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Abstract

In single-molecule microscopy it is necessary to locate with high precision point sources
from noisy observations of the spectrum of the signal at frequencies capped by fc, which is just
about the frequency of natural light. This paper rigorously establishes that this super-resolution
problem can be solved via linear programming in a stable manner. We prove that the quality of
the reconstruction crucially depends on the Rayleigh regularity of the support of the signal; that
is, on the maximum number of sources that can occur within a square of side length about 1/fc.
The theoretical performance guarantee is complemented with a converse result showing that our
simple convex program convex is nearly optimal. Finally, numerical experiments illustrate our
methods.

1 Introduction

The problem of super-resolution arises in many areas of science and engineering including mass-
spectrometry, radar imaging, and wireless communication. In optics, for example, the natural
resolution of microscopes is inversely proportional to the wavelength of light used for observation.
This happens because of the diffraction of light, and makes it fundamentally difficult to study sub-
wavelength features of the object; e.g. to resolve nearby sources located at distances smaller than
the diffraction limit. This paper is about this problem: namely, the super-resolution of positive
sources, e.g. fluorescing molecules as in single-molecule imaging.

Formally, consider a high-frequency signal

x(w) =
∑
i

xiδ(w −wi) (1)

consisting of positive point sources located at unknown positions wi and of unknown intensity
xi > 0. The signal is observed through a convolution of the form

s(v) =

∫
flow(v −w)x(w)dw + z(v), (2)

where flow(·) is a low-frequency kernel that erases the high-frequency components of the signal and
z(·) is noise. The goal of super-resolution is to accurately estimate x(·), i.e., the source locations
and intensities.
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1.1 Super-resolution microscopy

Since our mathematical models and theoretical results are motivated by very concrete contempo-
rary problems in single-molecule imaging, we find it best to pause and introduce some background
material; for details beyond those we provide below, please check the wonderful book by J. Good-
man [1].

Optical System

Φ(w, t)

Object

Ψ(v, t)

Detector

Entrance Pupil Exit Pupil

θ

Figure 1: Model of an optical system.

To understand where (2) comes from, we derive the input-output relation of a simple imaging
system as shown in Figure 1. While the laws of optics are governed by Maxwell’s equations, which
are linear, the vectorial nature of the electric and magnetic fields can be neglected in Fourier optics
and the physics fully described via the time-varying phasor [1, Sec. 3.2], a term assigned to any of the
three components of these two fields. Assume that a narrow-band (not necessarily monochromatic)
light is used for illumination, and let Φ(w, t) and Ψ(v, t) respectively denote the input/output
phasors describing the field emitted by the object being imaged and the field generated at the
receiver of the system. Here, w,v ∈ R2 are indexing spatial coordinates in the object plane and
in the detector plane, respectively, and t ∈ R is indexing time. We assume, for convenience, that
the phasors Φ(w, t),Ψ(v, t) have been frequency-shifted (as a function of t) to be centered around
the mean frequency of the optical wave [1, p. 132], so that, for example, E(w, t) = <[Φ(w, t)e2πiν̄t],
where E is one of the components of the electric field and ν̄ is the average frequency of emitted light.
The diffraction of light in the optical system can be described by the Fraunhofer approximation
leading to [1, Eq (6-6)]

Ψ(v, t) =

∫
h(v −w)Φ(w, t)dw, (3)

where h(v) is the point-spread function (PSF) of the optical system. In general, the Fourier
transform of h(·) is proportional to the indicator function of the aperture and because the aperture
is finite, h(·) is band-limited. To be concrete, assume that the entrance and the exit pupils in
Figure 1 are square. In this case [1, Sec. 6.2.2]

h(v) ∝ 1√
2f̄c

sin(2πf̄cv1)

πv1

1√
2f̄c

sin(2πf̄cv2)

πv2
, v = [v1, v2]T. (4)

The spatial frequency cut-off of the optical system is given by

f̄c =
sin(θ)

λ
,

where λ is the wavelength of emitted light (average wavelength in the narrow-band illumination
case) and θ is half of the angle spanned by the exit pupil as seen from the center of the image plane
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(see Figure 1). Note that due to the narrow-band illumination assumption, h(·) depends upon the
average wavelength of the optical wave, but not upon the specific frequencies in the illuminating
spectrum so that the system model is described by the simple convolution equation (3).

In optics, the carrier frequency ν̄ ∼ 500 THz is much higher than the frequency fHET ∼ 10 GHz,
which electronic components can respond to, e. g. the frequency of heterodyne used to down-convert
the signal. Consequently, in optics only the time-average of the instantaneous intensity of received
light (called received intensity) is directly observable [1, Eq (6-8)]:

s̃(v) , 〈Ψ(v, t)Ψ∗(v, t)〉 , (5)

where Ψ∗(·) denotes the complex conjugate of Ψ(·) and 〈·〉 stands for time averaging:

〈g(t)〉 = fHET

∫ 1/fHET

0
g(t)dt.

In a majority of microscopy applications, the object emits incoherent light. Mathematically, this
situation is described by assuming that frequencies of spatially separated emitters vary in statis-
tically independent fashions. This idealized property may be represented by the equation [1, Eq
(6-14)] 〈

Φ(w, t)Φ∗(w′, t)
〉

= δ(w −w′)x(w). (6)

The quantity x(w) is the time-average of the instantaneous intensity of light emitted by the object
and is called emitted intensity. Substituting (3) into (5) and then using (6) we obtain the following
input-output relation

s̃(v) =

∫
flow(v −w)x(w)dw, flow(v −w) , |h(v −w)|2. (7)

Observe that (7) is a linear convolution equation with respect to emitted intensity; compare to (3),
which is a linear convolution equation with respect to the components of the emitted field. The
low-frequency kernel flow(·) is the square of the two-dimensional (2D) sinc kernel (4) and has a
spatial frequency cut-off at fc = 2f̄c (twice that of the kernel h(·)). The emitted intensity x(·) is a
nonnegative function, a property that is crucially important for all results in this paper. Finally,
the `1 norm of the signal,

‖x(·)‖1 =

∫
|x(w)|dw,

has the meaning of cumulative emitted intensity or total energy of light emitted per second. As
a side remark, note that when the sample is illuminated by coherent light, as in X-ray crystal-
lography, the resulting input-output relations is no longer linear, in stark contrast to (7), and
the phase retrieval problem needs to be solved. For the interested reader, this point is explained
in Appendix B.

Our goal is to reconstruct the signal x(·) from the observations s̃(·) in (7). Without additional
structural assumptions on x(·), this is clearly not possible, because the high-frequency components
of x(·) are lost. The details of x(·) that are smaller than the Rayleigh diffraction limit,1 1.22/f̄c,
cannot be distinguished [1, Sec 6.5.2]. In single-molecule microscopy [2–4], a modern imaging
technique, the signal x(·) consists of several disjoint molecules emitting light. Here, the size of
each molecule is about 4 nm, which is much smaller than 1/f̄c ≈ 200 nm, and yet it is absolutely

1The specific value of the constant, 1.22, is largely a historical convention; the point here is that the details of the
image that are much smaller than 1/f̄c are blurred.
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necessary to estimate the locations of these molecules with precision that is significantly higher
than the Rayleigh diffraction limit.

The main contribution of this paper is to show that under the structural model (1), it is possible
to estimate x(w) via linear programming stably from noisy data—all imaging systems are funda-
mentally noisy—with resolution beyond the diffraction limit. Further, the quality of estimation
fundamentally depends on how regularly (in the sense explained in Section 2) the sources/molecules
are distributed in the image domain.

1.2 Mathematical models and methods

The super-resolution theory developed in this paper is discrete, which means that the input signal
x(·) is assumed to be supported on a fine grid. The nonzero elements of this discrete signal are
suggestively called “spikes”. In optics, there is no grid, of course; the spikes in (1) can be in arbitrary
(continuous) locations, and the companion paper [5] shows how to generalize our key result to the
continuous setting. In truth, the analysis of the continuous-space problem is far more technical
than that presented here; however, the final result—the stability estimate in (18)—is essentially
the same. For now, the advantage of working with a discrete model is that we can explain the key
concepts without bothering with heavy mathematical machinery.

1.2.1 Discrete setup

A noiseless discrete model is of the form
s̃ = Qx, (8)

where x is either a one- or two-dimensional discrete array of intensities, Q models the (discrete)
convolution equation and s̃ is the output data, assumed to be of the same dimension(s) as the input
vector x. We have already seen examples of PSFs or convolutions; for instance, flow(·) in (7) is
the square of the sinc kernel (in each direction), the sinc kernel being an ideal low-pass filter whose
frequency response is a box function. Therefore, the frequency response of flow(·) is a triangle
function in 1D and a pyramid in 2D. In (10), (12), (16) and (17) below, we consider natural PSFs
in one and two dimensions so that in the remainder, Q in (8) or (9) may be given by any of these.

1.2.2 Noise

In modern microscopy applications, the intensities of emitted/received light are very low and in
such regimes, the main source of noise is due to quantum-mechanical effects. We have argued
that a component of s̃ represents the expected number of photons to be recorded per unit time
at a given pixel on the detector. The actual number of photons detected may be modeled as
a Poisson-distributed random variable so that s ∼ Pois (s̃), meaning that we have independent
Poisson variables with means given by (8). In this paper, we shall work with a slightly more
general signal-dependent additive noise z = s−Qx so that the input-output (IO) relation becomes

s = Qx + z. (9)

1.2.3 Recovery

Our recovery method from the observations s in (9) is extremely simple: solve

minx̂ ‖s−Qx̂‖1 s.t. x̂ ≥ 0. (CVX)
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In other words, we are looking for a superposition of positive sources such that the mismatch in
received intensities is minimum. Note that this method does not make any assumption about the
signal and does not make use of any knowledge other than the received data s and the PSF Q.
Furthermore, (CVX) is a simple convex optimization program, which can be recast as a linear
program since both s and Q are real valued.

1.2.4 Examples of PSFs

We now discuss various models for the discrete convolution equation (9).

1D model with flat spectrum. In our first example, x = [x0 · · ·xN−1]T ∈ RN is a one-
dimensional array, and Q is an ideal low-pass filter in the sense that it has a flat spectrum with a
sharp cut-off at fc. Formally,

Q = Qflat,1D = FHQ̂flat,1DF, (10)

where

[F]k,l =
1√
N
e−i2πkl/N , −N/2 + 1 ≤ k ≤ N/2, 0 ≤ l ≤ N − 1,

is the N ×N discrete Fourier transform (DFT) and Q̂flat,1D = diag([p̂−N/2+1 · · · p̂N/2]T) with

p̂k =

{
1, k = −fc, . . . , fc,
0, otherwise.

(11)

The wavelength λc , 1/fc gives the width of the convolution kernel represented by Q. We assume
throughout the paper that N is even for simplicity.

1D model with triangular spectrum. The discrete one-dimensional analog of our imaging
system with incoherent light (7) is given by (8), where Q is as follows:

Q = Qtri,1D = FHQ̂tri,1DF, (12)

Q̂tri,1D = diag(q̂) with q̂ = [q̂−N/2+1 · · · q̂N/2]T and

q̂k =

{
1− |k|

fc+1 , k = −fc, . . . , fc
0, otherwise.

(13)

In this model, the nonzero elements of x represent the molecules at the corresponding locations (on
the grid) whereas the components of s̃ represent the intensity of light measured at the corresponding
pixel on the detector.

2D model with flat spectrum. Similarly, the 2D model with a flat spectrum reads

s̃2D = FH
2DQ̂2DF2Dx2D, (14)

where F2D : CN ×CN → CN ×CN is the linear operator that implements the 2D Fourier transform
and acts according to

[F2Dx2D]k1,k2 =
1

N

N−1∑
l1=0

N−1∑
l2=0

xl1,l2e
−i2π(k1l1+k2l2)/N
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and Q̂2D : CN × CN → CN × CN is the diagonal operator in the Fourier domain,

[Q̂2Dy2D]k1,k2 = p̂k1−N/2p̂k2−N/2 [y2D]k1,k2 . (15)

To keep the same notation, define x = vec(x2D) and s̃ = vec(s̃2D), where the vec(·) operation stacks
the columns of a matrix into a tall vector. Using the properties of the Kronecker product, (14) can
be written as (8) with

Q = Qflat,2D = (FH⊗FH)(Q̂flat,1D⊗ Q̂flat,1D)(F⊗F). (16)

2D model with triangular spectrum. With the vectorized notation, the 2D model with tri-
angular spectrum can be written as (8) with

Q = Qtri,2D = (FH⊗FH)(Q̂tri,1D⊗ Q̂tri,1D)(F⊗F). (17)

1.2.5 Intensity normalization

It follows from our earlier discussion that for incoherent light (models with triangular spectra),
we may interpret ‖x‖1 as the total intensity of light emitted by the object. Similarly, ‖s̃‖1 is the
total intensity of light observed at the receiver. Letting [q0 · · ·qN−1] denote the columns of Q, (13)
guarantees that ‖ql‖1 = 1 for all l. To see this, first note that ql is a shifted version of 1√

N
FHq̂ so

that ‖ql‖1 = ‖ 1√
N

FHq̂‖1. Next, write q̂ = d̂ ? d̂ where d̂ = [d̂−N/2+1 · · · d̂N/2]T and

d̂k =

{√
1

fc+1 , k = −fc/2, . . . , fc/2,
0, otherwise,

and ? denotes the discrete convolution. Finally, use the convolution theorem to conclude

‖ql‖1 =

∥∥∥∥ 1√
N

FHq̂

∥∥∥∥
1

=

∥∥∥∥ 1√
N

FH(d̂ ? d̂)

∥∥∥∥
1

=
∥∥∥FHd̂� FHd̂

∥∥∥
1

= ‖FHd̂‖22 = 1,

where � denotes the element-wise product and a takes conjugate element-wise. Therefore, using
that xl ≥ 0 and ql ≥ 0 for all l,

‖s̃‖1 =
∥∥∥N−1∑
l=0

xlql

∥∥∥
1

=

N−1∑
l=0

xl‖ql‖1 =

N−1∑
l=0

xl = ‖x‖1.

Hence, our normalization is such that the intensity of light (emitted energy per second) is conserved
in the system. In the models (11) and (15) with a flat spectrum the `1 norm of the signal is not
conserved.

1.3 Notation

Sets are denoted by calligraphic letters A,B, and so on. Boldface letters A,B, . . . and a,b, . . .
denote matrices (or linear operators) and vectors, respectively. The element in the i-th row and
j-th column of a matrix A is aij or [A]i,j , and the i-th element of the vector a is ai or [a]i. For a
vector a, diag(a) stands for the diagonal matrix that has the entries of a on its main diagonal. The
superscripts T and H stand for transposition and Hermitian transposition, respectively. For a finite
set I, we write

∣∣I∣∣ for the cardinality. For two functions f(·) and g(·), the notation f(·) = O(g(·))
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means that lim supt→∞
∣∣f(t)/g(t)

∣∣ is bounded. For x ∈ R, dxe , min{m ∈ Z | m ≥ x}. We use
[l : k] to designate the set of natural numbers {l, l + 1, . . . , k}. The expectation operator is E

[
·
]
.

For a vector a ∈ Cn, ‖a‖1 =
∑n−1

j=0

∣∣aj∣∣ and ‖a‖2 =
√∑n−1

j=0

∣∣aj∣∣2 denote the `1 and `2 norms,

respectively; ‖a‖ means either ‖a‖1 or ‖a‖2. The number of nonzero elements of a vector a is
‖a‖0. For a matrix A ∈ Cn×n, the operator norm is defined as ‖A‖1,op = maxi

∑n−1
j=0

∣∣aij∣∣ and

vec(A) denotes the n2-dimensional vector obtained by stacking the columns of A. For vectors a and
b, a � b denotes the element-wise product; a ?b denotes the discrete convolution; the Kronecker
product of matrices A and B is denoted as A⊗B.

2 Main results

Consider the 1D model for concreteness. From (11), (13) we see that we have access to n = 2fc + 1
low-frequency observations while the total number of degrees-of-freedom in x is N . The ratio
SRF , N/n is called the super-resolution factor (SRF); this is the ratio between 1/n and 1/N , the
scale at which we have data and that at which we wish to see details.

As we will review below, the sparsity condition ‖x‖0 < n/2 is sufficient for recovery of x when
there is no noise. If there is noise, it turns out that sparsity is not sufficient as our ability to
estimate x from s in a stable way fundamentally depends on how regular the positions of the spikes
are, i.e., how many spikes may be clustered close together.

2.1 Rayleigh regularity

Suppose we are in D dimensions and think of our discrete signal x ∈ CND
as samples on the D-

dimensional grid {0, 1/N, . . . , 1− 1/N}D ⊂ TD, where TD is the D-dimensional (periodic) torus—
the circle in 1D. In this paper, we can think of the ambient dimension D as being either one or
two. We introduce a definition of Rayleigh regularity inspired by [6, Def. 1].

Definition 1 (Rayleigh regularity). Fix N,n and set λc = 1/fc = 2/(n − 1). We say that the
set of points T ⊂ {0, 1/N, . . . , 1 − 1/N}D ⊂ TD is Rayleigh regular with parameters (d, r) and
write T ∈ RD(d, r;N,n) if it may be partitioned as T = T1 ∪ . . . ∪ Tr where the Ti’s are disjoint,
and each obeys a minimum separation constraint:

1. for all 1 ≤ i < j ≤ r, Ti ∩ Tj = ∅;

2. for all square subsets D ⊂ TD of sidelength dλc/2 and all i,

|Ti ∩ D| ≤ 1.

When no ambiguity arises, we will shortly write RD(d, r) instead of RD(d, r;N,n).
With a slight abuse of notation, it is also convenient to define a set of Rayleigh regular signals

(and nonnegative Rayleigh regular signals) with parameters (d, r):

RD(d, r) = {x ∈ CN
D

: supp(x) ∈ RD(d, r)},
R+
D(d, r) = {x ∈ RN

D

+ : supp(x) ∈ RD(d, r)},

where supp(x) is the support of x (the locations on grid where x does not vanish).
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Remark. Intuitively, in 1D, x ∈ R1(d, r) simply means that the signal x contains no more than
r spikes in any d consecutive Nyquist intervals; a Nyquist interval being of length λc/2, which
corresponds to the Nyquist-Shannon sampling rate of a signal that is band-limited to [−fc, fc].
Figure 2 illustrates these concepts for different parameter values.2

We discuss some examples of Rayleigh regular signals and first consider x ∈ R1(1, 1). This
signal may contain one spike per Nyquist interval. Each spike is associated with two unknown
parameters: location and amplitude. Since there are n Nyquist intervals, we may have as many as
2n unknown parameters in total, which is more than the number n of observations (cf. (13), (11)).
Hence, recovery of x ∈ R1(1, 1) is in general not possible even in the noiseless case. If we however
knew the locations of the spikes but not the amplitudes, we could recover the signal x ∈ R1(1, 1)
by solving a system of linear equations.

Next take x ∈ R1(2, 1). Such a signal may only contain one spike per two Nyquist intervals.
Hence, the total number of unknown parameters is at most equal to the number of observations
and recovery of x ∈ R1(2, 1) is barely possible in the noiseless case. For example, as discussed
in Section 3, x can be recovered by Prony’s method. In general, x ∈ R1(2r, r) is the absolute limit
for recovery of complex-valued signals in the noiseless case in the sense that x ∈ R1(2r − ε, r),
ε > 0, is in general not recoverable.

Strictly speaking, the general dimension-counting considerations above do not hold for positive
signals x ∈ RN+ because the positivity of x supplies extra information. On the one hand, it is
nevertheless possible to construct adversarial signals x ∈ R+

1 (2r− ε, r) that will not be recoverable
by any method whatsoever. On the other hand, this paper shows that x ∈ R+

1 (3.74r, r) can be
recovered stably in the presence of (small) noise via the linear program (CVX).

2.2 Stable recovery

We are now ready to present our main results; although they extend to higher dimensions, they
are stated in 1 and 2D for simplicity. Throughout, we assume that the data s is given by (9).

Theorem 1 (Flat spectrum). In 1D, take Q = Qflat,1D and x ∈ R+
1 (3.74r, r) with fc ≥ 128r.

Then the solution x̂ to (CVX) obeys

‖x̂− x‖1 ≤ C ·
(

N

n− 1

)2r

· ‖z‖1 ≈ C · SRF2r · ‖z‖1, (18)

where C = C1(r), only depends on r (if SRF ≥ 3.03/r, it can be taken as in (39)).
In 2D, take Q = Qflat,2D, x ∈ R+

2 (4.76r, r) with fc ≥ 512r. Then (18) holds with a constant C
depending on r only, which we do not specify for brevity.

The result in Theorem 1 is not sensitive to the exact choice of the kernel Q and remains valid
for just about any other low-frequency kernel. To illustrate this point and to connect our theory
to super-resolution microscopy we now give the result for the PSF discussed in Section 1.1.

Theorem 2 (Triangular spectrum). Set 1/2 ≤ α < 1. In 1D, take Q = Qtri,1D and assume
x ∈ R+

1 (3.74r/α, r) with fc ≥ 256r. Then the bound (18) holds with a finite constant C = C1(r, α),
namely,

‖x̂− x‖1 ≤ C · SRF2r · ‖z‖1. (19)

(If SRF ≥ 3.03/r, then the constant can be taken as in (41).)

2Clearly, R1(d, r1) ⊂ R1(d, r2) for r1 ≤ r2 and R1(d1, r) ⊂ R1(d2, r) for d1 ≥ d2.
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0 1

≥ 2λc ≥ 2λc

R1(4, 1)

0 1

λc ≥ 4λc

R1(8, 2)

0 1

λc ≥ 6λc

R1(12, 3)

Figure 2: Examples of discrete N dimensional signals from the Rayleigh classes R1(4, 1), R1(8, 2),
R1(12, 3) depicted on the grid {0, 1/N, . . . , 1− 1/N} ⊂ T. The sine wave sin(2πfct) at the highest
visible frequency is shown in blue for reference. Here, N = 92 and n = 23, so that SRF = 4 and
λc = 1/11. By periodicity, the endpoints are identified.

In 2D, take Q = Qtri,2D, x ∈ R+
2 (4.76r/α, r) with fc ≥ 1024r. Then except for the numerical

value of the constant, the same conclusion holds.

When α → 1, C1(r, α) → ∞, which reflects the fact that, as seen from (13), the spectrum
of Qtri,1D is very small at the border of the interval [−fc, fc]. Hence, with noise, the spectral
components of the signal can only be observed away from this border, for example on the interval
[−0.9fc, 0.9fc], which corresponds to taking α = 0.9 in Theorem 2.

Implications for single-molecule microscopy. Consider Theorem 2 in 2D and remember that
‖z‖1 is the cumulative difference in light intensity between noiseless (ideal) and real observations.
Then the theorem tells us that the cumulative error in light intensity in signal estimates is bounded
by the amplified version of the cumulative error in light intensity in the data. The noise amplification
factor (NAF) behaves as SRF2r, where r is the parameter describing the regularity of the signal
support. If the noise level is sufficiently small and the signal is sufficiently regular (r is small), i.e.,
not too many molecules are clustered close together, and SRF is modest, then the algorithm (CVX)
is guaranteed to achieve excellent super-resolution results. As we will explain in Section 2.3, no
algorithm can perform substantially better.

Contribution. Theorems 1 and 2 are new, and while their proofs are given in Section 4, we would
like to discuss the main technical contribution of this paper. When r = 1 or, equivalently, when the
spikes are separated by at least 1.87λc and not necessarily positive, a result similar to Theorem 1 was
obtained in [7, Th. 1.5] using a different convex program, see also [8] for a continuous-space version;
this program, given by (L1) below, requires knowledge of an upper bound on ‖z‖1. The proof in [7]
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is based on constructing a (dual) low-frequency trigonometric polynomial that interpolates the
sign of the spikes. The crucial observation we make in this paper is that the technique developed
in [7] can be extended to the important setting when the spikes are not separated and positive.
The proof is based on a simple idea: a Rayleigh-regular set may be partitioned into subsets with
points in each subset separated by at least 1.87λc; therefore, each set comes with a (dual) low-
frequency trigonometric polynomial constructed in [7]; multiplying such polynomials together gives
a low-frequency polynomial interpolating the signal.

In the noiseless setting (z = 0), our results state that the recovery is exact. In 1D this is
well known, see [9, 10] and the review in Section 3. In 2D and higher, this is new: as explained
in Section 4, this result cannot be obtained by a straightforward generalization of the techniques
in [9, 10].

2.3 Tightness

In this section we argue that our results in Theorem 2 are nearly tight. In 1D, we are interested in
answers to the following two natural questions:

(i) Can the assumption C = R+
1 (3.74r, r) be substituted with C = R+

1 (d, r) with d < 3.74r
without changing the bound (19)?

(ii) Can the exponent 2r in (19) be made smaller?

2.3.1 Tightness of the length of the interval

To answer (i), we have already argued in Section 2.1 that even in the noiseless case it is not possible
to recover many of the signals x ∈ R+

1 (d, r) with d < 2r. Hence, d = 3.74r is within a factor 1.87 of
the optimum. This factor comes from the key result from [7] explained above, which concerns the
existence of low-frequency polynomials interpolating complex scalars of unit magnitude separated
by 1.87λc. Any improvement in this technology would yield a corresponding improvement here, see
Section 4.1.3 for additional details.

2.3.2 Tightness of the exponent

To answer question (ii) above, we need the concept of modulus of continuity (MC).

Definition 2 (Modulus of continuity). Let ‖·‖ be a norm, Q a linear operator, and C a class
of signals.3 The MC is defined as

MC[C,Q] , sup
x1,x2∈C

‖x1 − x2‖
‖Q(x1 − x2)‖ .

We also introduce the simple notion of noise amplification.

Definition 3 (Noise amplification factor). Let ‖·‖ be a norm, B a linear operator, and C a
signal class. Suppose an algorithm A produces an estimator x̂(s) from the model s = Bx + z
obeying the uniform stability guarantee

‖x̂− x‖ ≤ NAF[A, C,B] · δ

for all x ∈ C and all z with ‖z‖ ≤ δ. Then we say that the NAF of A is (at most) NAF[A, C,B].

3For example, C may be a class of sparse signals, a class of Rayleigh regular signals, and so on.
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The MC is related to the NAF via the following simple facts.

1. If the NAF of an algorithm A is at most NAF[A, C,Q], then

NAF[A, C,Q] ≥ MC[C,Q].

2. Consider the exhaustive search (ES) algorithm (in general intractable) for super-resolving
signals in C:

find x̂ ∈ C s.t. ‖s−Qx̂‖ ≤ δ (ES)

with δ chosen so that ‖z‖ ≤ δ. The NAF of this algorithm satisfies

NAF[ES, C,Q] ≤ 2MC[C,Q].

We now provide a lower bound on the MC showing that if the noise is arbitrary, no algorithm
can have a NAF smaller than CSRF2r−1. Therefore, the exponent 2r in (18) is nearly optimal.

Theorem 3. Take Q = Qtri,1D. Set r and d to be arbitrary numbers and C = R+
1 (d, r) so that

by taking d =∞ we would have at most r spikes. Then there exist signals x = [x0 · · ·xN−1]T, x̃ =
[x̃0 · · · x̃N−1]T ∈ C s.t.

‖x− x̃‖1 = 1

and when N,n→∞, N/n→ SRF

‖Q(x− x̃)‖1 → χ(r, SRF)SRF2r−1.

For SRF→∞,
χ(r, SRF)→ CL(r)

where CL(r) depends on r only and is given explicitly in (45). Consequently, letting ‖·‖ be ‖·‖1
in Definition 2,

MC[C,Q] ≥ CL(r)SRF2r−1 (20)

when N,n and SRF = N/n are large.

The proof, given in Appendix A, relies on an explicit construction of nonnegative signals x and
x̃ with disjoint supports and such that the spikes in x − x̃ cancel out as much as possible after
low-pass filtering.

Comparing Theorems 3 and 2, we see that the exponent of SRF in the right-hand side (RHS)
of (18) is within one unit of the best possible. It is important to point out that the convex
optimization algorithm in (CVX) knows nothing at all about the regularity of the signal class C.
Yet, it is adaptive in the sense that it has nearly optimal stability guarantee whatever the (usually
unknown) value of r.

Theorem 3 tells us that the MC increases exponentially with r. For example, for a practically
interesting case where SRF = 8, it is not difficult to estimate from (20) and the numerical value
of the constant that super-resolution could only be possible if r ≤ 5. For r > 5, the modulus of
continuity is greater than 105, setting unrealistic constraints on noise levels in practical applications.
This is even an optimistic estimate and, in reality, it is nearly impossible to separate more than
three sources packed in a Nyquist interval.

It is not known whether the exponent in the lower bound (20) is sharp. In the very special case
where the signal contains exactly one spike, it is not difficult to see that a simple matched-filter
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will have a bounded ratio NAF/SRF, matching the exponent in the RHS of (20). This can be
used in the setting where the spikes are guaranteed to be so far apart, that the overlap between
their images in the output space can be neglected; this only happens when the distance between
neighboring spikes far exceeds λc/2 and all the spikes have roughly the same magnitude. In general,
in the interesting case where the images of neighboring spikes can overlap in the output space, it is
not clear how one could close the small gap between (20) and (18). In fact, it is possible that the
exponent in (20) can be made larger. As we shall see, to construct adversarial signals x, x̃ in the
proof of Theorem 3, we only use signals that contain exactly r spikes each. However, the signals in
R+

1 (d, r) can have more than r spikes, of course, which could allow one to construct pairs x, x̃ that
give a larger bound than that in the RHS of (20). Please also see the recent preprint [11], where
the question of calculating the exact exponent for signals with a total of r spikes is addressed.

3 Literature review and innovations

3.1 Prior art

Algebraic methods. Prony’s method [12] is an algebraic approach for solving the 1D super-
resolution problem from noiseless data when the number of sources is known a priori. The data
s is used to form a trigonometric polynomial, whose roots coincide with the spike locations. The
polynomial is then factored, thus revealing those locations, and the amplitudes estimated by solving
a system of linear equations. In the noiseless case, Prony’s method recovers x perfectly provided
that ‖x‖0 < n/2. No further Rayleigh regularity assumption on the signal support is needed.
With noise, however, the performance of Prony’s method degrades sharply. The difficulty comes
from the fact that the roots of a trigonometric polynomial constructed by an algebraic method are
completely unstable and can shift dramatically even with small changes in the data.

Many noise-aware versions of Prony’s method are used frequently in engineering applications,
for example in radar (see [13, Chapter 6]). The most popular methods are MUSIC and its numerous
variations [14–19], matrix-pencil [20], and ESPRIT [21,22]. For more details on algebraic methods
we refer the reader to the excellent book [13, Chapter 4]. However, the stability of noise-aware
algebraic methods is not theoretically well-understood. Asymptotic results (at high SNR) on the
stability of MUSIC in the presence of Gaussian noise are derived in [23, 24]. More recently, some
steps towards analyzing MUSIC and matrix-pencil in a non-asymptotic regime have been taken
in [25] and in [26], respectively. Nevertheless, to the best of our knowledge, no strong theoretical
stability guarantees like those in Theorems 1 and 2 are available for algebraic methods. Hence,
the search for super-resolution methods that perform well empirically and have sharp theoretical
stability guarantees is an important open problem.

Algebraic methods have been generalized to the multi-dimensional case. Surprisingly, the gen-
eralizations are not straightforward and many methods ( [27], [28], [13, Sec. 4.9.7]) have very
restrictive sparsity constraints: namely, at most n spikes when we recall, that in 2D the total num-
ber of observations is n2. In [29], the number of spikes can be as large as n2/4 in the noiseless case,
as one would expect from dimension-counting considerations.

Fundamental limits. In the pioneering work [6], Donoho studied limits of performance for the
1D super-resolution problem. His main findings can be summarized as follows. Put ‖·‖ = ‖·‖2 in
the definition of NAF and Q = Qflat,1D.
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• Let C = R1(4r, r), then the NAF of the exhaustive search algorithm (ES) obeys

NAF[ES, C,Q] ≤ C(r)SRF2r+1, (21)

where C(r) is a positive constant that might depend on r but not on N or n.

• Take an arbitrary pair (r, d) and set C = R1(d, r). Then

MC[C,Q] ≥ C(r)SRF2r−1,

where C(r) is a positive constant that might depend on r but not on N or n.

To the best of our knowledge, the analysis in [6] has not been generalized to the multi-dimensional
case. Unfortunately, The algorithm (ES) is not feasible because C is not convex, and [6] does not
propose any tractable algorithm that would have NAF bounded above by the RHS of (21). In this
respect, the key question posed by Donoho is whether a feasible algorithm that achieves stability
in (21) exists.

Other works [30–32] study the stability of the super-resolution problem in the presence of noise,
but likewise do not provide a tractable algorithm to perform recovery. Work in [33–35] analyzes
the detection and separation of two closely-spaced spikes, but does not generalize to the case when
there are more than two spikes in the signal.

Super-resolution under minimum separation constraint. Progress towards resolving the
question posed in [6] in the general situation where x ∈ CN—in this paper we consider the case RN+
only—has recently been made [7, 8]. Put ‖·‖ = ‖·‖1 in the definition of the NAF, select the PSF
with a flat spectrum, Q = Qflat,1D, and consider C = R1(4, 1). It was shown that the NAF of the
`1-minimization algorithm

min
x̂
‖x̂‖1 s.t. ‖s−Qx̂‖1 ≤ δ (L1)

with δ chosen so that ‖z‖ ≤ δ is at most

NAF[L1, C,Q] ≤ C · SRF2, (22)

where C is a positive numerical constant. The condition x ∈ C = R1(4, 1) is restrictive because it
means that the signal x cannot contain spikes that are at a distance less than 2λc. [For real-valued
signals x ∈ RN , a minimum separation of 1.87λc suffices.] This is a limitation for many applications
including single-molecule microscopy, as it is usually understood that the goal of super-resolution
is to distinguish spikes that are (significantly) closer than the Rayleigh diffraction limit, i.e. at
a fraction of λc apart. Unfortunately, if there are spikes at a distance lower than this value, `1
minimization does not, in general, return the correct solution even if there is no noise. Results
in [7,8] also cover the multi-dimensional case under a minimum separation constraint. On a similar
line of research, see [36] and [37] for related results on the denoising of line spectra and on the
recovery of sparse signals from a random subset of their low-pass Fourier coefficients. The accuracy
of support detection under the minimum separation constraint is analyzed in [38,39].

Super-resolution of noiseless nonnegative signals. The case of 1D nonnegative signal, x ∈
RN+ , was analyzed in [9], see also [10] for a shorter exposition of the same idea. Adapting to our
setting, the result in [9] can be summarized as follows: put ‖·‖ = ‖·‖1 in the definition of NAF and
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Q = Qflat,1D. Let C be the class of all signals with ‖x‖0 < n/2. Then the NAFcvx of the convex
feasibility program

find x̂ ≥ 0 s.t. ‖s−Qx̂‖2 ≤ δ (F)

with δ chosen so that ‖z‖2 ≤ δ, is a finite positive constant. The exact dependence of NAFcvx on
N and n is not specified in [9]. As we will see, further examination of the proof from [9] leads to a
bound of the form

NAFcvx[C,Q] ≤ (CN)2‖x‖0 , (23)

where C is a numerical constant. First, this does not depend on the Rayleigh regularity of x but on
the sparsity. Second, this does not depend on the SRF but on the grid size. By comparing to (21)
and (22) we see that the bound (23) is weak. Indeed, consider the interesting case N,n→∞ with
N/n = SRF kept constant. In this case the bounds in (21) and (22) remain finite, whereas the RHS
of (23) converges to +∞ very quickly. The bound in (23) does not depend on the frequency cut-off
fc or equivalently the number n of pieces of information we are given. Whether the frequency
cut-off is 10 or 106 the bound remains the same! This cannot capture the right behavior.

3.2 Innovations

The novelty of our results can be summarized as follows.

• As compared to algebraic methods, Theorems 1 and 2 show that efficient algorithms can
recover the signal in a provably stable fashion. As we discussed earlier, strong worst-case
stability guarantees are not available for algebraic methods. The flipside is that our results
crucially rely on non-negativity of the signal; algebraic methods do not need this assumption.

• As compared to [6], our recovery algorithm is a simple linear program (LP) and, hence,
is tractable whereas the exhaustive search method of [6] is intractable and cannot be used
in practice. The difference between stability exponents in (18) and in (21) stem from the
fact that [6] works with the `2 norm while we work with `1. (The stability bounds for the
exhaustive search algorithm in [6] do not assume the signal to be nonnegative.)

• As compared to [7], our results do not rely on the restrictive minimum-separation assumption.
Having said this, the results in [7] hold for the general case of complex amplitudes, and our
proofs borrow heavily from the tools developed in that work.

• As compared to work in [9], our stability estimates are far stronger, for they depend on the
super-resolution factor, and not on the spacing on the fine grid. Further, if one tries to use
the proof technique used in [9] to generalize the noiseless results in [9,10] to the 2D case, one
would need to assume that our image has at most n/2 spikes: this is too restrictive. In sharp
contrast, we see from Theorems 1 and 2 that if the signal support is Rayleigh regular, we may
have a number of sources on the order of n2, i.e. on the order of the number of measurements.

4 Proofs

4.1 Proof of Theorem 1 in the 1D case

The proof of the theorem is based on the following lemma.
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Lemma 1. Assume that the assumptions of Theorem 1 are satisfied. Set

h = [h0 · · ·hN−1]T = x̂− x

and
T = {l/N : hl < 0}, (24)

and suppose there exists q = [q0 · · · qN−1]T ∈ RN and 0 < ρ < 1 such that Qq = q, ‖q‖∞ ≤ 1, and{
ql = 0, l/N ∈ T
ql > 2ρ, otherwise.

(25)

Then

‖x̂− x‖1 ≤
2(1− ρ)

ρ
· ‖z‖1. (26)

Proof. Set q̃ = [q̃0 · · · q̃N−1]T = q− ρ and note that ‖q̃‖∞ ≤ 1− ρ since ρ ≤ 1/2. On the one hand,

|〈q̃,h〉| = |〈Qq̃,h〉| = |〈q̃,Qh〉|
≤ ‖q̃‖∞‖Qh‖1
≤ (1− ρ)‖Qx− s + s−Qx̂‖1
≤ (1− ρ)(‖Qx− s‖1 + ‖s−Qx̂‖1)

≤ 2(1− ρ)‖Qx− s‖1
= 2(1− ρ) · ‖z‖1. (27)

On the other hand, using sign(q̃l) = sign(hl) for all l gives

|〈q̃,h〉| =
∣∣∣∣∣
N−1∑
l=0

q̃lhl

∣∣∣∣∣ =

N−1∑
l=0

q̃lhl =

N−1∑
l=0

|q̃l||hl| ≥ ρ‖h‖1, (28)

Combining (27) and (28) yields the conclusion.

4.1.1 Localization of trigonometric polynomials

Lemma 1 shows that in order to obtain a tight bound we need to construct a (dual) vector q
obeying ‖q‖∞ ≤ 1 and (25) with ρ as large as possible. First, observe that since x, x̂ ≥ 0 it follows
that T in (24) satisfies

∣∣T ∣∣ ≤ ‖x‖0 < n/2. The idea is to construct a real-valued trigonometric
polynomial of largest frequency fc (recall n = 2fc + 1)

q(t) =

fc∑
k=−fc

q̂ke
−i2πkt ∈ R for all t, (29)

obeying ‖q‖∞ ≤ 1, {
q(t) = 0, for all t ∈ T ,
q(t) > 0, for all t /∈ T ,

and set q = {q(l/N) : l ∈ [0 : N−1]}. Observe that such a q would obey the conditions of Lemma 1
with ρ = 1

2 arg minl/N /∈T {q(l/N)}.
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A classical approach to constructing such a polynomial q(t) is

q(t) =
∏
t0∈T

1

2
[cos(2π(t− t0) + π) + 1] . (30)

This approach, used in [9, 10], works whenever
∣∣T ∣∣ < n/2 since the degree of q(t) is then at most

fc. The problem is that q(t) in (30) grows extremely slowly around its zeros, making ρ very small,
which then translates into highly suboptimal stability estimates. To demonstrate this, assume that
T = {0}, i.e.,

∣∣T ∣∣ = 1. Then (see Figure 3)

q(t) =
1

2
[cos(2πt+ π) + 1] (31)

so that

q(1/N) ≤ π2

N2

and ρ ≤ π2

2N2 . Plugging this into (26) we get an estimate no better than

‖x̂− x‖1 ≤
2

π2
N2 · ‖z‖1. (32)

This is weak. In the case when x has one spike, the separation condition T ∈ R1(3.74, 1) of [7] is
trivially satisfied. The results in [7] guarantee that `1 minimization achieves

‖x̂− x‖1 ≤ C ·
N2

n2
· ‖z‖1 = C · SRF2 · ‖z‖1,

where C is a numerical constant. The reason why [7] provides stability guarantees far stronger
than (32) is that the trigonometric polynomial q(t) constructed in [7] grows around its zeros much
faster than q(t) in (31). We review the behavior of q(t) constructed in [7] in Lemma 2 below and
illustrate the difference between this polynomial and that in (31). Based on the results of [7], we
then present a novel construction for q(t) that does not rely on the minimal separation condition
T ∈ R1(3.74, 1) needed in [7] and works for all signals with Rayleigh regular support of the type
T ∈ R1(3.74r, r). At the same time, the new polynomial q(t) grows rapidly around its zeros, which
allows us to derive strong stability guarantees.

−1/2 1/2

(0, 1)

q(t) in (31)

q(t) in Lemma 2

−c2λc c2λc

φ(t) in (33)

q(t) in Lemma 2

q(t) in (31)

Figure 3: Comparison of trigonometric polynomials at two different scales: the polynomial from [7]
(see Lemma 2) bounces off zero much faster than that used in [9, 10].
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4.1.2 Main building block: q(t) under separation

The following lemma is an immediate consequence of [7, Lm. 2.5] adapted to the case of real-valued
signals as explained in [7, Sec. 2.5].

Lemma 2. Assume T ∈ R1(3.74, 1;N,n). As before, fc = (n − 1)/2, λc = 1/fc and suppose

fc ≥ 128. Then there exists a real-valued polynomial q(t) =
∑fc

k=−fc q̂ke
−i2πkt with ‖q‖∞ ≤ 1 such

that {
q(t) = 0, for all t ∈ T ,
q(t) ≥ φ(t), for all t,

where (see Figure 3)

φ(t) =

{
c1f

2
c (t0 − t)2, for all t s.t. ∃t0 ∈ T with

∣∣t− t0∣∣ ≤ c2λc

c1f
2
c (c2λc)

2 = c1c
2
2, otherwise,

(33)

and c1 = 0.029, c2 = 0.17.

The significance of this lemma is that the growth of q(t) around its zeros is nearly optimal.
Indeed, suppose we wish to construct a real nonnegative polynomial with highest frequency fc of
the form (29) of magnitude at most one, and which grows around its zeroes as fast as possible. How
fast could it possibly grow? Since q(t) is a superposition of harmonic functions, it cannot outpace
a pure harmonic—normalized to take on values in [0, 1]—at the highest available frequency. Hence,
we cannot hope for growth faster than

1

2
[cos(2πfc(t− t0) + π) + 1] ≈ π2f2

c (t− t0)2 for small t. (34)

Comparing (34) to (33), we see that Lemma 2 provides a construction that is optimal up to at
most a constant factor.

We now show how to extend the construction in Lemma 2 to the case where the elements of
T are not necessarily well-separated, but T is Rayleigh regular. Together with Lemma 1, this will
prove Theorem 1. The proof below is illustrated on Figure 4, which the reader is encouraged to
consult while following the argument.

0 t1 t2 t3 t4 t5 1

φ1(t) φ2(t)

Figure 4: Illustration of the proof of Theorem 1 for r = 2; T1 = {t1, t2, t3}; T2 = {t2, t4}. The
trigonometric polynomials q1(t), q2(t) satisfy q1(t) = 0 for all t ∈ T1 and q2(t) = 0 for all t ∈ T2;
they are not displayed. The lower bounds φ1(t) and φ2(t) defined in (35) are depicted.
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4.1.3 Construction of q(t) without separation

Take x ∈ R+
1 (3.74r, r) with a support of cardinality S. Define h and T = {tk}Sk=1 with t1 <

t2 < . . . < tS as in Lemma 1. Since hl can only take on negative values on supp(x), then T ∈
R1(3.74r, r). Consider the partition T = ∪ri=1Ti, where Ti = {trk+i}S/r−1

k=0 . Since T ∈ R1(3.74r, r),
Ti ∈ R1(3.74r, 1) and by rescaling,

R1(3.74r, 1;N,n) = R1(3.74, 1;N, ñ),

where ñ = (n − 1)/r + 1. Set4 f̃c = (ñ − 1)/2 = (n − 1)/(2r) = fc/r and λ̃c = 1/f̃c = r/fc.

By Lemma 2, there are real-valued polynomials qi(t;N, ñ) =
∑f̃c

k=−f̃c
q̂ike

−i2πkt with ‖qi‖∞ ≤ 1 and{
qi(t) = 0, for all t ∈ Ti,
qi(t) ≥ φi(t), for all t,

where (see Figure 4)

φi(t) =

{
c1f̃c

2
(t0 − t)2, for all t s.t. ∃t0 ∈ Ti with

∣∣t− t0∣∣ ≤ c2λ̃c,

c1f̃c
2
(c2λ̃c)

2 = c1c
2
2, otherwise.

(35)

The trigonometric polynomial q is obtained by taking the product of the qi’s:

q(t) =
r∏
i=1

qi(t;N, ñ).

By construction, q(t) is band-limited, i.e., q(t) =
∑fc

k=−fc q̂ke
−i2πkt, ‖q‖∞ ≤ 1, and{

q(t0) = 0, for all t0 ∈ T ,
q(t) ≥∏r

i=1 φi(t), for all t.
(36)

Next we further lower-bound
∏r
i=1 φi(t). Fix t and let N = {t1, . . . , tr̂} = {t̂ ∈ T :

∣∣t− t̂∣∣ ≤ c2λ̃c}.
Since T ∈ R1(3.74r, r), it follows that r̂ ≤ r. Let t0 be the closest element of N to t so that

(t0 − t)2 ≤ (ti − t)2 for all i = 1, . . . , r̂. By the definition of N , c1f̃c
2
(ti − t)2 ≤ c1c

2
2. Using (35)

and these inequalities we may write

r∏
i=1

φi(t) ≥ (c1c
2
2)r−r̂cr̂1f̃

2r̂
c

r̂∏
i=1

(ti − t)2

≥
{
cr1f̃c

2r
(t0 − t)2r, for all t s.t. r̂ > 0

(c1c
2
2)r, otherwise.

(37)

The assumption SRF ≥ 3/r implies SRF = N/n > 1/(2rc2) ≈ 2.94/r, which is equivalent to
1/N < c2r2/n so that 1/N < c2λ̃c. Therefore, from (36) and (37), it follows that

ρ =
1

2
arg min
l/N /∈T

{q(l/N)} ≥ cr1
1

2
f̃c

2r 1

N2r
= cr1

1

2r2r
f2r
c

1

N2r
= cr1

1

2(2r)2r

(
n− 1

N

)2r

. (38)

4 Strictly speaking, this requires fc/r to be an integer. If fc/r is not an integer, we can substitute fc with rbfc/rc
and repeat the argument for the new fc. Since fc ≥ 128r by assumption, this transformation will result in less than
a 1% change meaning that R1(3.74r, r) would need to change into R1(3.77r, r). To keep things simple, we ignored
this detail throughout the paper and implicitly assumed that fc/r is an integer.
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Plugging this into (26) gives

‖x̂− x‖1 ≤ 4cr3r
2r︸ ︷︷ ︸

C1(r)

(
N

n− 1

)2r

· ‖z‖1, (39)

where c3 = 4/c1 = 67.79. This completes the proof.

Remark (Possible Improvement). The constant 3.74 in x ∈ R+
1 (3.74r, r) comes from the fact

that our construction is built on top of Lemma 2 borrowed from [7, Sec. 2.5]. If the constant
3.74 in Lemma 2 is reduced, all our results automatically improve without any modification. Car-
los Fernandez-Granda privately shared with us [40] that it is possible to substitute 3.74 by 2.52
in Lemma 2.

Remark (Extension). Consider a signal consisting of spike clusters as shown in Figure 5, and
violating the separation constraint. Suppose that within each cluster, the spikes have the same
sign. Then our proof technique can be used to show that if the clusters are sufficiently separated,
the signal can be recovered stably by convex programming. We omit the details.

0 1

Figure 5: Signal with clustered spikes that have the same sign within a cluster but different signs
across clusters.

4.2 Proof of Theorem 2 in the 1D case

Our strategy is to reduce the problem to that in which we have a flat spectrum. Choose 1/2 ≤ α < 1
(a parameter we can optimize) so that αfc is an integer, and define the filter

r̂k ,


fc+1

fc+1−|k| , k = −αfc, . . . , αfc,
(fc + 1)

(
a
∣∣k∣∣+ b

)
,
∣∣k∣∣ = αfc + 1, . . . , fc,

0, otherwise.

with

a , − 1

fc(1− α) + 1

1

fc(1− α)
and b ,

1

fc(1− α) + 1

1

1− α.

Set R̂ , diag(r̂) with r̂ , [r̂−N/2+1 · · · r̂N/2]T and let R , FHR̂F. The point is that

T , RQ = FHR̂FFHQ̂F = FHR̂Q̂F = FHT̂F

has a spectrum T̂ , diag([t̂−N/2+1 · · · t̂N/2]T) given by

t̂k ,


1, k = −αfc, . . . , αfc,(
fc + 1−

∣∣k∣∣) (a∣∣k∣∣+ b
)
,
∣∣k∣∣ = αfc + 1, . . . , fc,

0, otherwise.
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� 4.76�c

R(9.52, 2)

(a) (b)

Figure 6: In (a), T ∈ R2(9.52, 2) has eight elements and can be decomposed as T = T1 ∪ T2 with
T1, T2 ∈ R2(9.52, 1). The points in T1 are in blue and those in T2 are in green. In (b), T has eight
points belonging to a line parallel to a coordinate axis; this is a worst-case scenario.

Note that the spectrum of T is flat in the region −αfc ≤ k ≤ αfc. Next, construct q as in Section 4.1
with fc replaced by αfc. Because q is band-limited to αfc, Tq = q. On the one hand,

|〈q,h〉| = |〈Tq,h〉| = |〈q,Th〉|
≤ ‖q‖∞‖Th‖1
≤ (1− ρ)‖RQx−Rs + Rs−RQx̂‖1
≤ (1− ρ)‖R‖1,op (‖Qx− s‖1 + ‖s−Qx̂‖1)

≤ 2(1− ρ)‖R‖1,op‖Qx− s‖1
≤ 2(1− ρ)C(α) · ‖z‖1.

The last step follows from Appendix C, where we show that for all N and all SRF,

‖R‖1,op ≤ C(α) , 2α+
2

1− α +
1.11

2(1− α)2
. (40)

Note that C(α) is finite as long as α < 1. For α = 1/2, C(α) = 7.22. For α = 0.75, C(α) = 18.38.
On the other hand,

∣∣〈q,h〉∣∣ ≥ ρ‖h‖1 as before, where ρ is given in (38) with the substitution
n− 1 = 2fc → 2αfc. In conclusion,

C = C1(r, α) = C1(r)C(α)

(
1

α

)2r

. (41)

4.3 Remarks on Theorems 1 and 2 in 2D

The proof of the 2D version of Theorem 1 closely mimics that in the 1D case. Since x ∈ R+
2 (4.76r, r),

we can work with a partition T = ∪1≤i≤rTi with Ti ∈ R2(4.76r, 1). This is illustrated in Figure 6
for r = 2. The proof follows the same steps as in Section 4.1. The dual trigonometric polynomial
is constructed as a product of r polynomials. The i-th term in the product has zeros on Ti and
is constructed using Lemma 4 given in Appendix D for completeness; this lemma is a 2D version
of Lemma 2, and its proof can be found in [7, Prop. C.1], [8, Sec. D.1]. The proof of Theorem 2 in
the 2D case follows the steps outlined in Section 4.2 with slight modifications, which are omitted.

To the best of our knowledge, Theorem 1 is the first result, in the noisy and in the noiseless
setting, showing that the 2D super-resolution problem can be solved via convex optimization when
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the signal is nonnegative, without assuming a separation condition. It is instructive to discuss this
point in details as the discussion reveals interesting insights about the super-resolution problem in
higher dimensions.

Suppose one would like to obtain a noiseless result for nonnegative signals similar to that
in [9, 10]. Following Section 4.1.1 one could take a 2D version of the polynomial in (31),

1

4
[cos(2πt1 + π) + 1] [cos(2πt2 + π) + 1] (42)

and then form a product of such terms to build a low-frequency polynomial q(t1, t2) as done in
(30). What is the largest number of terms the product in (30) could contain in the 2D setting?
Since each term of the form (42) costs two units in the frequency domain in each variable, to be
able to guarantee that q(t1, t2) has frequency no larger than fc in both variables, one can have no
more that n/2 terms of the form (42). Because each term in the product is zero only at one point
of the support, this technique would not guarantee recovery of signals with more than n/2 spikes.
This is discouraging since we have have n2 observations. It is easy to see that ‖x‖0 < n/2 is a
tight bound in the worst case: think about the situation where the support is located along a line
parallel to a coordinate axis as in Figure 6(b). In this case, even though we have n2 observations,
the problem is essentially one-dimensional with n observations and no more that n/2 spikes can
possibly be resolved.

However, what happens in the typical situation where the spikes are Rayleigh regularly spread
over the domain as in Figure 6(a)? In this case, we construct the trigonometric polynomial, which is
a product of r terms as in the 2D version of (37). Each term in the product has frequencies at most
n/r and vanishes at ∼ n2/r2 points of the support simultaneously. For example, in Figure 6(a) all
the elements in T1 are roots of the first term and all those in T2 are roots of the second. Hence, as
Theorem 1 shows, the number of spikes can be as large as

(n− 1)2

4.762r2
r ≈ n2

4.762r
;

i.e. for a fixed value of r, ‖x‖0 may grow linearly with the number of observations. This is a much
stronger result compared to what would be achievable via the method from [9,10].

5 Numerical results

This section introduces a numerical simulation to illustrate the effectiveness of our method in super-
resolution microscopy. Set fc = 19, SRF = 10, so that N = 390 and consider the 2D model with
Q = Qtri,2D.

• The image x of dimensions 390×390 dimensional is shown in Figure 7b. This image contains
five different regions with different source densities: (i) the top-left quarter is a signal from
R2(4.28, 1); (ii) the top-right quarter is from R2(2.14, 1); (iii) the lower-left quarter is from
R2(4.28, 2); (iv) the lower-right quarter towards the center is from R2(2.24, 2); (v) and the
lower-right quarter towards the corner contains three closely co-located spikes. All spikes
were chosen to have equal magnitude set to 10, 000. To be clear, we are performing one
large experiment in which different regions of x exhibit different spike densities; we run the
reconstruction algorithm only once. (Overall, the signal would need to belong to R2(·, 3)
since it contains three spikes in a Nyquist cell.)

• The observations, displayed in Figure 7a, are generated according to the model s = Pois (Qx).
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We solve the LP (CVX) by smoothing the objective into hµ(s −Qx̂), where hµ is the Huber
function defined as hµ(y) =

∑
i hµ(yi), where

hµ(t) =

{
1
2 t

2/µ,
∣∣t∣∣ ≤ µ,∣∣t∣∣− µ/2, ∣∣t∣∣ > µ.

This is a smooth approximation to the `1 norm, and is tight when µ is small [41]. To make sure
our approximation is really tight, we set µ0 = 0.1 · ‖√s‖1/N2 ≈ 0.1 · ‖s−Qx‖1/N2. We then solve
the smooth problem using Lan/Lu/Monteiro’s primal-dual first order method [42] with a solver
written in the framework provided by TFOCS [43]. There are two implementation details worth
mentioning. First, we start the algorithm from an initial guess obtained by the frequently used
continuation method. That is, we solve a series of three smoother problems (so that convergence
is faster) with µ ∈ {103µ0, 102µ0, 10µ0}, each time taking the solution to the previous problem as
an initial guess. To solve these intermediate problems, the stopping criterion is a relative `2 error
between two consecutive iterations below 10−5 or a number of iterations reaching 1000, whichever
occurs first. Second, for the value of µ = µ0, we perform 15, 000 iterations of the Lan/Lu/Monteiro’s
method to obtain a precise solution. This is an overkill but at the same time, this guarantees that
we are solving (CVX). For information, the total computational cost is about 40,000 2D fast Fourier
transforms (FFTs) of size 390× 390.

The signal estimate is displayed in Figure 7c. In Figure 7d we zoomed-in to six interesting
domains of the images in Figure 7a–Figure 7c, which are marked by white boxes in Figure 7a. In
each series of three images in Figure 7d we present the data, the original signal, and the estimate
produced by (CVX).

As we can see, in the regions (i), (ii), (iii) the algorithm performs very well, resolving even the
closely located pairs of spikes in region (iii) (please see the zoomed-in vignettes). In region (iv)
the algorithm fails in many places, and region (v) is very poorly resolved. The reason for the poor
resolution in regions (iv) and (v) is that in (iv), the average density of spikes is too high. In region
(v) there are too many spikes located within one Nyquist cell.

6 Conclusion

When a signal is positive and Rayleigh regular, then linear programming solves the super-resolution
problem with near-optimal worst-case performance. Although the results presented in this paper
assume that the signal is supported on a discrete grid, extensions to the continuum can be found
in the companion paper [5].

A widely open research problem concerns the super-resolution of complex-valued signals. In
1D, [6] shows that if the signal belongs to R1(4r, r), then stable super-resolution is possible via
exhaustive search. If the signal belongs to R1(4, 1), [7] proves that stable super-resolution can be
achieved via `1-minimization. Is there a computationally feasible algorithm that achieves stable
super-resolution for signals in R1(4r, r) with r > 1? If no such algorithm is found, is it possible to
show that this problem is in some sense fundamentally difficult from a computational viewpoint?
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(a) (b) (c)

(d)

Figure 7: (a) Observed data Pois (Qtri,2Dx); (b) true signal x; (c) estimate produced by (CVX);
(d) six zoomed-in vignettes corresponding to the boxes in (a); the rows-of-three in (d) show the
observed data, the true signal and the estimate in this order.
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A Proof of Theorem 3

The proof uses the idea of [9, Th. 4] with an important difference: there, the authors provide a
lower bound on a modulus of continuity defined as supx1,x2∈C ‖x1 − x2‖1/‖Qflat,1D(x1 − x2)‖2. In

our case, we are interested in a lower bound on MC[C,Q] , supx1,x2∈C ‖x1 − x2‖1/‖Q(x1 − x2)‖1.

Put h = [h0 · · ·hN−1]T = x − x̃ and s = [s0 · · · sN−1]T = Qh. Then a standard calculation
shows that sm can be written as

sm =
N−1∑
l=0

glow

(
m− l
N

)
hl, (43)

where

glow(t) =
1

(1 + fc)N

(
sin((1 + fc)πt)

sin(πt)

)2

is the Fejér kernel. The idea is to construct h with at most 2r nonzero elements in such a way that
for each m, the terms in the sum (43) cancel each other out as much as possible. One way to do
this in a systematic way is to set

xk =

{
1

22r−1

(
2r−1
k

)
, k ∈ {0, 2, . . . , 2(r − 1)}

0, otherwise.
, x̃k = xk−1

(with the periodic convention). Obviously, ‖x‖0 = ‖x̃‖0 = r and setting ω = 2r−1 for convenience,

‖h‖1 = ‖x− x̃‖1 =
1

2ω

ω∑
l=0

(
ω

l

)
= 1.

With this,

sm =

ω∑
l=0

(−1)l
1

2ω

(
ω

l

)
︸ ︷︷ ︸

hl

glow

(
m− ω
N

+
ω − l
N

)
=

1

2ω
∆ω

1/N [glow]

(
m− ω
N

)
,

where

∆ω
δ [glow](t) =

ω∑
l=0

(−1)l
(
ω

l

)
glow(t+ (ω − l)δ)

is the finite-difference operator of order ω applied to the kernel glow(·). For large N and large SRF,
∆ω

1/N [glow](t) ≈ 1
Nω

dωglow
dtω (t), a crucial fact allowing us to obtain closed-form estimates on ‖s‖1.

Formally, write sm as a Fourier series

sm =
1

N

fc∑
k=−fc

ei2πmk/Nq

(
k

fc + 1

)
pω

(
k

N

)
,

where

q(f) =

{
1−

∣∣f ∣∣, f ∈ [−1, 1],

0, otherwise,

and

pω(f) =
ω∑
l=0

e−i2πlfhl.
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Now let

tm =

∫ (fc+1)/N

−(fc+1)/N
ei2πmfq

(
f

N

fc + 1

)
pω(f)df. (44)

It is not difficult to see that for all N

N/2∑
m=−N/2+1

|tm − sm| ≤
∑

|m|≥N/2

|tm|

and, therefore, since the series
∑∞

m=−∞
∣∣tm∣∣ converges,

‖s‖1 =
N−1∑
m=0

|sm| =
N/2∑

m=−N/2+1

|sm| →
∞∑

m=−∞
|tm|

when N,n → ∞ with N/n = SRF fixed. Using the fact that q(f) = 0 for
∣∣f ∣∣ > 1/2 and changing

variables in the integral in (44) we can write

tm =

∫ (fc+1)/N

−(fc+1)/N
ei2πmfq

(
fN

fc + 1

)
pω(f)df

=
fc + 1

N

∫ 1

−1
ei2π(m(fc+1)/N)fq(f) pω

(
f(fc + 1)

N

)
df.

We conclude that as N,n→∞ with N/n = SRF fixed,

‖s‖1 →
(

1

SRF

)ω 1

χ(r, SRF)

where,

1

χ(r, η)
,

1

2ω
1

2η

∞∑
m=−∞

∣∣∣∣∫ 1

−1
ei2π(m/(2η))fq(f) (2η)2r−1p2r−1(f/(2η))df

∣∣∣∣.
Since the finite difference operator converges to the derivative operator as δ → 0:

1

δω
∆ω
δ [glow] (·)→ dω(·)

dtω
, δ → 0,

it follows that for every fixed f ,

ηωpω(f/η)→ 1

2ω
(i2πf)ω, η →∞.

Therefore, when SRF→∞,
χ(r, SRF)→ CL(r)

where

CL(r) , 22r−1

(
π2r−1

∫ ∞
−∞

∣∣∣∣∫ 1

−1
ei2πtfq(f) f2r−1df

∣∣∣∣dt)−1

. (45)

Direct numerical computation reveals

CL(r) ≥



1.66, r = 1

1.44, r = 2

0.92, r = 3

0.48, r = 4

0.24, r = 5.
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B Coherent Optics

When the illumination is perfectly coherent, the time-varying phasor amplitudes across the object
plane differ only by complex constants so that we can write

Φ(w, t) = Φ(w)
Φ(0, t)√〈∣∣Φ(0, t)

∣∣2〉 .
Plugging this into (5) we obtain

s̃coh(v) ∝
∣∣∣∣∫ h(v −w)Φ(w)dw

∣∣∣∣2 . (46)

We see that in a coherent imaging system, the directly observable received intensity, s̃coh(v), is a
nonlinear (quadratic) function (46) of the signal Φ(w).

C Proof of 40

By definition, R = [r0 · · · rN−1] is a circulant matrix, and, hence, ‖R‖1,op = ‖r0‖1. Further, by
properties of circulant matrices,

r̂ =
√
NFr0

or, equivalently,

r0 =
1√
N

FHr̂

so that

‖R‖1,op =
1√
N
‖FHr̂‖1.

We use the following lemma.

Lemma 3. Assume ûl is a discrete periodic signal with period N . For each l, let

v̂l = ûl − ûl−1, (47)

ŵl = v̂l − v̂l−1 (48)

be the first and second differences of ûl. Let uk, vk, wk be N -periodic sequences of inverse DFT
coefficients of ûl, v̂l, ŵl, respectively. For example,

uk =
1√
N

N/2∑
l=−N/2+1

ûle
2πilk/N .

Assume that
N/2∑

k=−N/2+1

|ŵk| ≤ A.

Then for all k 6= 0 mod N ,

|uk| ≤
1√
N

A

2− 2 cos(2πk/N)
for all k 6= 0 mod N.
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Proof. By the theorem about the DFT of first differences [44, p. 223],

wk =
(

1− e2πik/N
)2
uk

and, consequently,

uk =
1(

1− e2πik/N
)2wk for all k 6= 0,±N,±2N, . . . . (49)

Next, observe that

|wk| ≤
1√
N

N/2∑
l=−N/2+1

|ŵl| ≤
A√
N
. (50)

Substituting (50) into (49) and using that |1 − exp(2πik/N)|2 = 2 − 2 cos(2πk/N) concludes the
proof.

Set ûl = r̂l, continued periodically with period N , and define v̂l, ŵl as in (47) and (48). Observe
the following facts:

v̂k = 0, k ∈ [−N/2 + 1 : − βfc],
v̂k = (fc + 1)

∣∣a∣∣, k ∈ [−fc + 1 : − αfc],
v̂−αfc+1 = − fc+1

((1−α)fc+1)((1−α)fc+2) = −v̂αfc ,
v̂k = −(fc + 1)

∣∣a∣∣, k ∈ [αfc + 1 : fc],
v̂k = 0, k ∈ [fc + 1 :N/2]

and note that v̂k is monotonically increasing on the intervals [−N/2 + 1 : − αfc], [−αfc + 1 : αfc]
and [αfc + 1 :N/2]. From this it immediately follows that

−αfc∑
k=−N/2+1

|ŵk| =
−αfc∑

k=−fc+1

|ŵk| = v̂−αfc − v̂−fc = (1 + fc)|a|,

|ŵ−αfc+1| =
fc + 1

((1− α)fc + 1)((1− α)fc + 2)
+ (fc + 1)|a| = |ŵαfc+1|,

αfc∑
k=−αfc+2

|ŵk| = v̂αfc − v̂−αfc+1 = 2
fc + 1

((1− α)fc + 1)((1− α)fc + 2)
,

N/2∑
k=αfc+2

|ŵk| = v̂fc+1 − v̂αfc+1 = (fc + 1)|a|

so that
N/2∑

k=−N/2+1

|ŵk| = 4
fc + 1

((1− α)fc + 1)((1− α)fc + 2)
+ 4(fc + 1)|a| ≤ A

where

A ,
1

(fc + 1)

4

(1− α)2︸ ︷︷ ︸
D

+
2

fc

2

(1− α)2︸ ︷︷ ︸
E

.
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Furthermore, a direct calculation reveals that

|uk| ≤
1√
N

N/2∑
l=−N/2+1

|ûl|

=
1√
N

1 + 2

αfc∑
l=1

|ûl|+
fc∑

l=αfc+1

|ûl|


≤ 1√

N

[
1 + 2

(
αfc
2

(
1 +

fc + 1

(1− α)fc + 1

)
+

fc + 1

2((1− α)fc + 2)
− fc + 1

((1− α)fc + 1)((1− α)fc + 2)

)]
≤ fc

2
√
N

(
2α+

2

1− α

)
︸ ︷︷ ︸

B

.

Finally, (40) follows from

1√
N
‖FHr̂‖1 =

1√
N

N/2∑
k=−N/2+1

|uk|

≤ 2√
N

N/(fc+1)∑
k=0

|uk|+
2√
N

N/2∑
k=N/(fc+1)+1

|uk|

≤ fc
N

N

fc + 1
B +

2A

N

N/2∑
k=N/(fc+1)+1

1

2− 2 cos(k2π/N)

≤ B +
D

2π2
+

E

2π2

2(fc + 1)

fc

≤ B +
D

2π2
+ 3

E

2π2
,

where we used that
N/2∑

k=N/(fc+1)+1

1

2− 2 cos(k2π/N)
≤
∫ N/2

N/(fc+1)

1

2− 2 cos(f2π/N)
df

=
N cot(π/(fc + 1))

4π

=
N(fc + 1)

4π

cot(π/(fc + 1))

(fc + 1)

and
cot(π/(fc + 1))

(fc + 1)
≤ 1

π
for all (fc + 1) ≥ 0.

D Basic Lemma in the 2D case

Lemma 4. Fix N,n and assume T ∈ R2(4.76, 1)Nn. Set fc = (n − 1)/2, λc = 1/fc and suppose
fc ≥ 512. Then there exists a real-valued trigonometric polynomial

q(t;N,n) =

fc∑
k1=−fc

fc∑
k2=−fc

q̂k1,k2e
−i2π(k1t1+k2t2), t = [t1, t2]T,
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such that ‖q‖∞ ≤ 1, and {
q(t) = 0, for all t ∈ T
q(t) ≥ φ(t), for all t,

where

φ(t) =

{
c1f

2
c ‖t0 − t‖22, for all t s.t. ∃t0 ∈ T with ‖t− t0‖∞ ≤ c2λc

c3 for all t ∈
{
t̃ : ‖t̃− t0‖∞ ≥ c2λc for all t0 ∈ T

}
.

Above, c1, c2, and c3 are numerical constants.
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