1. Suppose we wish to test \(n \) normal means \(\mu_i \) from \(X_i \sim \mathcal{N}(\mu_i, 1) \). One way to do this might be as follows: simulate \(n \) iid random variables \(X_i \) from \(\mathcal{N}(0, 1) \) and select \(\tau \) as

\[
\tau = \min \left\{ t : \frac{1 + |\hat{S}(t)|}{1 + |S(t)|} \leq q \right\},
\]

where

\[
\hat{S}(t) = \{ i : |\bar{X}_i| \geq t \text{ and } |\bar{X}_i| > |X_i| \} \\
S(t) = \{ i : |X_i| \geq t \text{ and } |\bar{X}_i| \leq |X_i| \};
\]

then reject those hypotheses in \(S(\tau) \).

(a) Do you expect this to control the FDR at level \(q \)? Explain why or why not.

(b) Take \(n = 1,000 \) and simulate the FDR and power of the above method in the following two settings: (1) 80% of the \(X_i \)'s are \(\mathcal{N}(0, 1) \) and 20% are \(\mathcal{N}(5, 1) \); (2) 80% of the \(X_i \)'s are \(\mathcal{N}(0, 1) \) and 20% are \(\mathcal{N}(2, 1) \). Compare FDR and power with BHq and comment on your findings.

(c) Same as (b) but with 95% of nulls instead.

2. Suppose I wish to test whether a given regression coefficient in a logistic model is null or not.

(a) Explain you would compute p-values classically (for instance, explain how R computes p-values). Are these classical p-values truly uniform under the null? If not, when are they approximately uniform?

(b) Imagine we have \(n \) samples of the form \((X_i, Y_i)\), where \(X_i \sim \mathcal{N}(0, I_p) \) and \(Y_i = \pm 1 \) with probability \(1/2 \), independently from \(X \). That is, the covariates are i.i.d. \(\mathcal{N}(0, 1) \) and we are under the global null. For \(n = 1500 \) and \(p = 500 \), plot histograms of the empirical distribution of the p-values. Comment on your findings.

(c) Repeat (b) for various values of the ratio \(p/n \). What do you get when \(p/n > 1/2 \)? Can you explain this phenomenon?

(d) What would happen if ou were to use classical p-values for multiple testing when \(p/n = 0.3 \), say?

(e) We are in the setup of (b) but now have a fraction of nonzero regression coefficients. Does the distribution of a null p-value seem to change (compared to what it is under the global null)? Explain your answer.

3. Consider the proof from Lecture 10, Section 3, and recall the ordering \(x \geq y \text{ iff } x_i \geq y_i \text{ for all } i \). Show that if \(f : \mathbb{R}^d \to \mathbb{R} \) is a non-decreasing function meaning that \(x \geq y \implies f(x) \geq f(y) \), then for each \(t_1 \leq t_1' \),

\[
\mathbb{E}(f(X)|X_1 = t_1) \leq \mathbb{E}(f(X)|X_1 = t_1').
\]