2)

fµ1(z)
fµ2(z)

, (1.4)

that is, the posterior odds ratio is the prior odds ratio times the likelihood ratio. Formula
(1.2) is no more than a statement of the rule of conditional probability but, as we will
see, Bayes rule can have subtle and surprising consequences.

Exercise 1.1. Suppose µ has a normal prior distribution with mean 0 and variance A,
while z given µ is normal with mean µ and variance 1,

µ ∼ N (0, A) and z|µ ∼ N (µ, 1). (1.5)

Show that
µ|z ∼ N (Bz,B) where B = A/(A+ 1). (1.6)

Starting down the road to large-scale inference, suppose now we are dealing with
many versions of (1.5),

µi ∼ N (0, A) and zi|µi ∼ N (µi, 1) [i = 1, 2, . . . , N ], (1.7)

the (µi, zi) pairs being independent of each other. Letting µ = (µ1, µ2, . . . , µN )′ and
z = (z1, z2, . . . , zN )′, we can write this compactly using standard notation for the N -
dimensional normal distribution,

µ ∼ NN (0, AI) (1.8)
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and

z|µ ∼ NN (µ, I), (1.9)

I the N ×N identity matrix. Then Bayes rule gives posterior distribution

µ|z ∼ NN (Bz, BI) [B = A/(A+ 1)], (1.10)

this being (1.6) applied component-wise.
Having observed z we wish to estimate µ with some estimator µ̂ = t(z),

µ̂ = (µ̂1, µ̂2, . . . , µ̂N )′ . (1.11)

We use total squared error loss to measure the error of estimating µ by µ̂,

L (µ, µ̂) = ‖µ̂− µ‖2 =
N∑
i=1

(µ̂i − µi)2 (1.12)

with the corresponding risk function being the expected value of L(µ, µ̂) for a given µ,

R(µ) = Eµ {L (µ, µ̂)} = Eµ

{
‖t(z)− µ‖2

}
, (1.13)

Eµ indicating expectation with respect to z ∼ NN (µ, I), µ fixed.
The obvious estimator of µ, the one used implicitly in every regression and ANOVA

application, is z itself,
µ̂(MLE) = z, (1.14)

the maximum likelihood estimator (MLE) of µ in model (1.9). This has risk

R(MLE)(µ) = N (1.15)

for every choice of µ; every point in the parameter space is treated equally by µ̂(MLE),
which seems reasonable for general estimation purposes.

Suppose though we have prior belief (1.8) which says that µ lies more or less near
the origin 0. According to (1.10), the Bayes estimator is

µ̂(Bayes) = Bz =
(

1− 1
A+ 1

)
z, (1.16)

this being the choice that minimizes the expected squared error given z. If A = 1, for
instance, µ̂(Bayes) shrinks µ̂(MLE) halfway toward 0. It has risk

R(Bayes)(µ) = (1−B)2‖µ‖2 +NB2, (1.17)

(1.13), and overall Bayes risk

R
(Bayes)
A = EA

{
R(Bayes)(µ)

}
= N

A

A+ 1
, (1.18)

EA indicating expectation with respect to µ ∼ NN (0, AI).
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Exercise 1.2. Verify (1.17) and (1.18).

The corresponding Bayes risk for µ̂(MLE) is

R
(MLE)
A = N

according to (1.15). If prior (1.8) is correct then µ̂(Bayes) offers substantial savings,

R
(MLE)
A −R(Bayes)

A = N/(A+ 1); (1.19)

with A = 1, µ̂(Bayes) removes half the risk of µ̂(MLE).

1.2 Empirical Bayes Estimation

Suppose model (1.8) is correct but we don’t know the value of A so we can’t use
µ̂(Bayes). This is where empirical Bayes ideas make their appearance. Assumptions
(1.8), (1.9) imply that the marginal distribution of z (integrating z ∼ NN (µ, I) over
µ ∼ NN (0, A · I)) is

z ∼ NN (0, (A+ 1)I) . (1.20)

The sum of squares S = ‖z‖2 has a scaled chi-square distribution with N degrees of
freedom,

S ∼ (A+ 1)χ2
N , (1.21)

so that

E

{
N − 2
S

}
=

1
A+ 1

. (1.22)

Exercise 1.3. Verify (1.22).

The James–Stein estimator is defined to be

µ̂(JS) =
(

1− N − 2
S

)
z. (1.23)

This is just µ̂(Bayes) with an unbiased estimator (N−2)/S substituting for the unknown
term 1/(A+ 1) in (1.16). The name “empirical Bayes” is satisfyingly apt for µ̂(JS): the
Bayes estimator (1.16) is itself being empirically estimated from the data. This is only
possible because we have N similar problems, zi ∼ N (µi, 1) for i = 1, 2, . . . , N , under
simultaneous consideration.

It is not difficult to show that the overall Bayes risk of the James–Stein estimator is

R
(JS)
A = N

A

A+ 1
+

2
A+ 1

. (1.24)

Of course this is bigger than the true Bayes risk (1.18), but the penalty is surprisingly
modest,

R
(JS)
A

/
R

(Bayes)
A = 1 +

2
N ·A

. (1.25)

For N = 10 and A = 1, R(JS)
A is only 20% greater than the true Bayes risk.
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The shock the James–Stein estimator provided the statistical world didn’t come
from (1.24) or (1.25). These are based on the zero-centric Bayesian model (1.8), where
the maximum likelihood estimator µ̂(0) = z, which doesn’t favor values of µ near 0,
might be expected to be bested. The rude surprise came from the theorem proved by
James and Stein in 19611:

Theorem. For N ≥ 3, the James–Stein estimator everywhere dominates the MLE µ̂(0)

in terms of expected total squared error; that is

Eµ

{
‖µ̂(JS) − µ‖2

}
< Eµ

{
‖µ̂(MLE) − µ‖2

}
(1.26)

for every choice of µ.

Result (1.26) is frequentist rather that Bayesian — it implies the superiority of µ̂(JS)

no matter what one’s prior beliefs about µ may be. Since versions of µ̂(MLE) dominate
popular statistical techniques such as linear regression, its apparent uniform inferiority
was a cause for alarm. The fact that linear regression applications continue unabated
reflects some virtues of µ̂(MLE) discussed later.

A quick proof of the theorem begins with the identity

(µ̂i − µi)2 = (zi − µ̂i)2 − (zi − µi)2 + 2 (µ̂i − µi) (zi − µi). (1.27)

Summing (1.27) over i = 1, 2, . . . , N and taking expectations gives

Eµ

{
‖µ̂− µ‖2

}
= Eµ

{
‖z − µ̂‖2

}
−N + 2

N∑
i=1

covµ (µ̂i, zi) , (1.28)

where covµ indicates covariance under z ∼ NN (µ, I). Integration by parts involving
the multivariate normal density function fµ(z) = (2π)−N/2 exp{−1

2

∑
(zi−µi)2} shows

that

covµ (µ̂i, zi) = Eµ

{
∂µ̂i
∂zi

}
(1.29)

as long as µ̂i is continuously differentiable in z. This reduces (1.28) to

Eµ ‖µ̂− µ‖2 = Eµ

{
‖z − µ̂‖2

}
−N + 2

N∑
i=1

Eµ

{
∂µ̂i
∂zi

}
. (1.30)

Applying (1.30) to µ̂(JS) (1.23) gives

Eµ

{∥∥∥µ̂(JS) − µ
∥∥∥2
}

= N − Eµ
{

(N − 2)2

S

}
(1.31)

with S =
∑
z2
i as before. The last term in (1.31) is positive if N exceeds 2, proving the

theorem.
1Stein demonstrated in 1956 that µ̂(0) could be everywhere improved. The specific form (1.23) was

developed with his student Willard James in 1961.
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Exercise 1.4. (a) Use (1.30) to verify (1.31). (b) Use (1.31) to verify (1.24).

The James–Stein estimator (1.23) shrinks each observed value zi toward 0. We don’t
have to take 0 as the preferred shrinking point. A more general version of (1.8), (1.9)
begins with

µi
ind∼ N (M,A) and zi|µi

ind∼ N (µi, σ2
0) (1.32)

for i = 1, 2, . . . , N , where M and A are the mean and variance of the prior distribution.
Then (1.10) and (1.20) become

zi
ind∼ N

(
M,A+ σ2

0

)
and µi|zi

ind∼ N
(
M +B(zi −M), Bσ2

0

)
(1.33)

for i = 1, 2, . . . , N , where

B =
A

A+ σ2
0

. (1.34)

Now Bayes rule µ̂(Bayes)
i = M +B(zi −M) has James–Stein empirical Bayes estimator

µ̂
(JS)
i = z̄ +

(
1− (N − 3)σ2

0

S

)
(zi − z̄), (1.35)

with z̄ =
∑
zi/N and S =

∑
(zi− z̄)2. The theorem remains true as stated, except that

we now require N ≥ 4.
If the difference in (1.26) were tiny then µ̂(JS) would be no more than an interesting

theoretical tidbit. In practice though, the gains from using µ̂(JS) can be substantial,
and even, in favorable circumstances, enormous.

Table 1.1 illustrates one such circumstance. The batting averages zi (number of
successful hits divided by the number of tries) are shown for 18 major league baseball
players early in the 1970 season. The true values µi are taken to be their averages over
the remainder of the season, comprising about 370 more “at bats” each. We can imagine
trying to predict the true values from the early results, using either µ̂(MLE)

i = zi or the
James–Stein estimates (1.35) (with σ2

0 equal the binomial estimate z̄(1−z̄)/45, z̄ = 0.265
the grand average2). The ratio of prediction errors is

18∑
1

(
µ̂

(JS)
i − µi

)2
/

18∑
1

(
µ̂

(MLE)
i − µi

)2
= 0.28, (1.36)

indicating a tremendous advantage for the empirical Bayes estimates.
The initial reaction to the Stein phenomena was a feeling of paradox: Clemente, at

the top of the table, is performing independently of Munson, near the bottom. Why
should Clemente’s good performance increase our prediction for Munson? It does for
µ̂(JS) (mainly by increasing z̄ in (1.35)), but not for µ̂(MLE). There is an implication of
indirect evidence lurking among the players, supplementing the direct evidence of each
player’s own average. Formal Bayesian theory supplies the extra evidence through a
prior distribution. Things are more mysterious for empirical Bayes methods, where the
prior may exist only as a motivational device.

2The zi are binomial here, not normal, violating the conditions of the theorem, but the James–Stein
effect is quite insensitive to the exact probabilistic model.
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Table 1.1: Batting averages zi = µ̂
(MLE)
i for 18 major league players early in the 1970 season;

µi values are averages over the remainder of the season. The James–Stein estimates µ̂(JS)
i (1.35)

based on the zi values provide much more accurate overall predictions for the µi values. (By
coincidence, µ̂i and µi both average 0.265; the average of µ̂(JS)

i must equal that of µ̂(MLE)
i .)

Name hits/AB µ̂
(MLE)
i µi µ̂

(JS)
i

Clemente 18/45 .400 .346 .294
F Robinson 17/45 .378 .298 .289
F Howard 16/45 .356 .276 .285
Johnstone 15/45 .333 .222 .280
Berry 14/45 .311 .273 .275
Spencer 14/45 .311 .270 .275
Kessinger 13/45 .289 .263 .270
L Alvarado 12/45 .267 .210 .266
Santo 11/45 .244 .269 .261
Swoboda 11/45 .244 .230 .261
Unser 10/45 .222 .264 .256
Williams 10/45 .222 .256 .256
Scott 10/45 .222 .303 .256
Petrocelli 10/45 .222 .264 .256
E Rodriguez 10/45 .222 .226 .256
Campaneris 9/45 .200 .286 .252
Munson 8/45 .178 .316 .247
Alvis 7/45 .156 .200 .242

Grand Average .265 .265 .265

1.3 Estimating the Individual Components

Why haven’t James–Stein estimators displaced MLE’s in common statistical practice?
The simulation study of Table 1.2 offers one answer. Here N = 10, with the 10 µi values
shown in the first column; µ10 = 4 is much different than the others. One thousand
simulations of z ∼ N10(µ, I) each gave estimates µ̂(MLE) = z and µ̂(JS) (1.23). Average
squared errors for each µi are shown. For example (µ̂(MLE)

1 − µ1)2 averaged 0.95 over
the 1000 simulations, compared to 0.61 for (µ̂(JS)

1 − µ1)2.
We see that µ̂(JS)

i gave better estimates than µ̂(MLE)
i for the first nine cases, but was

much worse for estimating the outlying case µ10. Overall, the total mean squared errors
favored µ(JS), as they must.

Exercise 1.5. If we assume that the µi values in Table 1.2 were obtained from µi
ind∼

N (0, A), is the total error 8.13 about right?

The James–Stein theorem concentrates attention on the total squared error loss
function

∑
(µ̂i − µi)2, without concern for the effects on individual cases. Most of

those effects are good, as seen in Table 1.2, but genuinely unusual cases, like µ10, can
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Table 1.2: Simulation experiment: z ∼ N10(µ, I) with (µ1, µs, . . . , µ10) as shown in first
column. MSE(MLE)

i is the average squared error (µ̂(MLE)
i − µi)2, likewise MSE(JS)

i . Nine of the
cases are better estimated by James–Stein, but for the outlying case 10, µ̂(JS)

10 has nearly twice
the error of µ̂(MLE)

10 .

µi MSE(MLE)
i MSE(JS)

i

1 −.81 .95 .61
2 −.39 1.04 .62
3 −.39 1.03 .62
4 −.08 .99 .58
5 .69 1.06 .67
6 .71 .98 .63
7 1.28 .95 .71
8 1.32 1.04 .77
9 1.89 1.00 .88

10 4.00 1.08 2.04!!

Total Sqerr 10.12 8.13

suffer. Baseball fans know that Clemente was in fact an extraordinarily good hitter, and
shouldn’t have been shrunk so drastically toward the mean of his less-talented cohort.
Current statistical practice is quite conservative in protecting individual inferences from
the tyranny of the majority, accounting for the continued popularity of stand-alone
methods like µ̂(MLE). On the other hand, large-scale simultaneous inference, our general
theme here, focuses on favorable group inferences.

Compromise methods are available, that capture most of the group savings while
protecting unusual individual cases. In the baseball example, for instance, we might
decide to follow the James–Stein estimate (1.35) subject to the restriction of not devi-
ating more than D σ0 units away from µ̂

(MLE)
i = zi (the so-called “limited translation

estimator” µ̂(D)
i ):

µ̂
(D)
i =

max
(
µ̂

(JS)
i , µ̂

(MLE)
i −Dσ0

)
for zi > z̄

min
(
µ̂

(JS)
i , µ̂

(MLE)
i +Dσ0

)
for zi ≤ z̄.

(1.37)

Exercise 1.6. Graph µ̂
(D)
i as a function of zi for the baseball data.

Taking D = 1 says that µ̂(D)
i will never deviate more than σ0 = 0.066 from zi, so

Clemente’s prediction would be µ̂(D)
1 = 0.334 rather than µ̂

(JS)
1 = 0.294. This sacrifices

some of the µ̂(JS) savings relative to µ̂(MLE), but not a great deal: it can be shown to
lose only about 10% of the overall James–Stein advantage in the baseball example.
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1.4 Learning from the Experience of Others

Bayes and empirical Bayes techniques involve learning from the experience of others,
e.g., each baseball player learning from the other 17. This always raises the question,
“Which others?” Chapter 10 returns to this question in the context of hypothesis
testing. There we will have thousands of other cases, rather than 17, vastly increasing
the amount of “other” experience.

Figure 1.1 diagrams James–Stein estimation, with case 1 learning from the N − 1
others. We imagine that the others have been observed first, giving estimates (M̂, Â)
for the unknown Bayes parameters in (1.32) (taking σ2

0 = 1). The estimated prior
distribution N (M̂, Â) is then used to supplement the direct evidence z1 ∼ N (µ1, 1)
for the estimation of µ1. (Actually µ̂(JS)

i includes zi as well as the others in estimating
(M̂, Â) for use on µ1: it can be shown that this improves the accuracy of µ̂(JS)

1 .) Versions
of this same diagram apply to the more intricate empirical Bayes procedures that follow.

“others”

.  .  .

.  .  .

.  .  .

Figure 1.1: Schematic diagram of James–Stein estimation, showing case 1 learning from the
experience of the other N − 1 cases.

Learning from the experience of others is not the sole property of the Bayes world.
Figure 1.2 illustrates a common statistical situation. N = 157 healthy volunteers have
had their kidney function evaluated by a somewhat arduous medical procedure. The
scores are plotted versus age, higher scores indicating better function, and it is obvious
that function tends to decrease with age. (At one time, kidney donation was forbidden
for donors exceeding 60, though increasing demand has relaxed this rule.) The heavy
line indicates the least squares fit of function to age.

A potential new donor, age 55, has appeared, but it is not practical to evaluate



10 CHAPTER 1. EMPIRICAL BAYES AND THE JAMES–STEIN ESTIMATOR

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 30 40 50 60 70 80 90

−
6

−
4

−
2

0
2

4

age−>

ki
dn

ey
 s

co
re

−
>

55

Figure 1.2: Kidney scores plotted versus age for 157 healthy volunteers. The least squares line
shows the decrease of function with age. How should we predict the score of a potential donor,
age 55?

his kidney function by the arduous medical procedure. Figure 1.2 shows two possible
predictions: the starred point is the function score (−0.01) for the only 55-year-old
person among the 157 volunteers, while the squared point reads off the value of the
least square line (−1.46) at age = 55. Most statisticians, frequentist or Bayesian, would
prefer the least squares prediction.

Tukey’s evocative term “borrowing strength” neatly captures the regression idea.
This is certainly “learning from the experience of others”, but in a more rigid framework
than Figure 1.1. Here there is a simple covariate, age, convincingly linking the volunteers
with the potential donor. The linkage is more subtle in the baseball example.

Often the two methods can be combined. We might extend model (1.32) to

µi
ind∼ N (M0 +M1 · agei, A) and zi ∼ N

(
µi, σ

2
0

)
. (1.38)

The James–Stein estimate (1.35) takes the form

µ̂
(JS)
i = µ̂

(reg)
i +

(
1− (N − 4)σ2

0

S

)(
zi − µ̂(reg)

i

)
, (1.39)

where µ̂(reg)
i is the linear regression estimate (M̂0 + M̂1 · agei) and S =

∑
(zi − µ̂(reg)

i )2.
Now µ̂

(JS)
i is shrunk toward the linear regression line instead of toward z̄.

Exercise 1.7. S = 503 for the kidney data. Assuming σ2
0 = 1, what is the James–Stein

estimate for the starred point in Figure 1.2 (i.e., for the healthy volunteer, age 55)?
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1.5 Empirical Bayes Confidence Intervals

Returning to the situation in Section 1.1, suppose we have N + 1 independent normal
observations zi, with

µi
ind∼ N (0, A) and zi|µi

ind∼ N (µi, 1) (1.40)

for i = 0, 1, 2, . . . , N , and we want to assign a “confidence interval” to the parameter µ0.
The quotes are necessary here because we wish to take advantage of empirical Bayes
information as in Figure 1.1, now with the “others” being z = (z1, z2, . . . , zN ) and with
(µ0, z0) playing the role of (µ1, z1) — taking us beyond classical confidence interval
methodology.

If A were known we could calculate the Bayes posterior distribution for µ0 according
to (1.10),

µ0|z0 ∼ N (Bz0, B)
[
B = A

/
(A+ 1)

]
, (1.41)

yielding
µ0 ∈ Bz0 ± 1.96

√
B (1.42)

as the obvious 95% posterior interval. A reasonable first try in the empirical Bayes
situation of Section 1.2 is to substitute the unbiased estimate

B̂ = 1− N − 2
S

[
S = ‖z‖2

]
(1.43)

into (1.41), giving the approximation

µ0|z0, z ∼̇ N
(
B̂z0, B̂

)
(1.44)

and similarly B̂z0 ± 1.96
√
B̂ for (1.42). In doing so, however, we have ignored the

variability of B̂ as an estimate of B, which can be substantial when N is small.
Here is a more accurate version of (1.44):

µ0|z0, z ∼̇ N
(
B̂z0, B̂ +

2
N − 2

[
z0

(
1− B̂

)]2
)

(1.45)

and its corresponding posterior interval

µ0 ∈ B̂z0 ± 1.96
{
B̂ +

2
N − 2

[
z0

(
1− B̂

)]2
}1

2
. (1.46)

Exercise 1.8. (a) Show that the relative length of (1.46) compared to the interval
based on (1.44) is 1 +

2
N − 2

z2
0

(
1− B̂

)2

B̂


1
2

. (1.47)

(b) For N = 17 and B̂ = 0.21 (appropriate values for the baseball example), graph
(1.47) for z0 between 0 and 3.
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Formula (1.45) can be justified by carefully following through a simplified version
of Figure 1.1 in which M = 0, using familiar maximum likelihood calculations to assess
the variability of Â and its effect on the empirical Bayes estimation of µ0 (called µ1 in
the figure).

Hierarchical Bayes methods offer another justification. Here the model (1.40) would
be preceded by some Bayesian prior assumption on the hyperparameter A, perhaps A
uniformly distributed over (0, 106), chosen not to add much information beyond that
in z to A’s estimation. The term objective Bayes is used to describe such arguments,
which are often insightful and useful. Defining V = A+ 1 in model (1.40) and formally
applying Bayes rule to the (impossible) prior that takes V to be uniformly distributed
over (0,∞) yields exactly the posterior mean and variance in (1.45).

Notes

Herbert Robbins, paralleling early work by R.A. Fisher, I.J. Good, and Alan Turing
(of Turing machine fame) developed a powerful theory of empirical Bayes statistical
inference, some references being Robbins (1956) and Efron (2003). Robbins reserved
the name “empirical Bayes” for situations where a genuine prior distribution like (1.8)
was being estimated, using “compound Bayes” for more general parallel estimation and
testing situations, but Efron and Morris (1973) hijacked “empirical Bayes” for James–
Stein-type estimators.

Stein (1956) and James and Stein (1961) were written entirely from a frequentist
point of view, which has much to do with their bombshell effect on the overwhelmingly
frequentist statistical literature of that time. Stein (1981) gives the neat identity (1.28)
and the concise proof of the theorem.

Limited translation estimates (1.37) were developed in Efron and Morris (1972),
amid a more general theory of relevance functions, modifications of the James–Stein
estimator that allowed individual cases to partially opt out of the overall shrinkage
depending on how relevant the other cases appeared to be. Relevance functions for
hypothesis testing will be taken up here in Chapter 10. Efron (1996) gives a more
general version of Figure 1.1.

The kidney data in Figure 1.2 is from the Stanford nephrology lab of Dr. B. Myers;
see Lemley et al. (2008). Morris (1983) gives a careful derivation of empirical Bayes
confidence intervals such as (1.46), along with an informative discussion of what one
should expect from such intervals.


