1 Outline

Agenda: Estimation of a Multivariate Normal Mean

1. Stein’s Phenomenon
2. James-Stein Estimate
3. Stein’s Unbiased Risk Estimate

We now take a break from hypothesis testing to study some results in estimation.

2 Estimation of a multivariate normal population

In this discussion, we are interested in estimating the mean μ in the multivariate normal model

$$X \sim N_p(\mu, \sigma^2 I)$$

This model can equivalently be written as

$$X_i = \mu_i + \sigma z_i \quad z_i \overset{i.i.d.}{\sim} N(0, 1) \quad i = 1, \ldots, p$$

Our primary focus is to find an estimator $\hat{\mu}$ that performs well in terms of quadratic loss, defined as

$$\ell(\hat{\mu}, \mu) = \|\hat{\mu} - \mu\|^2 = \sum_{i=1}^{p}(\hat{\mu}_i - \mu_i)^2$$

The corresponding risk function, the MSE, (viewed as a function of μ) is defined as the expected loss and is given by

$$R(\hat{\mu}, \mu) = \mathbb{E}_\mu \|\hat{\mu} - \mu\|^2 = \mathbb{E}_\mu \ell(\hat{\mu}, \mu)$$

The natural estimator of μ is the MLE

$$\hat{\mu}_{\text{MLE}} = X \quad \text{[the sample mean]}$$

The MLE has risk

$$R(\hat{\mu}_{\text{MLE}}, \mu) = \mathbb{E}_\mu \|X - \mu\|^2 = \sigma^2 \mathbb{E} \|z\|^2 = p\sigma^2$$

For a long time, the MLE was thought to be ‘the best’ estimate for a multivariate mean. No estimator achieving a lower MSE for all values of μ was believed to exist.
Note: It is not difficult to improve on the MLE at a single point; e.g., the estimator \(\hat{\mu} = 0 \) outperforms the MLE at \(\mu = 0 \).

3 Stein’s phenomenon

For \(p = 1, 2 \), this belief that the MLE is the best estimator is correct. However, for \(p \geq 3 \), it is false. A result of Stein 1956 hinted at this. A proof was eventually provided in 1961 by James & Stein.

In the 1961 paper, the authors introduce what is now referred to as the James-Stein estimator

\[
\hat{\mu}_{JS} = \left[1 - \frac{p - 2}{\|X\|^2} \right] X
\]

This estimator is **nonlinear**, **biased**, and **shrinks the MLE towards 0**.

Theorem 1 (James, Stein 1961). \(\hat{\mu}_{JS} \) dominates the MLE everywhere in terms of MSE. More precisely, for all \(\mu \in \mathbb{R}^p \),

\[
E_{\mu} \|\hat{\mu}_{JS} - \mu\|^2 < E_{\mu} \|\hat{\mu}_{MLE} - \mu\|^2
\]

In other words, this result proves the inadmissibility of the sample mean as an estimator of the mean for \(p \geq 3 \). It is known that the James Stein estimator is not admissible either.

3.1 Stein’s original argument (1956)

A good estimate should obey \(\hat{\mu}_i \approx \mu_i \) for every \(i \). Thus we should also have \(\hat{\mu}_i^2 \approx \mu_i^2 \). This further implies

\[
\sum \hat{\mu}_i^2 \approx \sum \mu_i^2
\]

Consider the estimator \(\hat{\mu}_{MLE} = X \). For this estimator, we have

\[
E \sum X_i^2 = E \left[\sum_i (\mu_i + \sigma z_i)^2 \right]
\]

\[
= \sum_i (\mu_i^2 + \sigma^2)
\]

\[
= \|\mu\|^2 + \sigma^2 p
\]

This suggests that for large \(p \), \(\|X\|^2 \) is likely to be considerably larger than \(\|\mu\|^2 \), and hence we may be able to obtain a better estimator by shrinking the estimator toward 0. (See Figure ?? for a pictorial representation.)

In James, Stein 1961, the authors considered estimators of the form

\[
\hat{\mu}_c = \left(1 - c \frac{\sigma^2}{\|X\|^2} \right) X
\]

They showed that for \(c \in (0, 2(p - 2)) \),

\[
R(\hat{\mu}_c, \mu) < R(\hat{\mu}_{MLE}, \mu)
\]

and hence that \(\hat{\mu}_{JS} \) dominates the MLE everywhere.
Figure 1: Pictorial version of Stein’s original argument. The expected squared norm of the MLE $(\|\mu\|^2 + \sigma^2 p)$ can be much greater than the ‘desired’ norm $\|\mu\|^2$. By the estimator shrinking toward 0, we can decrease its norm.

4 Stein’s Unbiased Risk Estimate (SURE), 1981

Using tools that were developed later on, we are able to provide a simple proof of the James-Stein theorem. The proof uses another great idea: Stein’s unbiased risk estimate.

Suppose, as before, that $X \sim N(\mu, \sigma^2 I)$, and that we have some estimator

$$\hat{\mu} = X + g(X)$$

where g is ‘almost’ differentiable, and

$$\mathbb{E} \sum_{i=1}^{p} |\partial_i g_i(X)| < \infty$$

Almost differentiability means that there exists h_i so that we can write

$$g_i(x + z) - g_i(x) = \int_{0}^{1} \langle h_i(x + tz), z \rangle dt$$

Usually, we write $h_i = \nabla g_i$.

The main result that we will use in order to compute the risk of $\hat{\mu}$ in this setup is Stein’s identity.

Stein’s identity (1981)

$$\mathbb{E}\|\hat{\mu} - \mu\|^2 = p\sigma^2 + \mathbb{E} \left[\|g(X)\|^2 + 2\sigma^2 \sum_i \partial_i g_i(X) \right]$$
An important consequence of Stein’s identity is Stein’s Unbiased Risk Estimate:

\[
\text{SURE}(\hat{\mu}) = p\sigma^2 + \|g(X)\|^2 + 2\sigma^2 \text{div } g(X)
\]

In other words, SURE(\hat{\mu}) is an unbiased statistic for the risk.

Proof of Stein’s identity. Assume without loss of generality that \(\sigma = 1\). Then the risk of \(\hat{\mu}\) is

\[
\mathbb{E}\|X + g(X) - \mu\|^2 = \mathbb{E}\|X - \mu\|^2 + 2\mathbb{E}\left((X - \mu)^T g(X)\right) + \mathbb{E}\|g(X)\|^2
\]

We just need to show that \(\mathbb{E}(X - \mu)^T g(X) = \mathbb{E}\text{div } g(X)\). This follows easily from integration by parts.

Let \(\varphi\) denote the \(N(0, I)\) pdf. Then we can write

\[
\mathbb{E}(X_i - \mu_i)g_i(X) = \int (x_i - \mu_i)g_i(x)\varphi(x - \mu)dx
\]

Since

\[
\partial_i\varphi(x - \mu) = -(x_i - \mu_i)\varphi(x - \mu)
\]

(*) becomes

\[
(*) = \int \partial_i g_i(x)\varphi(x - \mu)dx = \mathbb{E}\partial_i g_i(X)
\]

\[\square\]

4.1 Applying SURE to \(\hat{\mu}_{JS}\) when \(\sigma = 1\)

We can rewrite \(\hat{\mu}_{JS}\) as

\[
\hat{\mu}_{JS} = X - \frac{p - 2}{\|X\|^2} X
\]

Thus \(\hat{\mu}_{JS}\) is of the form \(X + g(X)\) where \(g(x) = -(p - 2)x/\|x\|^2\). This gives

\[
\|g(x)\|^2 = \frac{(p - 2)^2}{\|X\|^2}
\]

\[
\partial_i g_i(x) = \partial_i \left\{-(p - 2)\frac{x_i}{\|x\|^2}\right\} = -\frac{p - 2}{\|x\|^2}x_i + \frac{2(p - 2)x_i^2}{\|x\|^4}
\]

\[\Rightarrow \text{div } g(x) = -\frac{(p - 2)^2}{\|x\|^2}\]

Putting everything together gives

\[
\mathbb{E}\|\hat{\mu}_{JS} - \mu\|^2 \leq p - \mathbb{E} \left[\frac{(p - 2)^2}{\|X\|^2}\right] < p
\]

4
Remark: We can even be more precise. Noting that
\[
\mathbb{E} \frac{1}{\|X\|^2} \geq \frac{1}{(p-2) + \|\mu\|^2}
\]
with equality if \(\mu = 0 \), we can bound the risk of the James-Stein estimator by
\[
\mathbb{E} \|\hat{\mu}_{JS} - \mu\|^2 \leq p - \frac{p - 2}{1 + \frac{\|\mu\|^2}{p-2}}
\]
It is interesting to consider a few special cases.
Under the global null, \(\|\mu\|^2 = 0 \), in which case
\[
R(\hat{\mu}_{JS}, \mu) = 2
\]
In the regime where our signal to noise ratio is nearly 1, \(\|\mu\|^2 = p - 2 \), and
\[
R(\hat{\mu}_{JS}, \mu) \leq p/2
\]
As \(\|\mu\|^2 \to \infty \), \(R(\hat{\mu}_{JS}, \mu) \to p \).
Figure ?? shows a plot of the upper bound obtained for the risk of \(\hat{\mu}_{JS} \) compared to the risk of the MLE.

![Figure 2: Comparison of the risk of the MLE (red) to the upper bound derived for the risk of \(\hat{\mu}_{JS} \) (black).](image)

There’s a further estimator that improves upon the JS estimate by precluding the possibility of sign reversal.
\[
\hat{\mu}_{JS}^+ = \left(1 - \frac{p - 2}{\|X\|^2}\right)_+ X
\]