I. INTRODUCTION

In this paper, we describe a method for scatterplotting four-dimensional data. The basic idea is a variation on a suggestion by Tukey and Tukey (1981): as shown in Figure 1, represent a four-dimensional observation \(p = (x, y, s, t) \) by a point in each of two coordinate systems. To show that the dots corresponding to \((x, y)\) and \((s, t)\) represent the same point \(p\) in four dimensions, connect them with a straight line. When many points are plotted, the larger number of lines can become visually confusing. The lines can be "thinned down" (details are given in Section III) so that the remaining lines give an accurate

\[1\text{Work partially supported by the Department of Energy under contract number DE-AC03-76SF00515. Work partially supported by National Science Foundation under grant MCS77-16974.}\]
M and N Plots

representation of which point of the other plot. This picture general M and N plots are di
ted.
Before a general discuss it by considering an example from a diabetes study of Res 145 subjects in the study, in variables, here somewhat con
1) relative weight
2) a measure of glucose
3) a second measure of
data that only variables one, the Figure 2 shows a 2 and 2 plot has been rotated 180° to make is discussed in Section III on each scatterplot separate structure can be seen in the
- In the left-hand plot, in their range. There left-hand part of the lower SSPG; medium we:
spread out in SSPG.
- In the right-hand plot Glucose area seems to
some scattered high with glucose area are gene
insulin area variable high density of medium values of insulin area glucose area.
M and N Plots

representation of which points in one plot correspond to those of the other plot. This picture is called a 2 and 2 plot. More general M and N plots are discussed in Section III.

Before a general discussion of the technique, we illustrate it by considering an example in some detail. These data are from a diabetes study of Reaven and Miller (1979). For each of 145 subjects in the study, five variables were measured. The variables, here somewhat crudely described, are:

1) relative weight
2) a measure of glucose tolerance
3) a second measure of glucose tolerance - glucose area
4) a measure of insulin secretion - insulin area
5) a measure of how glucose and insulin interact - SSPG.

Variables two and three, the two measures of glucose tolerance, exhibited a very high degree of linear association ($R = 0.96$) so that only variables one, three, four and five will be considered. Figure 2 shows a 2 and 2 plot of this data. The right-hand part has been rotated 180° to make the picture easier to view (this is discussed in Section III). We have found it useful to focus on each scatterplot separately, and then see what additional structure can be seen in the lines.

- In the left-hand plot, both variables are quite spread-out in their range. There are almost no points in the upper left-hand part of the plot, so thin people tend to have lower SSPG; medium weight and heavier people seem quite spread out in SSPG.

- In the right-hand plot, there is a good deal of structure. Glucose area seems tightly clustered around low values with some scattered high values. People with high values of glucose area are generally considered to be diabetics. The insulin area variable is more uniformly spread out with a high density of medium values. Subjects with very low values of insulin area seem to have higher values of glucose area.
We next discuss the line first the lines emanating fr the right-hand picture. These lines fan out on relative weight but of SSPG. This cluster of points have low values of glucose of SSPG.

Next, consider the lines right-hand picture represent These lines fan out over me higher values of SSPG.

Finally, lines represent insulin area range over med: medium values of SSPG. The insights about genuinely fo

The three groupings sug: the groupings of Baren and brought out in our analysis relevant factor. The inter variables is only made visi Further pictures of this da

In the diabetes example dimensional aspects of the easily generalized. Sectio and N plots. Section III c algorithm and ways of drawi

The earliest reference (1968). There is a good de four dimensions. See Manni (1980) for surveys. The be methods for high-dimension
M and N Plots

We next discuss the lines connecting the two plots. Consider first the lines emanating from the densist region of the right-hand picture. These lines move down to the left. They spread out on relative weight but seem to range over lower values of SSPG. This cluster of points represents "normal subjects" who have low values of glucose area and insulin area and low values of SSPG.

Next, consider the lines emanating from the points in the right-hand picture representing high values of glucose area. These lines fan out over medium values of relative weight and higher values of SSPG.

Finally, lines representing subjects with higher values of insulin area range over medium values of relative weight and medium values of SSPG. The last two inferences represent insights about genuinely four-dimensional aspects of this data.

The three groupings suggested above agree qualitatively with the groupings of Reaven and Miller (1979). One difference brought out in our analysis: relative weight seems to be a relevant factor. The interaction of weight and the other three variables is only made visible by four-dimensional graphics. Further pictures of this data set are in Section II.

In the diabetes example, 2 and 2 plots allows some higher dimensional aspects of the data set to be seen. The idea is easily generalized. Section II considers examples of general M and N plots. Section III explains an efficient thinning algorithm and ways of drawing M and N plots by hand.

The earliest reference to 2 and 2 plots we know of is Eckhart (1968). There is a good deal of literature on visualization of four dimensions. See Manning (1969), Brisson (1978), and Murrill (1980) for surveys. The best available reference to graphical methods for high-dimensional data is Gnanadesikan (1976).
II. EXAMPLES OF M AND N PLOTS

Conventional scatterplots use dots on a rectangular coordinate system to graphically represent k two-dimensional vectors. An M and N plot represents (M+N)-dimensional vectors by plotting M coordinates in one coordinate system and N coordinates in a second coordinate system. The two dots representing a point are connected by a straight line segment. Thus, scatterplots are 2 and 0 plots.

One-Dimensional Data

A 1 and 0 plot, the dot plot, is sometimes used to plot one-dimensional data, plotting each point as a dot. For example, Figure 3 shows a 1 and 0 plot of the glucose area variable in the diabetes example. Figure 3 shows the clustering around low values and the spreading at higher values reasonably well. A histogram might be a more informative picture for this data set.

Two-Dimensional Data

There are two ways data - the conventional and 1 plot. A 1 and 1 (x,y) by 2 dots and a coordinate axis.

It is useful to lc clouds. For example, close to a straight li

Before considering describe the connect lines in the plane. X and 1 plots, such as l follows. Each segment (infinite) line in the

Thinking of segments parallel segments in

Consider a collection (x_1, y_1), ..., (x_n, y_n), on a line if and only

points in a 1 and 1 p

parallel lines are th

One other aspect number of times that
equal to \binom{n}{2} \left[1-\tau\right] w \tau computed for (x_1, y_1) respond to \tau close to 1

-1. The earliest ref
on a rectangular coordi-
two-dimensional vectors.
Sional vectors by plotting
and N coordinates in a
s representing a point are
Thus, scatterplots are

sometimes used to plot one-
as a dot. For example,
lucose area variable in
the clustering around low
ues reasonably well. A
picture for this data set.

M and N Plots

Two-Dimensional Data

There are two ways to draw M and N plots of two-dimensional data - the conventional scatterplot (a 2 and 0 plot), and the 1
and 1 plot. A 1 and 1 plot represents a two-dimensional point
(x, y) by 2 dots and a line segment on a pair of parallel
coordinate axis.

It is useful to look at 1 and 1 plots of familiar point
clouds. For example, Figure 4 shows a cloud of points lying
close to a straight line and the corresponding 1 and 1 plot.

Before considering other examples of 1 and 1 plots, we
describe the connection between 1 and 1 plots and the set of
lines in the plane. To avoid confusion, the line segments in 1
and 1 plots, such as Figure 4, will be called segments in what
follows. Each segment can be thought of as a section of the
(infinite) line in the plane that passes through that segment.
Thinking of segments as lines helps in understanding the
parallel segments in Figure 4.

Consider a collection of points in two dimensions: (x_1, y_1),
(x_2, y_2), ..., (x_n, y_n). It is easy to see that these points lie
on a line if and only if the lines corresponding to these
points in a 1 and 1 plot intersect at a point. As usual,
parallel lines are thought of as intersecting at infinity.

One other aspect of 1 and 1 plots should be noted: the
number of times that the segments cross in a 1 and 1 plot is
equal to \(k(n) \) \([1-\tau] \) where \(\tau \) is Kendall's measure of association,
\(\tau \) computed for \((x_1, y_1), ..., (x_n, y_n)\). Thus, few crossings corre-
spond to \(\tau \) close to 1 and many crossings correspond to \(\tau \) close to
-1. The earliest reference we know for this is Griffin (1958).
M and N Plots

Three-Dimensional Data

It is not straightforward to three-dimensional data -- a scatterplot of diabetes data set introduce. The plot is not easy to perspective cues. A version is at the center of the PIFI et al. (1976)). Briefly, three-dimensional points as graphics display terminal. Faster and parallax fools the three-dimensional point clock display for the data of Fig this data set. Figure 6 is (1979).
It is not a straightforward task to make a scatterplot of three-dimensional data -- a 3D plot. Consider Figure 5 which is a scatterplot of three of the variables from the diabetes data set introduced in Section I.

The plot is not easy to make sense of because of the lack of perspective cues. A version of a three-dimensional scatterplot is at the center of the PAM-9 plotting program (Minnettes et al., 1976). Briefly, the idea is to show the collection of three-dimensional points as a rotating point cloud. Points closer to the viewer rotate faster and parallax fools the eye into seeing the points as a three-dimensional point cloud. An artist's rendering of this display for the data of Figure 5 gives a very useful picture of this data set. Figure 6 is reproduced from Renner and Miller (1979).
A 1 and 2 plot of the same three variables from the diabetes data set is shown in Figure 7. The right-hand scatterplot was discussed in Section I. The 1 and 0 plot of SSPG shows a high density of lower values. Looking at the lines, we see that points from the central cluster of "normal" patients have low values of SSPG. As one looks down in the right-hand plot, the values of SSPG increases, always remaining below the middle of the range. Looking left from the main cluster in the right-hand plot, the values of SSPG increase somewhat slowly. At the very top, there appears to be an interesting reversal -- the highest value of glucose area are connected to central values of SSPG.

The line segments in a 1 and 2 plot can also be viewed as a plot of lines in three dimensions by picturing the one-dimensional axis as a line lying above and parallel to the plane of the two-dimensional plot.

Another way to plot three-dimensional data is to make a (1,1,1) plot -- three distinct coordinate axes, each showing one dimension and a pair of line segments connecting each dot to the other two representing dots.
variables from the diabetes
right-hand scatterplot was
lot of SSVC shows a high
mal Patients have low
reversal -- the highest
central values of SSVC,
also be viewed as a
the plane of the two-
dot to the connecting each dot to the

Figure 7
Four-Dimensional Data

We have already given an example of a 2 and 2 plot in Section I. We here discuss an interpretation of such plots as a picture of lines in three dimensions. The basic ingredients of a 2 and 2 plot are a pair of coordinate axes and a segment, see Figure 1.

Imagine the (S,T) plane as a plane parallel to but above the (X,Y) plane. A segment can then be pictured as part of a line running "down" from the (S,T) plane through the (X,Y) plane. Only that part of the line which lies between the planes is visible. In this way, the segments in a 2 and 2 plot can be thought of as lines in three-dimensional space. It is not hard to see that the set of all lines in three dimensions is a four-dimensional space. One argument considers a pair of parallel planes (like the (X,Y) and (S,T) planes described above).

"Almost all" lines in the three-dimensional space pass through both planes and uniquely determine four coordinates. This omits lines parallel to the planes, but these form a lower dimensional surface. Hence, the lines in three-dimensional space form a four-dimensional space and can be used to picture four-dimensional data. A similar argument shows that the dimension of the set of lines in n-dimensional space is 2(n-1). Because we are using lines to represent our data, the geometry of the set of lines is of interest. For example, because of the way we have chosen to draw the line segments, a small change in the position of some four-dimensional points (x,y,s,t) can result in a large change in the plotted line: this happens if (x,y) and (s,t) are plotted physically close to each other (e.g., x,y is in the upper right quadrant and s,t in the upper left quadrant of Figure 1). It is amusing to show that the lines in two dimensions are topologically equivalent to a Mobius strip. Dan Asimov has shown that the lines in three dimensions are topologically equivalent to the usual tangent bundle of projective 2 space.

M and N Plots

It is natural to try to lines in three dimensions w omitting a low-dimensional are described in Chapter 1 discussed coordinates - P1U particularly suited to working natural mathematically, P1U to describe the four-dimens We mention, in passing, be viewed using a (2,1,1) F plot (a 3 and 1 plot would device).

Higher-Dimensional Data and

With a PRIM 9-like graph as in Figure 6, it is possi-dimensional data. Higher by connecting together low practical thought is to li with a plot of the output or scaling algorithms. Th of the resulting output. is a picture of the Beaven right-hand plot is nonlinear dimensional data into the described in Friedman and preserves 2n-1 of the \(\binom{n}{2} \) the n-1 distances in the m are preserved along with s hand plot has a dense area "wings". The lines connected to the data onto coordinat the dense part of the righ
M and N Plots

It is natural to try to find a set of coordinates for the lines in three dimensions which do not have the problem of omitting a low-dimensional set of lines. Several approaches are described in Chapter 1 of Jessop (1969). The most widely discussed coordinates — Plücker's coordinates — are not particularly suited to working with statistical data. While natural mathematically, Plücker's coordinates use five coordinates to describe the four-dimensional set of lines.

We mention, in passing, that four-dimensional data can also be viewed using a (2,1,1) plot, a (1,1,1,1) plot or a (3,1) plot (a 3 and 1 plot would require a PRIM 9-like graphics device).

Higher-Dimensional Data and Multidimensional Scaling

With a PRIM 9-like graphical device, or an artist's rendering as in Figure 6, it is possible to draw 3 and 3 plots of six-dimensional data. Higher dimensional data can also be pictured by connecting together lower dimensional M and N plots. A more practical thought is to link the best two-dimensional projection with a plot of the output of one of the many nonlinear mapping or scaling algorithms. This gives a way of labeling the points of the resulting output. An example is given in Figure 8. This is a picture of the Reaven and Miller (1979) diabetes data. The right-hand plot is nonlinear mapping of the original five-dimensional data into the plane. The nonlinear mapping algorithm described in Friedman and Rafsky (1978) was used. This algorithm preserves 2n-1 of the \(\binom{n}{2} \) interpoint distances. In this picture, the n-1 distances in the minimal spanning tree of the n points are preserved along with selected other distances. The right-hand plot has a dense area in the lower left-hand part and two "wings". The lines connect this plot to the ordinary projection of the data onto coordinates 2 and 4. The lines indicate that the dense part of the right-hand picture corresponds to "normal"
patients and the two "wing described previously. Loo picture, it seems that the into two groups - a dense group. An outlying observ at the top of the plots.

One of the most popular data is Chernoff's faces. M and N plots. Briefly, F dimensional data when there and N plots seem useful for dent of the sample size.

III. SOME PRACTICAL DETAI

In this section, we di rotating, and some ideas f and N plots.

Thinning

To understand the need data set introduced in Fig with no thinning. Figure thinning. Now the lines i

It is straightforward Simply draw a pair of coo Lines can be drawn either 5) or more systematically, the (X,Y) and (S,T) plane: is plotted in two boxes, one segment is drawn for causes the density of line
patients and the two "wings" correspond to the other two groups described previously. Looking more closely at the right-hand picture, it seems that the group of "normal" subjects may split into two groups - a dense lower group and a less dense upper group. An outlying observation shows up clearly in the line at the top of the plots.

One of the most popular methods of plotting high-dimensional data is Chernoff's faces. It is instructive to compare faces and M and N plots. Briefly, Faces seem useful for fairly high-dimensional data when there are not very many sample points; M and N plots seem useful for fairly low-dimensional data independent of the sample size.

III. SOME PRACTICAL DETAILS

In this section, we discuss thinning -- by hand or computer--rotating, and some ideas for interactive implementation of M and N plots.

Thinning

To understand the need and results of thinning, consider the data set introduced in Figure 2. Figure 9 shows this picture with no thinning. Figure 10 shows this picture with very heavy thinning. Now the lines seem useless.

It is straightforward to make an M and N plot by hand. Simply draw a pair of coordinate axis and start plotting points. Lines can be drawn either at random (say, with probability 1 in 5) or more systematically. One systematic approach is to break the (X,Y) and (S,T) planes into boxes. The first time a point is plotted in two boxes, the connecting segment is drawn. Only one segment is drawn for each pair of boxes. Thinning at random causes the density of lines to be proportional to the density
Figure 9
of points. Systematic thinning causes the density of lines to be proportional to volume. In either case, we recommend starting with a low density of lines and adding lines systematically as they seem useful.

We next describe an efficient thinning algorithm for use on a computer. This allows plots to be made rapidly in real time. The algorithm we prefer (based on some experimentation) causes the density of lines to be proportional to volume (not density). Here is a rough description: suppose we want to make a 2 and 2 plot of n points. Divide the four-dimensional space up into "boxes". A single connecting line is drawn for each non-empty box. The line for each box may be taken to be the line representing the (four-dimensional) average point for that box.

More generally, suppose that the data consists of p-dimensional vectors (or points) \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \). For expository purposes, suppose that the scale is chosen so that the data lies between zero and one in each coordinate. Suppose that the p-dimensional unit cube is divided into "boxes" of side \(h \) in each dimension. This makes \(J = (l/h)^p \) boxes in all. Each box can be indexed by a p-triple of integers. We will refer to the \(i \)-th box, and use lexicographic order on the box labels. To determine what box a point \(\mathbf{x} \) is in requires checking \(p \) inequalities. With this notation we now present a semiformal description of our recommended algorithm. The main phase is to form a list containing
- the label of each non-empty box
- the sum of the vectors in that box
- the number of points in that box.

To begin, determine the box containing \(\mathbf{x}_1 \). Call this \(j_1 \).

The list begins
\[
(\mathbf{i}_0, \mathbf{x}_1, 1)
\]

the last component being a are in box \(j_1 \). Next, cons: entry in the list is chang-

\[
\begin{align*}
j_1', \mathbf{x}_1 + \mathbf{x}_2', 2 \\
\text{If} \mathbf{x}_2 \text{ is in box } j_2', \text{ then} \\
j_1, \mathbf{x}_1, 1 \\
j_2, \mathbf{x}_2, 1.
\end{align*}
\]

Continue, for each point \(\mathbf{x} \), if the label \(j \) appears in component of that list ent third component of the ent list, insert \(j \) in the lis graphic order on the label the list contains the labe the points in each box, an.

To draw an M and N plot through the list computing box, and draw the line cor the number of non-empty bo to run in

\[
O(pn(l + \log B)) \text{ "oper}
\]

Rotation

Some of the earlier pl less confusing. The next the usefulness of rotation \((x, y, z) \) where y and z wer in \([0,1]\) and \(x = y + z \). Loo plot. Notice how the line Next, look from top to bot
the density of lines to case, we recommend starting lines systematically as ning algorithm for use on ade rapidly in real time. experimentation) causes 1 to volume (not density). we want to make a 2 and 2 ensional space up into drawn for each non-empty en to be the line erage point for that box. ata consists of \(\xi_2, \ldots, \xi_n \). For expositoryosen so that the data lies e. Suppose that the p- "boxes" of side h in each s in all. Each box can be will refer to the i-th box labels. To determine sking p inequalities. With mal description of our is to form a list

\[
\begin{align*}
\text{box} & \ \\
x_{\xi_1} & \ \\
in \text{box} & \ \\
x_{\xi_1}. \ \\
\end{align*}
\]

Call this \(\xi_1 \).

\[E_{\xi_1}, \ \\
E_{\xi_1} + \xi_2, \ \\
E_{\xi_1} + \xi_2, \ 2.
\]

If \(\xi_2 \) is in box \(\xi_2 \neq \xi_1 \), the list contains

\[E_{\xi_1}, \ \\
E_{\xi_1}, 1.
\]

\[E_{\xi_2}, \ \\
E_{\xi_2}, 1.
\]

Continue, for each point \(\xi_j \) determine what box \(\xi_j \) contains \(\xi_j \).

If the label \(\xi_j \) appears in the list, add \(\xi_j \) to the second component of that list entry and increment the counter in the third component of the entry by 1. If \(\xi_j \) does not appear in the list, insert \(\xi_j \) in the list by binary insertion (using lexographic order on the labels). After processing all the points, the list contains the labels of the non-empty boxes, the sum of the points in each box, and the number of points in each box.

To draw an M and N plot using this list, make a single pass through the list computing the k-dimensional average for each box, and draw the line corresponding to this average point. If the number of non-empty boxes is \(B \), the algorithm may be seen to run in

\[O(pn(1 + \log B)) \] "operations".

Rotation

Some of the earlier plots have been rotated to make them less confusing. The next example is a 1 and 2 plot to illustrate the usefulness of rotation. Figure 11 is a plot of 100 triples \((x, y, z)\) where \(y \) and \(z \) were chosen independently and uniformly in \([0,1]\) and \(x = y + z \). Look at the outside edge of the right-hand plot. Notice how the lines move down in \(x \) as \(y \) or \(z \) decrease. Next, look from top to bottom on the right-hand picture along
M and N Plots

any fixed & corresponding t neighborhood of & have appr the discussion of l and l p suggest a linear relation b Figure 11 is somewhat c change in slope and cross e 1 and 2 plot of the same da ing.

Interactive Usage

When M and N plots are device, the decisions about trial and error. A program at Stanford Linear Accelerator program incorporates some c
- All points in the sam brighter
- Lines can be easily e
- Lines can be made thi the density of points
any fixed \(l \) corresponding to \(y = \text{constant} \). The lines in a neighborhood of \(l \) have approximately constant slope. Recalling the discussion of \(l \) and \(l \) plots in Section 2, these observations suggest a linear relation between \((y,z)\) and \(x \).

Figure 11 is somewhat confusing to view because the lines change in slope and cross each other. Figure 12 shows a rotated \(l \) and \(l \) plot of the same data. Now the linear relation is striking.

Interactive Usage

When \(M \) and \(N \) plots are viewed on an interactive graphics device, the decisions about thinning and rotation are made by trial and error. A program making this easy to do was written at Stanford Linear Accelerator Center by Roger Chaffee. The program incorporates some other features which may be of interest.

- All points in the same box as a given point can be made brighter
- Lines can be easily added and deleted
- Lines can be made thicker to show another variable or the density of points in a box.
We thank Roger Chaffee suggestions. We thank Dan and Aiden Moran for their and publishers of *Diabetol* Figure 6.

V. REFERENCES

Relationships in Art, Press, Boulder, Colora
Eckhart, L. (1968). *Four-
A.L. Bigelow and S.M.
Bloomington, Indiana.*
FisherKeller, M.A., Friedm
PRIM-9, An Interactive Stanfod Linear Accele
Friedman, J.H. and Rafsky,
Multivariate Two-sampl
76, 277-295.
of Multivariate Observ
ient of Disarray." J.
Jessop, C.M. (1964). A Tz
New York.
Manning, H.P. (1960). The
Dover, New York.
Murrill, Malcom (1980). "
Functions." *Amer. Mat
Reaven, G.M. and Miller, F
Nature of Chemical Dis
Analyses." *Diabetolo*
Tukey, P.A. and Tukey, J.W
Sets in 3 or More Dim
Multivariate Data, V.
We thank Roger Chaffee for extensive programming and helpful suggestions. We thank Dan Asimov, Rupert Miller, Colin Mallows, and Aiden Moran for their help. We are grateful to the editors and publishers of *Diabetologia* for permission to reproduce Figure 6.

V. REFERENCES

