Suppose we wish to perform controlled variable selection in a linear model of the form
\[y = X\beta + \epsilon, \]
where \(y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times p}, \beta \in \mathbb{R}^p \) and \(\epsilon \) is a vector of independent standard normal errors. We wish to test \(H_j : \beta_j = 0 \) (vs. \(\beta_j \neq 0 \)) while controlling the FDR. Here and below, we assume \(X \) is fixed and \(n \geq p \) (in fact, we shall assume \(n \geq 2p \) for convenience). We shall study fixed-X knockoffs.

1. Suppose we apply Benjamini-Hochberg to classical ordinary least-squares p-values. Would this control the FDR?

2. Assume we have generated another matrix \(\tilde{X} \in \mathbb{R}^{n \times p} \) with the following properties:
 \[\tilde{X}^\top \tilde{X} = X^\top X, \quad \text{offdiag}(\tilde{X}^\top X) = \text{offdiag}(X^\top X); \]
the second equality means that all off-diagonal entries match. We will call such a matrix a knockoff matrix. As in model-X knockoffs, suppose we have feature importance statistics \(Z = z(X,Y) = z(X^\top X, X^\top y) \) where the equality means that \(z \) only depends on the problem data through \(X^\top X \) and \(X^\top y \). We run the importance statistic on \([X, \tilde{X}] \) and \(y \) and obtain scores \(Z \) and \(\tilde{Z} \) which are combined as usual:
\[W_j = w(Z_j, \tilde{Z}_j), \]
with \(w \) antisymmetric. Show that the signs of the null \(W_j \)'s are i.i.d Ber(1/2), and are independent of \(|W| \).

3. If we apply SeqStep to the \(W_j \)'s, would we control the FDR?

4. Run a simulation to examine the power of this technique. You probably want to use the R knockoff package available [here]. This should involve minimum coding since all the heavy lifting is done by the package.
 - Set \(n = 3000, p = 1000 \) and \(\alpha = 0.2 \).
 - Sample a matrix \(X \) with i.i.d. \(\mathcal{N}(0, 1/n) \) entries and normalize the columns so they have unit norm.
 - Sample a vector \(\beta \) with 35 entries equal to 3.5 and all others equal to zero.
 - Create a knockoff matrix using either the SDP strategy, the equi-correlated strategy, or (ideally) both.
 - Sample 200 realizations of \(y \) and report the FDR and power of the procedure when \(\text{offset} \) is either 0 or 1: here, \(\text{offset} \) is a parameter in the SeqStep procedure
 \[\tau = \min \left\{ t : \frac{\text{offset} + |\{j : W_j \leq -t\}|}{1 \vee |\{j : W_j \geq t\}|} \leq \alpha \right\}. \]
 We shall use
 \[W_j = Z_j - \tilde{Z}_j \]
 where \(Z_j = |\beta_j(\lambda = 1.6)| \) is the magnitude of the lasso coefficient at \(\lambda = 1.6 \). That is, \(\beta(\lambda), \tilde{\beta}(\lambda) \) are solutions to
 \[\text{minimize } \frac{1}{2} ||y - Xb - \tilde{X}\tilde{b}||_2^2 + \lambda||b||_1 + \lambda||\tilde{b}||_1. \]
 - Compare FDR and power with those achieved via the BH procedure.
 - Comment on your results.

\[\text{1If you work in Python, let me know as I also have some code.} \]