fron Stanford University - Persi Diaconis

Publications

Print this page

Coauthors



top

David Aldous

David Aldous, Department of Statistics , University of California at Berkeley

  1. Shuffling Cards and Stopping Times. With D. Aldous, Amer. Math'l Monthly, 93(5):333-348. (1986). [PDF]

  2. Strong Uniform Times and Finite Random Walks, Advances in Applied Math., 8 69-97 (1987)

  3. Hammersley's Interacting Particle Process and Longest Increasing Subsequences. With D. Aldous. Prob. Theory Related Fields 103 199-213. (1995). Abstract [PDF] [PostScript]

  4. Longest Increasing Subsequences: From Patience Sorting to the Baik-Dieft-Johansson Theorem. With D. Aldous, Bull. Amer. Math. Soc. 36 413-32. (1999). [PDF] [PostScript]

  5. The Asymmetric One-Dimensional Constrained Ising Model: Rigorous Results. With D. Aldous. Jour. Statist. Physics. 107 945-975. (2002). [PDF] [PostScript]

top

Louis Billera

Louis J. Billera, Department of Mathematics, Cornell University

  1. Random Walks and Plane Arrangements in Three Dimensions. With Kenneth Brown. Amer. Math. Monthly, 106(6):502-24. [PDF]

  2. A Geometric Interpretation of the Metropolis-Hastings Algorithm. With L. Billera,. Statis. Sci., 16(4):335-339. [PDF] [PostScript]

top

Stephen Boyd

Stanford page

  1. Fastest Mixing of Markov Chain on a Graph and a Connection to a Maximum Variance Unfolding Problem. With J. Sun, S. Boyd and L. Xiao. SIAM Review, 48(4):681-699. (2006). [PDF]

  2. Fastest Mixing of Markov Chain on Graphs With Symmetries. With P. Parrilo, S. Boyd and L. Xiao. (2006). [PDF]

  3. Fastest Mixing Markov Chain on a Path. With S. Boyd and L. Xiao. American Mathematics Monthly (2006). [PDF]

  4. Symmetry Analysis of Reversible Markov Chains. With S. Boyd, P. Parrilo, L. Xiao. Journal of Internet Mathematics 2 31-72. [PDF]

  5. Fastest Mixing Markov Chain on a Graph. (2004). With S. Boyd and L. Xiao. SIAM Review 46(4):667-689. [PDF]

top

Kenneth Brown

Kenneth Brown, Department of Mathematics, Cornell University

  1. Random Walks and Hyperplane Arrangements, Ann. Probab., 26 (4):1813-54. (1998). [PDF]

  2. Random Walks and Plane Arrangements in Three Dimensions, with Louis Billera Amer. Math. Monthly, 106(6):502-24. (1999). [PDF]

top

Dan Bump

Dan Bump, Department of Mathematics, Stanford University


  1. Unitary Correlations and the Fejer Kernel. With Joseph Keller. Mathematical Physics, Analysis and Geometry, 5, 101-123.(2002). [PDF] [PostScript]

  2. Toeplitz Minors. Jour. Combin. Th. (A) 97(2):252-271. (2002). [PDF]

top

Sourav Chatterjee

UC Berkeley

  1. Estimating and Understanding Exponential Random Graph Models. (2011). With S. Chatterjee. Submitted. [PDF]

  2. Exchangeable Pairs and Poisson Approximation. With S. Chatterjee and E. Meckes. Electronic Encyclopedia of Probability (2004). [PDF] [PostScript]

  3. Properties of Uniform Doubly Stochastic Matrices. (2010). With S. Chatterjee & A. Sly. arXiv math.PR [PDF]

  4. Random Graphs with a Given Degree Sequence. (2010). With S. Chatterjee and A. Sly. arXiv:1005.1136v3 [PDF]

top

Fan R. K. Chung

Fan Chung, Department of Mathematics , University of California, San Diego

  1. On the Permanents of Complements of the Direct Sum of Identity Matrices, with Ron Graham and C. L. Mallows , Advances in Applied Math., 2 121-137. (1981). [PDF]

  2. Random Walks Arising in Random number Generation, with Ron Graham , Ann. Prob., 15 3:1148-1165.(1987). [PDF](1987)

  3. Universal Cycles for Combinatorial Structures, with Ron Graham , Discrete Math, 110 1-3:43-59. (1992). [PDF]

  4. Combinatorics for the East Model, with Ron Graham and Fan Chung, Adv. Appl. Math. 27 192-206. (2001). [PDF]

top

Brad Efron

Brad Efron, Department of Statistics, Stanford University, Berkeley

  1. Probabilistic-Geometric Theorems Arising from the Analysis of Contingency Tables. P. Diaconis & B. Efron, Contributions to the Theory and Application of Statistics, A Volume in Honor of Herbert Solomon, Academic Press, 103-125. [PDF]

  2. Testing for Independence in a Two-Way Table: New Interpretations of the Chi-Square Statistic. P. Diaconis & B. Efron, Ann. Stat., 13(3):845-913. [PDF]

  3. Computer Intensive Methods in Statistics. P. Diaconis & B. Efron, Scientific American, 248:116-130.

top

Steven Evans

Steven Evans, Department of Statistics, University of California, Berkeley

  1. Immanants and Finite Point Processes. With S. Evans, Jour. Combin. Th. Series A 91 1-2:305-321. [PDF] [PostScript]

  2. Linear Functionals of Eigenvalues of Random Matrices, with Steve Evans, Trans. Amer. Math. Soc. 353 7:2615-33. (2001). [PDF]

  3. A Different Construction of Gaussian Fields from Markov Chains: Dirichlet Covariances. With Steve Evans. Ann. Inst. Henri Poincare , 38(6):863-878. (2002). [PDF]

top

James Allen Fill

Jim Fill, Department of Mathematical Sciences, Johns Hopkins University

  1. Examples for the Theory of Strong Stationary Dualty with Countable State Spaces, Prob. Engin. Info. Sci., 4 157-180. (1990).

  2. Strong Stationary Times via a New Form of Duality, Ann. Prob., 18(4):1483-1522. (1990). [PDF]

  3. Analysis of Top to Random Shuffles, with Jim Pitman, Combinatorics, Probability Computing, 1:135-155. (1992). [PDF]

top

David Freedman


  1. On Rounding Percentages. JASA, 74(366):359-364. (1979). [PDF]

  2. de Finetti's Theorem for Markov Chains Ann. Prob., 8 115-130. (1980). [PDF]

  3. Finite Exchangeable Sequences. Ann. Prob., 8 745-764. (1980). [PDF]

  4. de Finetti's Generalizations of Exchangeability, Studies in Inductive Logic and Probability, Vol. II, (R. Jeffrey, ed.), (1980)

  5. On the Statistics of Vision: the Julesz Conjecture, J. Math'l Psychology , 24(2):112-138. (1981). [PDF]

  6. On the Histogram as a Density Estimator: L_2 Theory, Z. Wahr. verw. Gebiete, 57 453-476. (1981).

  7. On the Maximum Deviation Between the Histogram and the Underlying Density, Z. Wahr. verw. Gebiete, 58 139-167 (1981)

  8. The Persistence of Cognitive Illusions: A Rejoinder to L. J. Cohen, Behavioral and Brain Sci., 4 333-334. (1981).

  9. On the Maximum Difference Between the Empirical and Expected Histograms for Sums, Pacific J. Math., 100 (2):287-327. (1982). [PDF]

  10. On the Difference Between the Empirical Histogram and the Normal curve for Sums, Part II, Pacific J. Math, 100(2):359-371 (1982). [PDF]

  11. On the Mode of an Empirical Histogram for Sums, Pacific J. Math, 100(2):373-385.(1982). [PDF]

  12. de Finetti's Theorem for Symmetric Location Families, with D. Freedman, Ann. Stat., 10(1):84-189. (1982). [PDF]

  13. On Inconsistent M -Estimator, Ann. Stat., 10(2):454-461. (1982). [PDF]

  14. Bayes Rules for Location Problems, Statistical Decision Theory and Related Topics III , S. Gupta, J. Berger (ed.), 315-327 (1982)

  15. On Inconsistent Bayes Estimates in the Discrete case, Ann. Stat., 11 4:1109-1118. (1983). [PDF]

  16. Frequency Properties of Bayes Rules, In Scientific Inference, Data Analysis, and Robustness, G. Box, T. Leonard, C. F. Wu (eds.). Academic Press, New York, 105-115 (1983)

  17. Partial Exchangeability and sufficiency, Proc. IndianStat. Inst. Golden Jubilee Int'l Conf. Stat.: Applications and New Directions , J. K. Ghosh and J. Roy (eds.), Indian Statistical Institute, Calcutta, 205-236. (1984).

  18. Asymptotics of Graphical Projection Pursuit, Ann. Stat., 12(3):793-815. (1984). [PDF]

  19. On Inconsistent Bayes' Estimates of Location, Ann. Stat., 14(1):68-87. [PDF]

  20. On the Consistency of Bayes Estimate, Ann. Stat., 14(1):1-26. (1986). [PDF]

  21. An Elementary Proof of Stirling's Formula, Amer. Math'l Monthly, 93 123-125. (1986).

  22. A dozen de Finetti-style Results in Search of a Theory. Ann. Inst. Henri Poincaré, Probabilités et Statistiques, 23Sup.2:397-423, (1987).

  23. Conditional Limit Theorems for Exponential Families with Uniform Asymptotic Estimates and Applications to de Finetti's Theorem, J. Theoretical Prob., 1 381-410 (1988)

  24. On Merging of Probabilities, with A. D'Aristotile Sankhya, Series A, 50 363-380. (1988).

  25. On the Uniform Consistency of Bayes Estimates for Multinomial Probabilities, Ann. Stat., 18(3):1317-1327. (1990). [PDF]

  26. Cauchy's Equation and de Finetti's Theorem, Jour. Statist., 17 235-250. (1990).

  27. NonParametric Binary Regression with Random Covariates. With D. Freedman. Prob. and Math. Stat., 15 243-273. (1993). [PDF]

  28. Non-Parametric Binary Bayesian Regression: A Bayesian Approach. With D. Freedman, Ann. Stat., 21 2108-2137. (1993). [PDF]

  29. Consistency of Bayes Estimates for Nonparametric Regression: A Review. In D. Pollard, et al. (eds), Festschrift for Lucien LeCam, pp. 157-66, New York: Springer-Verlag (1997).

  30. Consistency of Bayes Estimates for Nonparametric Regression: Normal Theory, Bernoulli 4:411-44. (1998). [PDF]

  31. Iterated Random Functions, SIAM Review 41 1:45-76. (1999). [PDF]

  32. The Markov moment Problem and de Finetti's Theorem Part I. With David Freedman. Math. Zeitschrift, 247(1):183-199 (2004). [PDF]

  33. The Markov Moment Problem and de Finetti's Theorem Part II. With David Freedman. Math, Zeitschrift. 247(1):201-212. (2004). [PDF]

top

Jason Fulman

Department of Mathematics, USC

  1. Carries, Shuffling, and Symmetric Function. With J. Fulman. (2009). Advances of Applied Mathematics, 43(2):176-196. doi:10.1016/j.aam.2009.02.002 [PDF]

  2. Carries, Shuffling, and an Amazing Matrix. With J. Fulman. (2008). American Mathematical Monthly, 116(9):788-803. [PDF] arXiv:0902.0179

  3. Foulkes Characters, Eulerian Idempotents, and An Amazing Matrix. (2011). With J. Fulman. Submitted. [PDF]

  4. On adding a list of numbers (and other one-dependent determinantal processes). (2009). With A. Borodin and J. Fulman. Bulletin of the American Mathematical Society, 47(4):639-670 [PDF]

  5. On Fixed Points of Permutation. With. J. Fulman and R. Guralnick. (2007). Journal of Algebraic Combinatorics, 28:189-218 [PDF]

top

Ronald L. Graham


  • Ronald L. Graham, Department of Computer Science and Engineering, University of California, San Diego

    1. Spearman's Footrule as a Measure of Disarray, with R. Graham. J. Royal Stat'l Soc. B 39 262-8.[PDF]

    2. The Analysis of Sequential Experiments with Feedback to Subjects, with R. Graham, Ann. Stat., 9 3-23.[PDF]

    3. On the Permanents of Complements of the Direct Sum of Identity Matrices, with F. R. K. Chung , R. L. Graham and C. L. Mallows. Advances in Applied Math., 2 121-137. [PDF]

    4. The Mathematics of Perfect Shuffles, with R. L. Graham and W. M. Kantor, Advances in Applied Math., 4 175-196. [PDF]

    5. The Radon Transform on Z^k_2 , with R. L. Graham, Pacific J. Math, 118 323-345. [PDF]

    6. Random Walks Arising in Random Number Generation, with F. R. K. Chung and R. L. Graham, Ann. Prob., 15 1148-1165.[PDF]

    7. Asymptotic Analysis of a Random Walk on a Hypercube with Many Dimensions, with R. L. Graham and J. A. Morrison, Random Structures and Algorithms, 1 51-72. [PDF]

    8. Universal Cycles for Combinatorial Structures, with F. Chung, R. Graham, Discrete Math, 110 43-59. [PDF]

    9. An Affine Walk on the Hypercube, with R.L. Graham, Quat. Jour. Analysis, 41 215-235. [PDF]

    10. Binomial Coefficient Codes Over GF(2), with R.L. Graham, Discrete Math., 106/107 181-188. [PDF]

    11. Primitive Partition Identities, with Ron Graham and Bernd Sturmfels, Conbinatorics - Paul Erdos is eighty , D. Miklos, V. Sos, T. Szoni (eds.), 43-56. Bolyai Society Mathematical Studies,2, Budapest, 173-192. [PDF]

    12. The Graph of Generating Sets of an Abelian Group, with R. L. Graham, Colloquium Math., 31-8. [PDF]

    13. Statistical Problems Involving Permutation with Restricted Positions. With R. L. Graham and S. Holmes. In State of the Artin Probability and Statistics. M.de Gunst, C. Klaassen, A. Van der Vaart, ed. Inst. Math. Statis. Hayward. 195-222. [PDF] [PostScript]

    14. Combinatorics for the East Model, with Ron Graham and F. R. K. Chung , Adv. Appl. Math. 27 192-206. [PDF]

    15. The Solutions to Elmsley's Problems; with R. Graham. Mathematics magazine (2006). [PDF]

    16. Products of Universal Cycles; with R. Graham. To appear in AGathering for Gardner, Edited by E. Demain (2005). [PDF]

    top

    Susan Holmes

    Susan Holmes, Department of Statistics, Stanford University


    1. Gray Codes for Randomization Procedures, Statistics and Computing, 4 287-302. (1994). [PDF]

    2. Three Examples of the Markov Chain Monte Carlo Method, Discrete Probability and Algorithms, D. Aldous et al(eds). 43-56. Springer-Verlag, New York (1994). [PDF]

    3. Metrics on Compositions and Coincidences, with S. Janson, S.P. Lalley andR. Pemantle. In D. Aldous, R. Pemantle(eds), Random Discrete Structures, IMA Publications,Springer-Verlag, pp. 81-102 (1996).

    4. Are There Still Things to Do in Bayesian Statistics?, Erkenntnis: Probability, Dynamics and Causality 45:145-58 (1997).

    5. Matchings and Phylogenetic Trees, with S. Holmes. Proc. Nat. Acad. Sci. 95:14600-2 (1998). [PDF]

    6. Statistical Problems Involving Permutation with RestrictedPositions. With R. L. Graham and S. Holmes. Source: Mathisca de Gunst, Chris Klaassen, and Aad van der Vaart, eds. State of the art in probability and statistics: Festschrift for Willem R. van Zwet, Papers from the symposium held at the University of Leiden, Leiden, March 23--26, 1999 (Beachwood, OH: IMS Lecture Notes- Monograph Series 36:195-222 [PDF] [PostScript]

    7. Analysis of a Non-Reversible Markov Chain Sampler, with S. Holmes and R. Neal, Ann. Appl. Probab. 10(3):726-52 (2000). [PostScript]

    8. A Bayesian Peek Into Feller I, with SusanHolmes, Sankhyā Series A, 64(3):820-841 (2002). [PDF]

    9. Random Walk on Trees and Matchings. With SusanHolmes. Electronic Jour. Probab. 7 Paper 6,1-17 (2002). [PDF]

    10. Uses of Exchangeable Pairs in Monte Carlo MarkovChains. With C. Stein, S. Holmes, G Reinert. In P. Diaconis,S. Holmes (EDS) Stein's Method: Expository Lectures andApplications pp 1-26. (2004)

    11. Stein's Method for Markov Chains: FirstExamples. P. Diaconis and S. Holmes (EDS). Stein's Method:Expository Lectures and Applications pp 27-43. IMS, Beachwood,Ohio. (2004)

    12. Sequential Monte Carlo Methods for Statistical Analysis ofTables. With Chen, Y., Holmes, S. and Liu, J.S. JASA 100(469):109-120. (2005). [PDF]

    13. Dynamical Bias in the CoinToss. With S. Holmes and R. Montgomery. SIAM Review, 49(2):211-235. (2007). [PDF]

    14. Horseshoes in Multidimensional Scaling and Kernel Methods. With S. Goel and S. Holmes. (2007). Ann. Appl. Stat. 2(3):777-807. [PDF]

    15. Threshold Graph Limits and Random Threshold Graphs. With S. Janson. Internet Math.
    16. 5(3):267Ð320 (2008). arXiv:0908.2448v1 [math.CO] [PDF]

    17. Interval Graph Limits. With S. Holmes &S. Janson. to appear Annals of Combinatorics. (2011). [PDF]

    18. Diaconis, P., Holmes, S. & Shahashahani, M. (2011).
      Sampling from a Manifold. in revision. [PDF]

    19. Diaconis, P., Fulman, J. & Holmes, S. (2011).
      Analysis of Casino Shelf Shuffling Machines. arXiv:1107.2961v1 submitted

    top

    Martin Isaacs

    Department of Mathematics, University of Wisconsin-Madison


    1. Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras. With M. Isaacs, et al. (2010). arXiv:1009.4134v1 [PDF]

    top

    Svante Janson

    Svante Janson, Department of Mathematics, Uppsala University



    1. Graph Limits and Exchangeable Random Graphs. With S. Janson. (2008). Rendiconti di Matematica, Serie VII 28:33-61. [PDF]

    2. Interval Graph Limits. (2011). With S. Holmes & S. Janson. Submitted. [PDF]

    3. Metrics on Compositions and Coincidences, with S. Holmes, S.P. Lalley and R. Pemantle. In D. Aldous, R. Pemantle (eds), Random Discrete Structures, IMA Publications, Springer-Verlag, pp. 81-102 (1996).

    4. Threshold Graph Limits and Random Threshold Graphs. With S. Holmes and S. Janson. (2009). Journal of Internet Mathematics, 5(3):267-318. arXiv:0908.2448v1 [math.CO] [PDF]

    top

    K. Khare

    Department of Statistics, University of Florida

    1. Gibbs Sampling, Conjugate Priors and Coupling. (2010). With K. Khare and L. Saloff-Coste. Sankhya 72-A part 1: 136-169 [PDF]

    2. Gibbs sampling, exponential families and orthogonal polynomials. With K. Khare and L. Saloff-Coste.(2008). Statistical Science, 23(2):151-178. DOI: 10.1214/07-STS252.

    3. Rejoinder: Gibbs Sampling, Exponential Families and Orthogonal Polynomials. With K. Khare and L. Saloff-Coste. (2008). Statistical Science, 23(2):196-200. DOI:10.1214/08-STS252REJ

    4. Stochastic Alternating Projections. With K. Khare and L. Saloff-Coste. (2007). Illinois Journal of Mathematics [PDF]

    top

    Gilles Lebeau

    Département de Mathématiques, Université de Nice Sophia-Antipolis, Parc Valrose

    1. Geometric Analysis for the Metropolis Algorithm on Lipschitz Domains. With G. Lebeau and L. Michel. Accepted by Invent. Math. (2010) [PDF]

    2. Micro-local Analysis for the Metropolis Algorithm. With G. Lebeau. Math. Z. 262(2):441-447 (2009). [PDF]

    top

    Laurent Miclo

    Statistique et Probabilités

    1. On the spectral analysis of second-order Markov chain. P. Diaconis & L. Miclo. (2012). [PDF]

    2. On barycentric subdivision. (2010). With L. Miclo. [PDF]

    3. Random doubly stochastic tridiagonal matrices. (2010). With P. Wood. Submitted. [PDF]

    4. On Characterizations of Metropolis type Algorithms in continuous time. With L. Miclo. Alea 6:199-238. [PDF]

    5. On Times to Quasi-Stationary for Birth and Death Processes. With L. Miclo. (2009). Journal of Theoretical Probability, 22(3):558-586. [PDF]

    top

    Frederick Mosteller


    1. Second Order Terms for the Variances and Covariances of the Number of Prime Factors - Including the Square Free Case, J. Number Theory, 9 187-202. Joint with Hironari Onishi (1977). [PDF]

    2. Methods for studying Coincidences, Jour. Amer. Statist. Ann., 84(408):853-861. (1989). [PDF]

    3. Theories of Data Analysis: From Magical Thinking Through Classical Statistics, Exploring Data Tables, Trends and Shapes, D. Hoaglin, F. Mosteller, J. Tukey (eds.) Wiley, New York pp 1-36.

    top

    Pablo Parrilo

    top

    MIT

    1. Fastest Mixing of Markov Chain on Graphs With Symmetries. With P. Parrilo, S. Boyd and L. Xiao. (2006). [PDF]

    2. Symmetry Analysis of Reversible Markov Chains. With S. Boyd, P. Parrilo, L. Xiao. Journal of Internet Mathematics 2 31-72. [PDF]

    top

    Jim Pitman

    Jim Pitman, Department of Statistics , UC Berkeley

    1. Analysis of Top to Random Shuffles, with Jim Fill, Combinatorics, Probability Computing, 1 135-155 (1992)

    2. Riffle Shuffles, Cycles and Descents, with M. McGrath and Jim Pitman, Combinatorica, 15 11-29

    top

    Arun Ram

    , Department of Mathematics and Statistics University of Melbourne

    1. Analysis of Systematic Scan Metropolis Algorithms Using Iwahori-Hecke Algebra Techniques. With A. Ram, Michigan Journal of Mathematics, 48(1):157-190. [PDF]

    2. A probabilistic interpretation of the Macdonald polynomials. (2010). With A. Ram. [PDF]

    top

    Dan Rockmore

    Dan Rockmore, Departments of Computer Science and Mathematics, Dartmouth College

    1. Efficient Computation of the Fourier Transform on Finite Groups, with Dan Rockmore, Journ. Amer. Math. Soc., 31 297-332. (1990)

    2. Efficient Computation of Isotypic Projections for the Symmetric Group. L. Finkelstein and W. Kantor (eds.), DIMACS Series in Disc. Math. and Theor. Comp. Sci. 11 87-104. (1993) [PS]

    top

    Laurent Saloff-Coste

    Laurent Saloff-Coste, Department ofMathematics, Cornell University

    1. Comparison Techniques for Random Walk on Finite Groups. Ann. Prob., 21 (4):2131-2156. [PDF]

    2. Comparison Theorems for Reversible Markov Chains. Ann. Appl. Prob, 3(3):696-730. [PDF]
    3. Gibbs Sampling, Conjugate Priors and Coupling. (2010). With K. Khare and L. Saloff-Coste. Sankhya 72-A part 1: 136-169 [PDF]

    4. What Do We Know About the Metropolis Algorithm? Jour. Comp. System Sciences, 57 20-36. [PDF]

    5. Walks on Generating Sets of Groups. Inventiones Math., 134 251-300. [PDF]

    6. Nash Inequaltites for Finite Markov Chains. Journal of Theoretical Probability, 9 459-510. [PS]

    7. Walks on Generating Sets of Abelian Groups. Prob. Theory Related Fields, 105 393-421. [PDF]

    8. Logarithmic Sobolev Inequalities for Finite Markov Chains. Ann. Appl. Prob, 6 695-750. [PDF]

    9. Random Walks on Finite Groups: A Survey of Analytic Techniques. Prob. Meas. on Groups XI, H. Heyer (ed.), World Scientific Singapore, pp. 44-75. [PDF]

    10. The Cut-off Phenomena in Finite Markov Chains, Proc. Nat. Acad. Sci., 93 1659-1664. [PDF]

    11. Moderate Growth and Random Walk on Finite Groups, Geom. Func. Anal. 4 1-36 (1994).
      [PDF]

    12. An Application of Harnack inequalities to Random Walk on Nilpotent Quotients, Jour. Fourier Analysis Applications, Kahane Special Issue, 189-207 (1995).

    13. Bounds for Kac's Master Equation. Communications Math. Phys., 209 729-55. [PDF]

    14. Gibbs Sampling, Exponential Families, and Coupling. With K. Khare. (2007). To appear in: Sankhya A [PDF]

    15. Separation Cut-Offs for Death and Birth Chain; Ann. of Appl. Prob. 16(4): 2098-2122. (2005). [PDF]

    16. Stochastic Alternating Projections. With K. Khare. (2007). Illinois Journal of Mathematics. [PDF]

    17. Gibbs sampling, exponential families and orthogonal polynomials. With K. Khare. (2008). Statistical Science, 23(2):151-178. DOI: 10.1214/07-STS252.

    18. Rejoinder: Gibbs Sampling, Exponential Families and Orthogonal Polynomials. With K. Khare. (2008). Statistical Science, 23(2):196-200. DOI:10.1214/08-STS252REJ

    top

    Mehrdad Shahshahani

    Mehrdad Shahshahani, Jet Propulsion Laboratory

    1. Generating a Random Permutation with Random tratnspositions, Z. Wahr. verw. Gebiete, 57 159-179 (1981)

    2. On Nonlinear Functions of Linear Combinations, SIAM, J. Sci. Stat. Comput., 5 175-191. (1984). [PDF]

    3. Products of Random Matrices and Computer image Generation, Contemporary Math., 50 173-182 (1986)

    4. Products of Random Matrices as they Arise in the study of Random Walks on Groups, Contemporary Math., 50 183-195. (1986).

    5. On Square Roots of the Uniform Distribution on Compact Groups, Proc. Amer. Math'l Society, 98 341-348. (1986). [PDF]

    6. Time to Reach Stationarity in the Bernoulli-Laplace Diffusion Model, SIAM J. Math'l Analysis, 18 208-218. (1987). [PDF]

    7. The Subgroup Algorithm for Generating Uniform Random Variables, Prob. in Eng. and Info. Sci., 1 15-32 (1987) [PDF]

    8. On the Eigenvalues of Random Matrices, Jour. Appl. Prob, Special 31A, 49-62. (1994). [PDF]

    top

    Allan Sly

    Theory Group, Microsoft Research


    1. Properties of Uniform Doubly Stochastic Matrices. (2010). With S. Chatterjee & A. Sly. arXiv math.PR [PDF]

    2. Random Graphs with a Given Degree Sequence. (2010). With S. Chatterjee and A. Sly. arXiv:1005.1136v3 [PDF]

    top

    Bernd Sturmfels

    Bernd Sturmfels, Department of Mathematics , UC Berkeley

    1. Primitive Partition Identities, with Ron Graham, Combinatorics - Paul Erdos is Eighty, Bolyai Society Mathematical Studies, Budapest, 2 173-92 (1996). [PDF]

    2. Algebraic Algorithms for Sampling from Conditional Distributions, Ann. Statist. 26 363-97 (1998). [PDF]

    3. Lattice Walks and Primary Decomposition, with D. Eisenbud and B. Sturmfels, Mathematical Essays in Honor of Gian-Carlo Rota, B. Sagan and R.P. Stanley (eds.), 173-94

    top

    L. Xiao


    1. Fastest Mixing of Markov Chain on a Graph and a Connection to a Maximum Variance Unfolding Problem. With J. Sun, S. Boyd and L. Xiao. SIAM Review, 48(4):681-699. (2006). [PDF]

    2. Fastest Mixing of Markov Chain on Graphs With Symmetries. With P. Parrilo, S. Boyd and L. Xiao. (2006). [PDF]

    3. Fastest Mixing Markov Chain on a Path. With S. Boyd and L. Xiao. American Mathematics Monthly (2006). [PDF]

    4. Symmetry Analysis of Reversible Markov Chains. With S. Boyd, P. Parrilo, L. Xiao. Journal of Internet Mathematics 2 31-72. [PDF]

    5. Fastest Mixing Markov Chain on a Graph. (2004). With S. Boyd and L. Xiao. SIAM Review 46(4):667-689. [PDF]

    top

    Don Ylvisaker

    DonYlvisaker, Department of Statistics , UCLA

    1. Conjugate Priors for Exponential Families, Ann. Stat., 7(2):269-281. (1979) [PDF]

    2. Quantifying Prior Opinion, Bayesian Statistics 2. Proc. 2nd Valencia Int'l Meeting, 9-83. J. M. Bernardo, M. H. Degroot, D. V. Lindley, A. F. M. Smith (eds.) North-Holland, Amsterdam 133-156 (1985).

    top

    Sandy Zabell

    Sandy Zabell, Department of Statistics , Northwestern University

    1. Updating Subjective Probability, JASA, 77(380):822-830. (1982). [PDF]

    2. Some Alternatives to Bayes' Rule, Information and Group Decision Making, Proc. Second Univ. of Calif. Irvine Conf. Political Economy, B. Grofman, G. Owen (eds.) Jai Press, Greenwich, CT, 25-38. (1985).

    3. Closed Form Summation for Classical Distributions: Variations on a Theme of Demoivre. With S. Zabell, Statistical Sci., 61(3):284-302. (1991). [PDF]