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Abstract

We introduce a novel method for sparse regression and variable selection, which is inspired
by modern ideas in multiple testing. Imagine we have observations from the linear model
y = Xβ+ z, then we suggest estimating the regression coefficients by means of a new estimator
called SLOPE, which is the solution to

minimize
b

1
2‖y −Xb‖

2
`2 + λ1|b|(1) + λ2|b|(2) + . . .+ λp|b|(p);

here, λ1 ≥ λ2 ≥ . . . ≥ λp and |b|(1) ≥ |b|(2) ≥ . . . ≥ |b|(p) is the order statistics of the
magnitudes of b. In short, the regularizer is a sorted `1 norm which penalizes the regression
coefficients according to their rank: the higher the rank—the closer to the top—the larger
the penalty. This is similar to the famous Benjamini-Hochberg procedure (BHq) [9], which
compares the value of a test statistic taken from a family to a critical threshold that depends on
its rank in the family. SLOPE is a convex program and we demonstrate an efficient algorithm
for computing the solution. We prove that for orthogonal designs with p variables, taking
λi = F−1(1− qi) (F is the cumulative distribution function of the errors), qi = iq/(2p), controls
the false discovery rate (FDR) for variable selection. This holds under the assumption that
the errors are i.i.d. symmetric and continuous random variables. When the design matrix is
nonorthogonal there are inherent limitations on the FDR level and the power which can be
obtained with model selection methods based on `1-like penalties. However, whenever the
columns of the design matrix are not strongly correlated, we demonstrate empirically that it is
possible to select the parameters λi as to obtain FDR control at a reasonable level as long as
the number of nonzero coefficients is not too large. At the same time, the procedure exhibits
increased power over the lasso, which treats all coefficients equally. The paper illustrates further
estimation properties of the new selection rule through comprehensive simulation studies.

Keywords. Sparse regression, variable selection, false discovery rate, lasso, sorted `1 penalized
estimation (SLOPE), prox operator.
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1 Introduction

1.1 The model selection problem

This paper is concerned with estimation and/or testing in the (high-dimensional) statistical linear
model in which we observe

y = Xβ + z; (1.1)

as usual, y ∈ Rn is the vector of responses, X ∈ Rn×p is the design matrix, β ∈ Rp is the unknown
parameter of interest, and z ∈ Rn is a vector of stochastic errors (unless specified otherwise, we
shall assume that the errors are i.i.d. zero-mean normal variables). In an estimation problem, we
typically wish to predict the response variable as accurately as possible or to estimate the parameter
β as best as we can. In the testing problem, the usual goal is to identify those variables for which the
corresponding regression coefficient is nonzero. In the spirit of the recent wave of works on multiple
testing where we collect many measurements on a single unit, we may have reasons to believe that
only a small fraction of the many variables in the study are associated with the response. That is
to say, we have few effects of interest in a sea of mostly irrelevant variables.

Such problems are known under the name of model selection and have been the subject of
considerable studies since the linear model has been in widespread use. Canonical model selection
procedures find estimates β̂ by solving

min
b∈Rp

‖y −Xb‖2`2 + λ‖b‖`0 , (1.2)

where ‖b‖`0 is the number of nonzero components in b. The idea behind such procedures is of
course to achieve the best possible trade-off between the goodness of fit and the number of variables
included in the model. Popular selection procedures such as AIC and Cp [4, 28] are of this form:
when the errors are i.i.d. N (0, σ2), AIC and Cp take λ = 2σ2. In the high-dimensional regime, such
a choice typically leads to including very many irrelevant variables in the model yielding rather
poor predictive power in sparse settings (when the true regression coefficient sequence is sparse). In
part to remedy this problem, Foster and George [23] developed the risk inflation criterion (RIC) in
a breakthrough paper. They proposed using a larger value of λ effectively proportional to 2σ2 log p,
where we recall that p is the total number of variables in the study. Under orthogonal designs,
it can be shown that this yields control of the familywise error rate (FWER); that is to say, the
probability of including a single irrelevant variable is very low. Unfortunately, this procedure is also
rather conservative (it is similar to a Bonferroni-style procedure in multiple testing) and RIC may
not have much power in detecting those variables with nonvanishing regression coefficients unless
they are very large.

The above dichotomy has been recognized for some time now and several researchers have
proposed more adaptive strategies. One frequently discussed idea in the literature is to let the
parameter λ in (1.2) decrease as the number of included variables increases. For instance, penalties
with appealing information- and decision-theoretic properties are roughly of the form

P (b) = p(‖b‖`0), p(k) = 2σ2k log(p/k) (1.3)

(the fitted coefficients minimize the residual sum of squares (RSS) plus the penalty) or with

p(k) = 2σ2
∑

1≤j≤k
log(p/j). (1.4)
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Among others, we refer the interested reader to [24, 11] and to [36] for a related approach. When
‖b‖`0 = 1, these penalties are similar to RIC but become more liberal as the fitted coefficients
become denser.

The problem with the selection strategies above is that they are computationally intractable.
Solving (1.2) or the variations (1.3)–(1.4) would involve a brute-force search essentially requiring to
fit least-squares estimates for all possible subsets of variables. This is not practical for even moderate
values of p—for p > 60, say—and is the main reason why computationally manageable alternatives
have attracted considerable attention in applied and theoretical communities. In statistics, the most
popular alternative is by and large the lasso [35], which operates by substituting the nonconvex `0
norm by the `1 norm—its convex surrogate—yielding

min
b∈Rp

1
2‖y −Xb‖

2
`2 + λ ‖b‖`1 . (1.5)

We have the same dichotomy as before: on the one hand, if the selected value of λ is too small,
then the lasso would select very many irrelevant variables (thus compromising its predicting per-
formance). On the other hand, a large value of λ would yield little power as well as a large bias.

1.2 The sorted `1 norm

This paper introduces a new variable selection procedure, which is computationally tractable and
adaptive in the sense that the ‘effective penalization’ is adaptive to the sparsity level (the number
of nonzero coefficients in β ∈ Rp). This method relies on the sorted `1 norm: letting λ be a
nonincreasing sequence of nonnegative scalars,

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, (1.6)

with λ1 > 0, we define the sorted `1 norm of a vector b ∈ Rp as

Jλ(b) = λ1|b|(1) + λ2|b|(2) + . . .+ λp|b|(p). (1.7)

Here, |b|(1) ≥ |b|(2) ≥ . . . ≥ |b|(p) is the order statistic of the magnitudes of b, namely, the absolute
values ranked in decreasing order. For instance, if b = (−2.1,−0.5, 3.2), we would have |b|(1) = 3.2,
|b|(2) = 2.1 and |b|(3) = 0.5. Expressed differently, the sorted `1 norm of b is thus λ1 times the
largest entry of b (in magnitude), plus λ2 times the second largest entry, plus λ3 times the third
largest entry, and so on. As the name suggests, Jλ(·) is a norm and is, therefore, convex.1

Proposition 1.1. The functional (1.7) is a norm provided (1.6) holds and λ 6= 0. In fact, the
sorted `1 norm can be characterized as

Jλ(b) = sup
w∈Cλ

〈w, b〉, (1.8)

where w is in the convex set Cλ if and only if for all i = 1, . . . , p,∑
j≤i
|w|(j) ≤

∑
j≤i

λj . (1.9)

1Observe that when all the λi’s take on an identical positive value, the sorted `1 norm reduces to the usual `1
norm. Also, when λ1 > 0 and λ2 = . . . = λp = 0, the sorted `1 norm reduces to the `∞ norm.
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The proof of this proposition is in the Appendix. For now, observe that Cλ = ∩pi=1C
(i)
λ , where

C
(i)
λ =

{
w : fi(w) ≤

∑
j≤i

λj

}
, fi(w) =

∑
j≤i
|w|(j).

For each i, fi is convex so that C
(i)
λ is convex. Hence, Cλ is the intersection of convex sets and

is, therefore, convex. The convexity of fi follows from its representation as a supremum of linear
functions, namely,

fi(w) = sup 〈z, w〉,
where the supremum is over all z obeying ‖z‖`0 ≤ i and ‖z‖`∞ ≤ 1 (the supremum of convex
functions is convex [14]). In summary, the characterization via (1.8)–(1.9) asserts that Jλ(·) is a
norm and that Cλ is the unit ball of its dual norm.

1.3 SLOPE

The idea is to use the sorted `1 norm for variable selection and in particular, we suggest a penalized
estimator of the form

min
b∈Rp

1
2‖y −Xb‖

2
`2 +

p∑
i=1

λi|b|(i). (1.10)

We call this Sorted L-One Penalized Estimation (SLOPE). SLOPE is convex and, hence, tractable.
As a matter of fact, we shall see in Section 2 that the computational cost for solving this problem
is roughly the same as that for solving the plain lasso. This formulation is rather different from
the lasso, however, and achieves the adaptivity we discussed earlier: indeed, because the λi’s are
decreasing or sloping down, we see that the cost of including new variables decreases as more
variables are added to the model.

1.4 Connection with the Benjamini-Hochberg procedure

Our methodology is inspired by the Benjamini-Hochberg (BHq) procedure for controlling the false
discovery rate (FDR) in multiple testing [9]. To make this connection explicit, suppose we are in
the orthogonal design in which the columns of X have unit norm and are perpendicular to each
other (note that this implies p ≤ n). Suppose further that the errors in (1.1) are i.i.d. N (0, 1). In
this setting, we have

ỹ = X ′y ∼ N (β, Ip)

where, here and below, Ip is the p × p identity matrix. For testing the p hypotheses Hi : βi = 0,
the BHq step-up procedure proceeds as follows:

(1) Sort the entries of ỹ in decreasing order of magnitude, |ỹ|(1) ≥ |ỹ|(2) ≥ . . . ≥ |ỹ|(p) (this
yields corresponding ordered hypotheses H(1), . . . ,H(p)).

(2) Find the largest index i such that

|ỹ|(i) > Φ−1(1− qi), qi = q
i

2p
, (1.11)

where Φ−1(α) is the αth quantile of the standard normal distribution and q is a parameter
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in [0, 1]. Call this index iSU. (For completeness, the BHq procedure is traditionally
expressed via the inequality |ỹ|(i) ≥ Φ−1(1− qi) but this does not change anything since
ỹ is a continuous random variable.)

(3) Reject all H(i)’s for which i ≤ iSU (if there is no i such that the inequality in (1.11) holds,
then make no rejection).

This procedure is adaptive in the sense that a hypothesis is rejected if and only if its z-value is
above a data-dependent threshold. In their seminal paper [9], Benjamini and Hochberg proved
that this procedure controls the FDR. Letting V (resp. R) be the total number of false rejections
(resp. total number of rejections), we have

FDR = E
[

V

R ∨ 1

]
= q

p0
p
, (1.12)

where p0 is the number of true null hypotheses, p0 = |{i : βi = 0}|, so that p = p0 + ‖β‖`0 . This
always holds; that is, no matter the value of the mean vector β.

One can also run the procedure in a step-down fashion in which case the last two steps are as
follows:

(2) Find the smallest index i such that

|ỹ|(i) ≤ Φ−1(1− qi) (1.13)

and call it iSD + 1.

(3) Reject all H(i)’s for which i ≤ iSD (if there is no i such that the inequality in (1.13) holds,
then reject all the hypotheses).

This procedure is also adaptive. Since we clearly have iSD ≤ iSU, we see that the step-down
procedure is more conservative than the step-up. The step-down variant also controls the FDR,
and obeys

FDR = E
[

V

R ∨ 1

]
≤ q p0

p

(note the inequality instead of the equality in (1.12)). We omit the proof of this fact.
To relate our approach with BHq, we can use SLOPE (1.10) as a multiple comparison procedure:

(1) select weights λi, (2) compute the solution β̂ to (1.10), and (3) reject those hypotheses for which
β̂i 6= 0. Now in the orthogonal design, SLOPE (1.10) reduces to

min
b∈Rp

1
2‖ỹ − b‖

2
`2 +

p∑
i=1

λi|b|(i) (1.14)

(recall ỹ = X ′y). The connection with the BHq procedure is as follows:

Proposition 1.2. Assume an orthogonal design and set λi = λBH(i) := Φ−1(1 − qi). Then the
SLOPE procedure rejects H(i) for i ≤ i? where i? obeys2

iSD ≤ i? ≤ iSU. (1.15)

2For completeness, suppose without loss of generality that the ỹi’s are ordered, namely, |ỹ1| ≥ |ỹ2| ≥ . . . ≥ |ỹp|.
Then the solution β̂ is ordered in the same way, i.e. |β̂1| ≥ |β̂2| ≥ . . . ≥ |β̂p| and we have |β̂1| ≥ . . . ≥ |β̂i? | > 0,
β̂i?+1 = . . . = β̂p = 0.
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This extends to arbitrary sequences λ1 ≥ λ2 ≥ . . . ≥ λn > 0.

The proof is also in the Appendix. In words, SLOPE is at least as conservative as the step-up
procedure and as liberal or more than the step-down procedure. It has been noted in [3] that
in most problems, the step-down and step-up points coincide, namely, iSD = iSU. Whenever this
occurs, all these procedures produce the same output.

An important question is of course whether the SLOPE procedure controls the FDR in the
orthogonal design. In Section 3, we prove that this is the case.

Theorem 1.3. Assume an orthogonal design with i.i.d. N (0, 1) errors, and set λi = λBH(i) =
Φ−1(1− iq/2p). Then the FDR of the SLOPE procedure obeys

FDR = E
[

V

R ∨ 1

]
≤ q p0

p
. (1.16)

Again p is the number of hypotheses being tested and p0 the total number of nulls.

We emphasize that this result is not a consequence of the bracketing (1.15). In fact, the
argument appears nontrivial.

1.5 Connection with FDR thresholding

When X is the identity matrix or, equivalently, when y ∼ N (β, σ2I), there exist FDR thresholding
procedures for estimating the mean vector, which also adapts to the sparsity level. Such a procedure
was developed by Abramovich and Benjamini [1] in the context of wavelet estimation (see also [2])
and works as follows. We rank the magnitudes of y as before, and let iSU be the largest index for
which |y|(i) > Φ−1(1− qi) as in the step-up procedure. Letting tFDR = Φ−1(1− qiSU), set

β̂i =

{
yi |yi| ≥ tFDR

0 |yi| < tFDR.
(1.17)

This is a hard-thresholding estimate but with a data-dependent threshold: the threshold decreases
as more components are judged to be statistically significant. It has been shown that this simple
estimate is asymptotically minimax throughout a range of sparsity classes [3].

Our method is similar in the sense that it also chooses an adaptive threshold reflecting the
BHq procedure as we have seen in Section 1.4. However, it does not produce a hard-thresholding
estimate. Rather, owing to nature of the sorted `1 norm, it outputs a sort of soft-thresholding esti-
mate. Another difference is that it is not clear at all how one would extend (1.17) to nonorthogonal
designs whereas the SLOPE formulation (1.10) is straightforward. Having said this, it is also not
obvious a priori how one should choose the weights λi in (1.10) in a non-orthogonal setting as to
control a form of Type I error such as the FDR.

1.6 FDR control under random designs

We hope to have made clear that the lasso with a fixed λ is akin to a Bonferroni procedure where
each observation is compared to a fixed value, irrespective of its rank, while SLOPE is adaptive
and akin to a BHq-style procedure. Moving to nonorthogonal designs, we would like to see whether
any of these procedures have a chance to control the FDR in a general setting.
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To begin with, at the very minimum we would like to control the FDR under the global null,
that is when β = 0 and, therefore, y = z (this is called weak family-wise error rate (FWER) control
in the literature). In other words, we want to keep the probability that β̂ 6= 0 low whenever β = 0.
For the lasso, β̂ = 0 if and only if ‖X ′z‖`∞ ≤ λ. Hence, we would need λ to be an upper quantile of
the random variable ‖X ′z‖`∞ . If X is a random matrix with i.i.d. N (0, 1/n) (this is in some sense
the nicest nonorthogonal design), then simple calculations would show that λ would need to be
selected around λBH(1), where λBH is as in Theorem 1.3. The problem is that neither this value nor
a substantially higher fixed value (leading to an even more conservative procedure) is guaranteed
to control the FDR in general. Consequently, the more liberal SLOPE procedure also cannot be
expected to control the FDR in full generality.

Figure 1 plots the FDR and power of the lasso with λ = 3.717, corresponding to λ = λBH(1)
for q ≈ 0.207 and p = 1, 000. True effects were simulated from the normal distribution with mean
zero and standard deviation equal to 3λ. Our choice of λ guarantees that under the orthogonal
design the probability of at least one false rejection is not larger than about 0.183. Also, the power
(average fraction of properly identified true effects) of the lasso under the orthogonal design does
not depend on k and is equal to 0.74 in our setting. When the design is orthogonal, the FDR of
the lasso quickly decreases to zero as the number k = ‖β‖`0 of non-nulls increases. The situation
dramatically changes when the design matrix is a random Gaussian matrix as discussed above.
After an initial decrease, the FDR rapidly increases with k. Simultaneously, the power slowly
decreases with k. A consequence of the increased FDR is this: the probability of at least one false
rejection drastically increases with k, and for k = 150 one actually observes an average of 15.53
false discoveries.
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Figure 1: Estimated and predicted FDR and power of the lasso with λ = 3.717 as a function
of k = ‖β‖`0 . The entries of the Gaussian design are i.i.d. N (0, 1/n). In both graphs, n =
p = 1000 and β1, . . . , βk are independent normal random variables with mean 0 and standard
deviation equal to 3λ. Each data point is a value estimated from 500 replicated experiments.
Solid lines represent predicted curves. The predictions for the Gaussian design are based on
the extension of the results in [6], see Appendix B.

Section 4 develops heuristic arguments to conclude on a perhaps surprising and disappointing
note: if the columns of the design matrix are realizations of independent random variables, then
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Figure 2: Simulated (markers) and predicted (lines) FDR in the high signal-to-noise regime as
a function of the number of nonzero regression coefficients. Here, the design is n× p Gaussian
with p = 1, 000. The formulas for the predicted curves are in Appendix B.

independently on how large we select λ nonadaptively, one can never be sure that the FDR of the
lasso solution is controlled below some q? = q?(n/p) > 0. The inability to control the FDR at a
prescribed level is intimately connected to the shrinkage of the regression estimates, see Section 4.2.

Under a Gaussian design, we can in fact predict the asymptotic FDR of the lasso in the high
signal-to-noise regime in which the magnitudes of the nonzero regression coefficients lie far above
λ. Letting FDRlasso(β, λ) be the FDR of the lasso by employing λ as a regularization parameter,
a heuristic inspired by results in [6] gives

lim
p,n→∞

inf
λ

sup
β:‖β‖`0≤k

FDRlasso(β, λ) ≥ q?(ε, δ), (1.18)

where in the limit, n/p→ δ > 0 and k/p→ ε > 0. In Appendix B, we give explicit formulas for the
lower limit q?(ε, δ). Before continuing, we emphasize that we do not prove (1.18) rigorously, and
only provide a heuristic justification. Now the accuracy of the prediction q? is illustrated in Figure
2, where it is compared with FDR estimates from a simulation study with a Gaussian design as
before, and a value of the nonzero coefficients set to 1, 000λ and λ = 300. The figure shows excellent
agreement between predicted and observed behaviors. According to Figure 2, when n/p = 2, 1, or
0.5, then independently on how large λ is used one cannot be sure that the FDR is controlled below
the values 0.08, 0.27, or 0.6, respectively. We also note a singularity in the predicted curve for
n/p = 1/2, which occurs exactly at the point of the classical phase-transition curve in compressive
sensing (or weak-threshold) of [22]. All of this is explained in Appendix B.

1.7 Contributions and outline

This paper introduces a novel method for sparse regression and variable selection, which is inspired
by powerful adaptive ideas in multiple testing. We conclude this introduction by summarizing our
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contributions as well as outlining the rest of the paper. In Section 2, we demonstrate an efficient
algorithm for computing the SLOPE solution. This algorithm is based on a linear time algorithm
for computing the prox to the sorted `1 norm (after sorting), and is new. In Section 3, we prove
that SLOPE with the sequence λBH controls the FDR under orthogonal designs. In Section 4,
we detail the inherent limitations on the FDR level and the power which can be obtained with
model selection methods based on `1-like penalties. In this section, we also derive the predictions
introduced in Section 1.6. A positive consequence of our understanding of FDR control is that it
leads to an adjusted sequence {λi} of parameters for use in SLOPE; see Section 4.3. Furthermore,
in Section 5, we report on empirical findings demonstrating the following properties:

• First, when the number of non-nulls (the number of nonzero coefficients in the regression
model) is not too large, SLOPE controls the FDR at a reasonable level, see Section 5.1. This
holds provided that the columns of the design matrix are not strongly correlated. At the
same time, the method has more power in detecting true regressors than the lasso and other
competing methods. Therefore, just as the BH procedure, SLOPE controls a Type I error
while enjoying greater power—albeit in a restricted setting.

• Second, in Section 5.2, we change our point of view and regard SLOPE purely as an estimation
procedure. There we use SLOPE to select a subset of variables, and then obtain coefficient
estimates by regressing the response on this subset. We demonstrate that with the adjusted
weights from Section 4.3, this two-step procedure has good estimation properties even in
situations when the input is not sparse at all. These good properties come from FDR control
together with power in detecting nonzero coefficients. Indeed, a procedure selecting too many
irrelevant variables would result in a large variance and distort the coefficient estimates of
those variables in the model. At the same time, we need power as we would otherwise suffer
from a large bias. Finally in Section 5.2, we shall see that the performance of SLOPE is not
very sensitive to the choice of the parameter q specifying the nominal FDR level.

Section 6 concludes the paper with a short discussion and questions we leave open for future
research.

Finally, it goes without saying that our methods apply to multiple testing with correlated test
statistics. Assume that n ≤ p. Then multiplying the equation y = Xβ + z on both sides by the
pseudo inverse X† of X yields

y′ = (X†)′y ∼ N (β,Σ),

where Σ = (X ′X)−1 whenever X has full column rank. Hence, procedures for controlling the
FDR in the linear model translate into procedures for testing the means of a multivariate Gaussian
distribution. Our simulations in Section 5.1 illustrate that under sparse scenarios SLOPE has better
properties than the BH procedure applied to marginal test statistics—with or without adjustment
for correlation—in this context.

As a last remark, SLOPE is looking for a trade-off between the residual sum of squares and
the sorted `1 norm but we could equally contemplate using the sorted `1 norm in other penalized
estimation problems. Consider the Dantzig selector [17] which, assuming that the columns of X
are normalized, takes the form

min
b∈Rp

‖b‖`1 s. t. ‖X ′(y −Xb)‖`∞ ≤ λ. (1.19)
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One can naturally use the ideas presented in this paper to tighten this in several ways, and one
proposal is this: take a sequence λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 and consider

min
b∈Rp

‖b‖`1 s. t. X ′(y −Xb) ∈ Cλ, (1.20)

where Cλ is as in Proposition 1.1, see (1.9). With λ1 = λ, the constraint on the residual vector
in (1.20) is tighter than that in (1.19). Indeed, setting w = X ′(y −Xb), the feasible set in (1.19)
is of the form |w|(1) ≤ λ1 while that in the sorted version is |w|(1) ≤ λ1, |w|(1) + |w|(2) ≤ λ1 + λ2,
|w|(1) + |w|(2) + |w|(3) ≤ λ1 + λ2 + λ3 and so on. Hence, the sorted version appears to shrink less
and is more liberal.

2 Algorithms

In this section, we present effective algorithms for computing the solution to SLOPE (1.10), which
rely on the numerical evaluation of the proximity operator (prox) to the sorted `1 norm. Hence,
we first develop a fast algorithm for computing the prox.

2.1 Preliminaries

Given y ∈ Rn and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, the prox to the sorted `1 norm is the unique solution3

to

proxλ(y) = argminx∈Rn
1
2‖y − x‖

2
`2 +

n∑
i=1

λi|x|(i). (2.1)

Without loss of generality we can make the following assumption:

Assumption 2.1. The vector y obeys y1 ≥ y2 ≥ · · · ≥ yn ≥ 0.

At the solution to (2.1), the sign of each xi 6= 0 will match that of yi. It therefore suffices to
solve the problem for |y| and restore the signs in a post-processing step, if needed. Likewise, note
that applying any permutation P to y results in a solution Px. We can thus choose a permutation
that sorts the entries in y and apply its inverse to obtain the desired solution.

Proposition 2.2. Under Assumption 2.1, the solution x to (2.1) satisfies x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

Proof Suppose that xi < xj for i < j (and yi > yj), and form a copy x′ of x with entries i and j
exchanged. Letting f be the objective functional in (2.1), we have

f(x)− f(x′) = 1
2(yi − xi)2 + 1

2(yj − xj)2 − 1
2(yi − xj)2 − 1

2(yj − xi)2.

This follows from the fact that the sorted `1 norm takes on the same value at x and x′ and that all
the quadratic terms cancel but those for i and j. This gives

f(x)− f(x′) = xjyi − xiyi + xiyj − xjyj = (xj − xi)(yi − yj) > 0,

which shows that the objective x′ is strictly smaller, thereby contradicting optimality of x.

3Unicity follows from the strong convexity of the function we minimize.
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Under Assumption 2.1 we can reformulate (2.1) as

minimize 1
2‖y − x‖

2
`2

+
∑n

i=1 λixi
subject to x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

(2.2)

In other words, the prox is the solution to a quadratic program (QP). However, we do not suggest
performing the prox calculation by calling a standard QP solver, rather we introduce a dedicated
O(n) algorithm we present next. For further reference, we record the Karush-Kuhn-Tucker (KKT)
optimality conditions for this QP.

Primal feasibility: x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

Dual feasibility: µ ∈ Rn obeys µ ≥ 0.

Complementary slackness: µi(xi− xi+1) = 0 for all i = 1, . . . , n (with the convention that xn+1 =
0).

Stationarity of the Lagrangian:
xi − yi + λi − (µi − µi−1) = 0

with the convention that µ0 = 0).

2.2 A fast prox algorithm

Lemma 2.3. Suppose (y − λ)+ is nonincreasing, then the solution to (2.1) obeys

proxλ(y) = (y − λ)+.

Proof Set x = (y − λ)+, which by assumption is primal feasible, and let i0 be the last index such
that yi − λi > 0. Set µ1 = µ2 = . . . = µi0 = 0 and for j > i0, recursively define

µj = µj−1 − (yj − λj) ≥ 0.

Then it is straightforward to check that the pair (x, µ) obeys the KKT optimality conditions from
Section 2.1

We now introduce the FastProxSL1 algorithm (Algorithm 1) for computing the prox: for ped-
agogical reasons we introduce it in its simplest form before presenting in Section 2.3 a stack imple-
mentation running in O(n) flops.

This algorithm, which obviously terminates in at most n steps, is simple to understand: we
simply keep on averaging until the monotonicity property holds, at which point the solution is
known in closed form thanks to Lemma 2.3. The key point establishing the correctness of the
algorithm is that the update does not change the value of the prox. This is formalized below.

Lemma 2.4. Let (y+, λ+) be the updated value of (y, λ) after one pass in Algorithm 1. Then

proxλ(y) = proxλ+(y+).

11



Algorithm 1 FastProxSL1

input: Nonnegative and nonincreasing sequences y and λ.
while y − λ is not nonincreasing do

Identify strictly increasing subsequences, i.e. segments i : j such that

yi − λi < yi+1 − λi+1 < . . . < yj − λj . (2.3)

Replace the values of y over such segments by their average value: for k ∈ {i, i+ 1, . . . , j}

yk ←
1

j − i+ 1

∑
i≤k≤j

yk.

Replace the values of λ over such segments by their average value: for k ∈ {i, i+ 1, . . . , j}

λk ←
1

j − i+ 1

∑
i≤k≤j

λk.

end while
output: x = (y − λ)+.

Proof We first claim that the prox has to be constant over any monotone segment of the form

yi − λi ≤ yi+1 − λi+1 ≤ . . . ≤ yj − λj .

To see why this is true, set x = proxλ(y) and suppose the contrary: then over a segment as above,
there is k ∈ {i, i+ 1, . . . , j−1} such that xk > xk+1 (we cannot have a strict inequality in the other
direction since x has to be primal feasible). By complementary slackness, µk = 0. This gives

xk = yk − λk − µk−1
xk+1 = yk+1 − λk+1 + µk+1.

Since yk+1 − λk+1 ≥ yk − λk and µ ≥ 0, we have xk ≤ xk+1, which is a contradiction.
Now an update replaces an increasing segment as in (2.3) with a constant segment and we have

just seen that both proxes must be constant over such segments. Now consider the cost function
associated with the prox with parameter λ and input y over an increasing segment as in (2.3),∑

i≤k≤j

{
1
2(yk − xk)2 + λkxk

}
. (2.4)

Since all the variables xk must be equal to some value z over this block, this cost is equal to∑
i≤k≤j

{
1
2(yk − z)2 + λkz

}
=
∑
k

1
2(yk − ȳ)2 +

∑
i≤k≤j

{
1
2(ȳ − z)2 + λ̄z

}
=
∑
k

1
2(yk − ȳ)2 +

∑
i≤k≤j

{
1
2(y+k − z)

2 + λ̄+k z
}
,
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where ȳ and λ̄ are block averages. The second term in the right-hand side is the cost function
associated with the prox with parameter λ+ and input y+ over the same segment since all the
variables over this segment must also take on the same value. Therefore, it follows that replacing
each appearance of block sums as in (2.4) in the cost function yields the same minimizer. This
proves the claim.

In summary, the FastProxSL1 algorithm finds the solution to (2.1) in a finite number of steps.

2.3 Stack-based algorithm for FastProxSL1

As stated earlier, it is possible to obtain an O(n) implementation of FastProxSL1. Below we present
a stack-based approach. We use tuple notation (a, b)i = (c, d) to denote ai = c, bi = d.

Algorithm 2 Stack-based algorithm for FastProxSL1.

1: input: Nonnegative and nonincreasing sequences y and λ.
2: # Find optimal group levels
3: t← 0
4: for k = 1 to n do
5: t← t+ 1
6: (i, j, s, w)t = (k, k, yi − λi, (yi − λi)+)
7: while (t > 1) and (wt−1 ≤ wt) do
8: (i, j, s, w)t−1 ← (it−1, jt, st−1 + st, (

jt−1−it−1+1
jt−it−1+1 · st−1 + jt−it+1

jt−ii−1+1 · st)+)

9: Delete (i, j, s, w)t, t← t− 1
10: end while
11: end for
12: # Set entries in x for each block
13: for ` = 1 to t do
14: for k = i` to j` do
15: xk ← w`
16: end for
17: end for

For the complexity of the algorithm note that we create a total of n new tuples. Each of these
tuple is merged into a previous tuple at most once. Since the merge takes a constant amount of
time the algorithm has the desired O(n) complexity.

With this paper, we are making available a C, a Matlab, and an R implementation of the stack-
based algorithm at http://www-stat.stanford.edu/~candes/SortedL1. The algorithm is also
included in the current version of the TFOCS package available here http://cvxr.com, see [8]. To
give an idea of the speed, we applied the code to a series of vectors with fixed length and varying
sparsity levels. The average runtimes measured on a MacBook Pro equipped with a 2.66 GHz Intel
Core i7 are reported in Table 1.

2.4 Proximal algorithms for SLOPE

With a rapidly computable algorithm for evaluating the prox, efficient methods for computing the
SLOPE solution (1.10) are now a stone’s throw away. Indeed, we can entertain a proximal gradient
method which goes as in Algorithm 3.
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p = 105 p = 106 p = 107

Total prox time (sec.) 9.82e-03 1.11e-01 1.20e+00
Prox time after normalization (sec.) 6.57e-05 4.96e-05 5.21e-05

Table 1: Average runtimes of the stack-based prox implementation with normalization steps
(sorting and sign changes) included, respectively excluded.

Algorithm 3 Proximal gradient algorithm for SLOPE (1.10)

Require: b0 ∈ Rp
1: for k = 0, 1, . . . do
2: bk+1 = proxλ(bk − tkX ′(Xbk − y))
3: end for

It is well known that the algorithm converges (in the sense that f(bk), where f is the objective
functional, converges to the optimal value) under some conditions on the sequence of step sizes
{tk}. Valid choices include step sizes obeying tk < 2/‖X‖2 and step sizes obtained by backtracking
line search, see [8, 7].

Many variants are of course possible and one may entertain accelerated proximal gradient
methods in the spirit of FISTA, see [7] and [29, 30]. The scheme below is adapted from [7].

Algorithm 4 Accelerated proximal gradient algorithm for SLOPE (1.10)

Require: b0 ∈ Rp, and set a0 = b0 and θ0 = 1
1: for k = 0, 1, . . . do
2: bk+1 = proxλ(ak − tkX ′(Xak − y))

3: θ−1k+1 = 1
2(1 +

√
1 + 4/θ2k)

4: ak+1 = bk+1 + θk+1(θ
−1
k − 1)(bk+1 − bk)

5: end for

The code used for the numerical experiments uses a straightforward implementation of the
standard FISTA algorithm, along with problem-specific stopping criteria. Standalone Matlab and
R implementations of the algorithm are available at the website listed in Section 2.3. TFOCS
implements Algorithms 3 and 4 as well as many variants; for instance, the Matlab code below
prepares the prox and then solves the SLOPE problem,

prox = prox_Sl1(lambda);

beta = tfocs( smooth_quad, { X, -y }, prox, beta0, opts );

Here beta0 is an initial guess (which can be omitted) and opts are options specifying the methods
and parameters one would want to use, please see [8] for details. There is also a one-liner with
default options which goes like this:

beta = solver_SLOPE( X, y, lambda);

14



2.5 Duality-based stopping criteria

To derive the dual of (1.10) we first rewrite it as

minimize
b,r

1
2r
′r + Jλ(b) subject to Xb+ r = y.

The dual is then given by
maximize

w
L(b, r, w),

where

L(b, r, w) := inf
b,r
{12r

′r + Jλ(b)− w′(Xb+ r − y)}

= w′y − sup
r
{w′r − 1

2r
′r} − sup

b
{(X ′w)′b− Jλ(b)}.

The first supremum term evaluates to 1
2w
′w by choosing r = w. The second term is the conjugate

function J∗ of J evaluated at v = X ′w, which can be shown to reduce to

J∗λ(v) := sup
b
{v′b− Jλ(b)} =

{
0 v ∈ Cλ,
+∞ otherwise,

where the set Cλ is given by (1.9). The dual problem is thus given by

maximize
w

w′y − 1
2w
′w subject to w ∈ Cλ.

The dual formulation can be used to derive appropriate stopping criteria. At the solution we have
w = r, which motivates estimating a dual point by setting ŵ = r =: y − Xb. At this point the
primal-dual gap at b is the difference between the primal and dual objective:

δ(b) = (Xb)′(Xb− y) + Jλ(b).

However, ŵ is not guaranteed to be feasible, i.e., we may not have ŵ ∈ Cλ. Therefore we also need
to compute a level of infeasibility of ŵ, for example

infeasi(ŵ) = max
{

0, max
i

∑
j≤i

(|ŵ|(j) − λj)
}
.

The algorithm used in the numerical experiments terminates whenever both the infeasibility and
primal-dual gap are sufficiently small. In addition, it imposes a limit on the total number of
iterations to ensure termination.

3 FDR Control Under Orthogonal Designs

In this section, we prove FDR control in the orthogonal design, namely, Theorem 1.3. As we have
seen in Section 1, the SLOPE solution reduces to

min
b∈Rp

1
2‖ỹ − b‖

2
`2 +

p∑
i=1

λi|b|(i),
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where ỹ = X ′y ∼ N (β, Ip). From this, it is clear that it suffices to consider the setting in which
y ∼ N (β, In), which we assume from now on.

We are thus testing the n hypotheses Hi : βi = 0, i = 1, . . . , n and set things up so that the
first n0 hypotheses are null, i.e. βi = 0 for i ≤ n0. The SLOPE solution is

β̂ = arg min 1
2‖y − b‖

2
`2 +

n∑
i=1

λi|b|(i) (3.1)

with λi = Φ−1(1− iq/2n). We reject Hi if and only if β̂i 6= 0. Letting V (resp. R) be the number of
false rejections (resp. the number of rejections) or, equivalently, the number of indices in {1, . . . , n0}
(resp. in {1, . . . , n}) for which β̂i 6= 0, we have

FDR = E
[

V

R ∨ 1

]
=

n∑
r=1

E
[
V

r
1{R=r}

]
=

n∑
r=1

1

r
E

[
n0∑
i=1

1{Hi is rejected}1{R=r}

]
. (3.2)

The proof of Theorem 1.3 now follows from the two key lemmas below.

Lemma 3.1. Let Hi be a null hypothesis and let r ≥ 1. Then

{y: Hi is rejected and R = r} = {y: |yi| > λr and R = r}.

Lemma 3.2. Consider applying the SLOPE procedure to ỹ = (y1, . . . , yi−1, yi+1, . . . , yn) with
weights λ̃ = (λ2, . . . , λn) and let R̃ be the number of rejections this procedure makes. Then with
r ≥ 1,

{y: |yi| > λr and R = r} ⊂ {y : |yi| > λr and R̃ = r − 1}.

To see why these intermediate results give Theorem 1.3, observe that

P(Hi rejected and R = r) ≤ P(|yi| ≥ λr and R̃ = r − 1)

= P(|yi| ≥ λr)P(R̃ = r − 1)

=
qr

n
P(R̃ = r − 1),

where the inequality is a consequence of the lemmas above and the first equality follows from the
independence between yi and ỹ. Plugging this inequality into (3.2) gives

FDR =
n∑
r=1

1

r

n0∑
i=1

P(Hi rejected and R = r) ≤
∑
r≥1

qn0
n

P(R̃ = r − 1) =
qn0
n
,

which finishes the proof.

3.1 Proof of Lemma 3.1

We begin with a lemma we shall use more than once.

Lemma 3.3. Consider a pair of nonincreasing and nonnegative sequences y1 ≥ y2 ≥ . . . ≥ yn ≥ 0,
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, and let b̂ be the solution to

minimize f(b) = 1
2‖y − b‖

2
`2

+
∑n

i=1 λibi
subject to b1 ≥ b2 ≥ . . . ≥ bn ≥ 0.
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If b̂r > 0 and b̂r+1 = 0, then for every j ≤ r, it holds that

r∑
i=j

(yi − λi) > 0 (3.3)

and for every j ≥ r + 1,
j∑

i=r+1

(yi − λi) ≤ 0. (3.4)

Proof To prove (3.3), consider a new feasible sequence b, which differs from b̂ only by subtracting
a small positive scalar h < b̂r from b̂j , . . . , b̂r. Now

f(b)− f(b̂) = h

r∑
i=j

(yi − λi − b̂i) + h2
r∑
i=j

1
2 .

Taking the limit as h goes to zero, the optimality of b̂ implies that
∑r

i=j(yi − λi − b̂i) ≥ 0, which
gives

r∑
i=j

(yi − λi) ≥
r∑
i=j

b̂i > 0.

For the second claim (3.4), consider a new sequence b, which differs from b̂ by replacing
b̂r+1, . . . , b̂j with a positive scalar 0 < h < b̂r. Now observe that

f(b)− f(b̂) = −h
j∑

i=r+1

(yi − λi) + h2
j∑

i=r+1

1
2 .

The claim follows from the optimality of b̂.

It is now straightforward so see how these simple relationships give Lemma 3.1. Observe that
when R = r, we must have |y|(r) > λr and |y|(r+1) ≤ λr+1. Hence, if H1 is rejected, it must
hold that |y1| ≥ |y|(r) > λr. This shows that {H1 is rejected and R = r} ⊂ {|y1| > λr and R = r}.
Conversely, assume that |y1| > λr and R = r. Then H1 must be rejected since |y1| > |y|(r+1). This
shows that {H1 is rejected and R = r} ⊃ {|y1| > λr and R = r}.

3.2 Proof of Lemma 3.2

We assume without loss of generality that y ≥ 0 (the extension to arbitrary signs is trivial). By
assumption the solution to (3.1) with λi = Φ−1(1 − iq/2n) has exactly r strictly positive entries,
and we need to show that when y1 is rejected, the solution to

min J(b̃) :=

n−1∑
i=1

1
2(ỹi − b̃i)2 +

n−1∑
i=1

λ̃i|b̃|(i) (3.5)

in which λ̃i = λi+1 has exactly r − 1 nonzero entries. We prove this in two steps:

(i) The optimal solution b̂ to (3.5) has at least r − 1 nonzero entries.

(ii) The optimal solution b̂ to (3.5) has at most r − 1 nonzero entries.
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3.2.1 Proof of (i)

Suppose by contradiction that b̂ has fewer than r − 1 entries; i.e., b̂ has j − 1 nonzero entries with
j < r. Letting I be those indices for which the rank of ỹi is between j and r− 1, consider a feasible
point b as in the proof of Lemma 3.3 defined as

bi =

{
h i ∈ I,
b̂i otherwise;

here, the positive scalar h obeys 0 < h < b(j−1). By definition,

J(b)− J(b̂) = −h
r−1∑
i=j

(ỹ(i) − λ̃i) + h2
r−1∑
i=j

1
2 .

Now ∑
j≤i≤r−1

ỹ(i) − λ̃i =
∑

j+1≤i≤r
ỹ(i−1) − λi ≥

∑
j+1≤i≤r

y(i) − λi > 0.

The first equality follows from λ̃i = λi+1, the first inequality from y(i) ≤ ỹ(i−1) and the last from

(3.3). By selecting h small enough, this gives J(b) < J(b̂), which contradicts the optimality of b̂.

3.2.2 Proof of (ii)

The proof is similar to that of (i). Suppose by contradiction that b̂ has more than r − 1 entries;
i.e. b̂ has j nonzero entries with j ≥ r. Letting I be those indices for which the rank of ỹi is between
r and j, consider a feasible point b as in the proof of Lemma 3.3 defined as

bi =

{
bi − h i ∈ I
b̂i otherwise;

here, the positive scalar h obeys 0 < h < b(j). By definition,

J(b)− J(b̂) = h

j∑
i=r

(ỹ(i) − λ̃i − b̂(i)) + h2
j∑
i=r

1
2 .

Now ∑
r≤i≤j

(ỹ(i) − λ̃i) =
∑

r+1≤i≤j+1

(y(i) − λi) ≤ 0.

The equality follows from the definition and the inequality from (3.4). By selecting h small enough,
this gives J(b) < J(b̂), which contradicts the optimality of b̂.

4 FDR Control Under General Designs

4.1 The notion of FDR in the linear model

We consider the multiple testing problem in which we wish to decide whether each of the p regression
coefficients in the linear model (1.1) is zero or not. Now the notion of FDR control in this situation
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is delicate and it is best to present the precise context in which our results hold as to avoid any
kind of misunderstanding. We work with a generative model

y = Xβ + z

for the data in which the errors are i.i.d. zero-mean Gaussian random variables. In other words,
we assume that the (full) linear model is correct and wish to know which of the coefficients βi are
nonzero. For example, in a medical imaging application, β may be the concentrations of hydrogen at
various locations in the body (different tissues are characterized by different concentration levels)
and while we cannot observe such concentrations directly, they can be measured indirectly by
magnetic resonance. In this case, the linear model above holds, the object of inference is a well-
defined physical quantity, and it makes sense to test whether there are locations whose concentration
exceeds a prescribed level. Another example may concern gene mapping studies in which we wish to
identify which of the many genes are associated with a given phenotype. Here, there are mutations
that affect the phenotype and others that do not so that—assuming the correctness of the linear
model—there are true (and false) discoveries to be made. We are thus concerned with a true linear
model in which the notion of a true regressor along with the value of its regression coefficient has a
clear meaning, and can be explained in the language of the respective science. In contrast, we are
not concerned with the use of the linear model as means of an interpretative model, which, while
being inexact, may be used to summarize a phenomenon of interest or predict future outcomes
since it may not allow true and false discoveries.

Furthermore, we also wish to stay away from designs where the columns of X (the variables) are
highly correlated as in this case, the stringent definition we adopt for FDR (expected proportion
of incorrectly selected variables) may not be the right notion of Type I error, see the discussion in
[33]. Hence, we shall present the performance of different selection methods on seemingly simple
examples, where the columns of the design matrix are only slightly correlated or where they are
generated as independent random variables. As we shall see, while small correlations can already
lead to many variable selection problems, model selection procedures based on the sorted `1 norm
can work well under sparsity, i.e., when the number of true regressors is comparably small.

4.2 Loss of FDR control due to shrinkage

As briefly mentioned in the Introduction, methods using convex surrogates for sparsity, such as the
`1 or sorted `1 norms, can have major difficulties in controlling the FDR. This phenomenon has to
do with the shrinkage of regression coefficients, as we now explain.

We consider the lasso (1.5) for simplicity and assume that the columns of X have unit norm.
The optimality conditions for the lasso solution β̂ take the form

β̂ = ηλ(β̂ −X ′(Xβ̂ − y)), (4.1)

where ηλ is the soft-thresholding operator, ηλ(t) = sgn(t)(|t|−λ)+, applied componentwise; see [31,
page 150]. Setting

vi = 〈Xi,
∑
j 6=i

Xj(βj − β̂j)〉, (4.2)

we can rewrite the optimality condition as

β̂i = ηλ(βi +X ′iz + vi). (4.3)
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Observe that conditional on X, X ′iz ∼ N (0, 1). In an orthogonal design, vi = 0 for all i, and taking
λ at the appropriate level (e.g., Φ−1(1 − q/2p)) controls the FDR and even the FWER. Imagine
now that X has correlated columns and that k regression coefficients are large. Then the lasso
estimates of these coefficients will be shrunk towards zero by an amount roughly proportional to λ.
The effect of this is that vi now looks like a noise term whose size is roughly proportional to λ times
the square root of k. In other words, there is an inflation of the ‘noise variance’ so that we should
not be thresholding at λ but at a higher value. The consequence is that the lasso procedure is too
liberal and selects too many variables for which βi = 0; hence, the FDR becomes just too large.
One can imagine using a higher value of λ. The problem, however, is that the if the coefficients
are really large, the estimation bias is of size λ so that the size of vi scales like λ so there does not
appear to be an easy way out (at least, as long as λ is selected non-adaptively).
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(a) Orthogonal design.
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(b) Gaussian design.

Figure 3: Observed FDR of SLOPE with λ = λBH for p = 5, 000. In (a), the straight lines
indicate the nominal level of the BHq procedure, namely, q(1− k/p).

Following this line of thought, one can make two qualitative predictions in the model with a
few large regressors: (1) the problem tends to be more severe as the number of regressors increases,
at least initially (when most of the variables are in the model, it gets harder to make false rejec-
tions), and (2) the problem tends to be more severe when the columns tend to be more correlated.
Obviously, the problems with FDR control also apply to SLOPE. Figure 3 presents the estimated
FDR of SLOPE both with an orthogonal design and a random Gaussian design in which X has
i.i.d. N (0, 1/n) entries so that the columns nearly have unit norm. The sequence λ is set to be
λBH. In the first case, we work with n = p = 5, 000 and in the second with n = p = 5, 000 and
n = 2p = 10, 000. The value of the nonzero regression coefficients is set to 5

√
2 log p. Figure 3b

shows that SLOPE with a sequence of BH values no longer controls the FDR in the nonorthogonal
case. In fact, the FDR increases with k as predicted. The values of FDR are substantially smaller
when n = 2p as compared to the case when n = p. This is naturally in line with our prediction
since E(X ′iXj)

2 = 1/n for i 6= j so that random vectors in dimension n = 5, 000 statistically exhibit
higher sample correlations than vectors in a space of twice this size.

In closing, we have discussed the problem associated with the bias induced by large regression
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coefficients. Looking at (4.3), there are of course other sources of bias causing a variance inflation
such as those coefficients βj 6= 0 with vanishing estimates, i.e., β̂j = 0.

4.3 Adjusting the regularizing sequence for SLOPE

Selecting a sequence {λi} for use in SLOPE is an interesting research topic that is beyond the scope
of this work. Having said this, an initial thought would be to work with the same sequence as in an
orthogonal design, namely, with λi = λBH(i) as in Theorem 1.3. However, we have demonstrated
that this choice is too liberal and in this section, we use our qualitative insights to propose an
intuitive adjustment. Our treatment here is informal.

Imagine we use λBH and that there are k large coefficients. To simplify notation, we suppose
that β1 ≥ β2 ≥ . . . βk � 1 and let S be the support set {1, . . . , k}. Assuming SLOPE correctly
detects these variables and correctly estimates the signs of the regression coefficients, the estimate
of the nonzero components is very roughly equal to

(X ′SXS)−1(X ′Sy − λS),

where λS = (λBH(1), . . . , λBH(k))′ causing a bias approximately equal to

EXS(βS − β̂S) ≈ XS(X ′SXS)−1λS .

We now return to (4.3) and ask about the size of the variance inflation: in other words, what is the
typical size of X ′iXS(X ′SXS)−1λS? For a Gaussian design where the entries of X are i.i.d. N (0, 1),
it is not hard to see that for i /∈ S,

E(X ′iXS(X ′SXS)−1λS)2 = λ′S E(X ′SXS)−1λS =
‖λS‖2`2

n− |S| − 1
,

where the last equality uses the fact that the expected value of an inverse dimensional Wishart of
dimension k with n degrees of freedom is equal to Ik/(n− k − 1).

This suggests a correction of the following form: we start with λ1 = λBH(1). At the next stage,
however, we need to account for the slight increase in variance so that we do not want to use λBH(2)
but rather

λ2 = λBH(2)

√
1 +

λ21
n− 2

.

Continuing, this gives

λi = λBH(i)

√
1 +

∑
j<i λ

2
j

n− i
. (4.4)

In our simulations, we shall use a variation on this idea and work with λ1 = λBH(1) and for i > 1,

λi = λBH(i)

√
1 +

∑
j<i λ

2
BH(j)

n− i
. (4.5)

In practice, the performance of this slightly less conservative sequence does not differ from (4.4).
Figure 4 plots the adjusted values given by (4.5). As is clear, these new values yield a procedure
that is more conservative than that based on λBH.
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Figure 4: Graphical representation of sequences {λi} for p = 5000. The solid line is λBH, the
dashed (resp. dotted) line is λ given by (4.5) for n = p (resp. n = 2p).

For small values of q, the sequence λi is no longer decreasing. Rather it decreases until it reaches
a minimum value and then increases. It would not make sense to use such a sequence—note that
we would also lose convexity—and letting k? = k(n, p, q) be the location of the global minimum,
we shall work with

λBHc(i) =

{
λi, i ≤ k?,
λk? , i > k?,

with λi as in (4.5). (4.6)

Working with λBHc, Figure 5 plots the observed FDR of SLOPE in the same setup as in Figure
3b. For n = p = 5, 000, the values of the critical point k? are 91 for q = 0.05, 141 for q = 0.1,
and 279 for q = 0.2. For n = 2p = 10, 000, they become 283, 560, and 2,976, respectively. It can
be observed that SLOPE keeps the FDR at a level close to the nominal level even after passing
the critical point. When n = p = 5, 000 and q = 0.05, which corresponds to the situation in which
the critical point is earliest (k? = 91), one can observe a slight increase in FDR above the nominal
value when k ranges from 100 to 200. It is also interesting to observe that FDR control is more
difficult when the coefficients have moderate amplitudes rather than when they have large ones.
Although this effect is very small, an interpretation is that the correction is not strong enough to
account for the loss of power; that is, for not including a large fraction of true regressors.

Figure 6 illustrates the advantage of using an initially decreasing sequence of thresholds (BHq
style) as compared to the classical lasso with λ = λBHc(1) (Bonferroni style). The setting of the
experiment is the same as in Figure 3b with n = p = 5000 and weak signals βi =

√
2 log p. It can be

observed that under the global null, both procedures work the same and keep the FDR or FWER
at the assumed level. As k increases, however, the FDR of SLOPE remains constant and close to
the nominal level, while that of the lasso rapidly decreases and starts increasing after k = 50. The
gain for keeping FDR at the assumed level is a substantial gain in power for small values of k.
The power of the lasso remains approximately constant for all k ∈ {1, . . . , 200}, while the power of
SLOPE exhibits a rapid increase at small values of k. The gain is already quite clear for k = 10,
where for q = 0.1 the power of SLOPE exceeds 60%, whereas that of the lasso remains constant at
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(b) n = 2p = 10, 000.

Figure 5: FDR of SLOPE with λi = λBHc(i) as in (4.6).

45%. For k = 100, the power of SLOPE reaches 71%, while that of the lasso is still at 45%.
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Figure 6: FDR and power of SLOPE and of the lasso with λ = λBH(1) = λBHc(1); n = p =
5000, βi =

√
2 log p for i = 1, . . . , k.

23



5 Numerical Examples

5.1 Multiple testing

5.1.1 Genome wide association studies

In this section we report the results of simulations inspired by the genome-wide search for influential
genes. In this case the regressor variables can take on only three values according to the genotype of
a genetic marker. In details, X = 0 if a given individual has two copies of a reference allele at a given
marker, X = 2 if she has two copies of a variant allele, and X = 1 if this individual is heterozygous,
i.e., has one copy of a reference and one copy of a variant allele. For this study we used simulated
data relating to 1,000 individuals from the admixture of the African-American (ASW) and European
(CEU) populations, based on the HapMap [18] genotype data. The details of the simulation of
the admixture are described in [12]. The original data set contains 482,298 markers (locations
on the genome) in which genotypes at neighboring markers are usually strongly correlated. To
avoid ambiguities related to the definition of the true and false positives we extensively pruned the
design matrix, leaving only 892 markers distributed over all chromosomes. In this final data set
the maximal pairwise correlation between those genotypes at different marker locations is equal
to 0.2. The columns of the design matrix are further standardized, so that each variable has zero
mean and variance equal to one (in other words, the `2 norm of each column is equal to one).
The design matrix used in our simulation study is available at http://www-stat.stanford.edu/

~candes/SortedL1/Gen.txt. Following the arguments from Section 4.3, the weights wk for λBHc

are

wk =
1

k
E‖(X ′SXS)−1X ′SXi‖22, (5.1)

where the expectation is taken over all subsets S ⊆ {1, . . . , p} with |S| = k and i /∈ S. Here,
we substitute this expectation with an average over 5000 random samples when k < 300 and
2500 random samples for larger k. The weights are estimated for k ∈ {1, 6, 11, . . . , 296} and
k ∈ {300, 310, 320, . . . , 890} and we use linear interpolation to estimate the remaining values. As
seen in Figure 7a, for small k the estimated weights are slightly larger than the corresponding
weights for the Gaussian design matrix. In the most relevant region where k < 50 they slightly
decrease with k. When using this selection of weights the critical points k? for q ∈ {0.05, 0.1, 0.2}
are equal to 15, 32 and 67.

In our study, we compare the performance of SLOPE with two other approaches that are
sometimes used to control the false discovery rate. The first approach is often used in real Genome
Wide Association Studies (GWAS) and operates as follows: first, carry out simple regression (or
marginal correlation) tests at each marker and then use the Benjamini-Hochberg procedure to adjust
for multiplicity (and hopefully control the overall FDR). The second approach uses the Benjamini-
Hochberg procedure with p-values obtained by testing the significance of individual predictors
within the full regression model with 892 regressors. We assume Gaussian errors and according to
Theorem 1.3 in [10], applying the BHq procedure with q = q0/Sp, Sp =

∑p
i=1 1/i, controls the FDR

at level q0. In our context, the logarithmic factor makes the procedure too conservative and in our
comparison, we shall use the BHq procedure with q being equal to the FDR level we aim to obtain.
The reader will observe that in our experiments, this choice keeps the FDR around or below the
nominal level q (had we opted for q/Sp, we would have had an FDR well below the nominal level
and essentially no power).
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The trait or response is simulated according to the linear model (1.1), where z is a 1,000-
dimensional vector with i.i.d. N (0, 1) entries. The number k of nonzero elements in the regression
coefficient vector β varies between 0 and 40. For each k, we report the values of the FDR and
power by averaging false discovery proportions over 500 replicates. In each replicate, we generate
a new noise vector and a regression coefficient vector at the appropriate sparsity level by selecting
locations of the nonzero coefficients uniformly at random. The amplitudes are all equal to 5

√
2 log p

(strong signals) or
√

2 log p (weak signals).
As observed in Figure 7b, when the signals are strong SLOPE keeps the FDR close to or below

the nominal level whenever the number of non-nulls is less or equal to the value k(n, p, q) of the
critical point. As in the case of Gaussian matrices, FDR control is more difficult when signals have
a moderate amplitude; even in this case, however, the FDR is kept close to the nominal level as
long as k is below the critical point.

Figures 7c and 7d compare the FDR and the power of the three different approaches when
effects are weak (β =

√
2 log p). In Figure 7c we observe that the method based on marginal tests

completely fails to control FDR when the number of true regressors exceeds 10. For k = 10 this
method has a FDR two times larger than the nominal level. For k = 40, the FDR exceeds 50%
meaning that the ‘marginal method’ carried out at the nominal FDR level q = 0.1 detects more false
than true regressors. This behavior can be easily explained by observing that univariate models
are not exact: in a univariate least-squares model, we estimate the projection of the full model on
a simpler model with one regressor. Even a small sample correlation between the true regressor X1

and some other variable X2 will make the expected value of the response variable dependent on X2.
In passing, this phenomenon illustrates a basic problem related to the application of marginal tests
in the context of GWAS; marginal tests yield far too many false regressors even in situations where
correlations between the columns of the design matrix are rather small. The method based on the
tests within the full regression model behaves in a completely different way. It controls the FDR
at the assumed level but has no detection power. This can be explained by observing that least
squares estimates of regression coefficients have a large standard deviation when n is comparable to
p. In comparison, SLOPE performs very well. When k ≤ 40, the FDR is kept close to the nominal
level and the method has a large power, especially when one considers that the magnitude of the
simulated signals are comparable to the upper quantiles of the noise distribution.

5.1.2 Multiple mean testing from correlated statistics

We now illustrate the properties of our method as applied to a classical multiple testing problem
with correlated test statistics. Imagine that we perform p = 1, 000 tests in each of 5 different
laboratories and that there is a significant random laboratory effect. The test statistics can be
modeled as

yi,j = µi + τj + zi,j , 1 ≤ i ≤ 1000, 1 ≤ j ≤ 5,

where the laboratory effects τj are i.i.d. mean-zero Gaussian random variables as are the errors zi,j .
The random lab effects are independent from the z’s. We wish to test whether Hj : µj = 0 versus
a two-sided alternative. In order to do this, imagine averaging the scores over all five labs, which
gives

ȳi = µi + τ̄ + z̄i, 1 ≤ i ≤ n.

We assume that things are normalized so that Var(ȳi) = 1, the vector ȳ ∼ N (0,Σ) where Σi,i = 1
and Σi,j = ρ > 0 for i 6= j. Below, we shall work with ρ = 0.5.
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(c) FDR as a function of k.
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(d) Power as a function of k.

Figure 7: Simulation results for the GWAS inspired examples. The weights for SLOPE are
shown in (a). In (b), the vertical lines represent the locations of the critical points for q = 0.05
and q = 0.1. As mentioned in the text weak (resp. strong) signals have amplitudes equal to√

2 log p (resp. 5
√

2 log p). Plots (c) and (d) show the FDR and power of the different methods
operating at the nominal level q = 0.1 in the case of weak signals.

Our problem is to test the means of a multivariate Gaussian vector with equicorrelated entries.
One possible approach is to use the Benjamini-Hochberg procedure, that is we order |ȳ|(1) ≥ |ȳ|(2) ≥
. . . ≥ |ȳ|(p) and apply the step-up procedure with critical values equal to Φ−1(1− iq/2p). Because
the statistics are correlated we would use a conservative level equal to q/Sp as suggested in [10,
Theorem 1.3]. However, this is really too conservative and, therefore, in our comparisons we selected
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q to be the FDR level we wish to obtain. (The reader will again observe that in our experiments,
this choice keeps the FDR below the nominal level q. Had we opted for q/Sp, we would have had
an FDR well below the nominal level and essentially no power).

Another possible approach is to ‘whiten the noise’ and express our multiple testing problem in
the form of a regression equation

ỹ = Σ−1/2ȳ = Σ−1/2µ+ ε, (5.2)

where ε ∼ N (0, Ip), and use model selection tools for identifying the nonzero elements of µ.
Interestingly, while the matrix Σ is far from being diagonal, Σ−1/2 is diagonally dominant.

Specifically, Σ
−1/2
i,i = 1.4128 and Σ

−1/2
i,j = −0.0014 for i 6= j. This makes our multiple testing

problem well suited for the application of SLOPE with the original λBH values. Hence, we work
with (5.2) in which we normalize Σ−1/2 as to have unit norm columns.

For the purpose of this study we simulate a sequence of sparse multiple testing problems, with
the number k of nonzero µi varying between 0 and 80. With Σ−1/2 normalized as above, all the
nonzero means are equal to

√
2 log p so that ỹ ∼ N (Σ̃−1/2µ, Ip) in which Σ̃−1/2 has unit normed

columns. The magnitude of true effects was chosen so as to obtain a moderate power of their
detection. For each sparsity level k, the results are averaged over 500 independent replicates.

In Figures 8 and 9 we present the summary of our simulation study, which reveals that SLOPE
solves the multiple testing problem in a much better fashion than the BHq procedure applied to
marginal test statistics. In our setting, the BHq procedure is too conservative as it keeps the
FDR below the nominal level. Moreover, as observed in Figure 9, when q = 0.1 and k = 50, in
approximately 75% of the cases the observed False Dicovery Proportion (FDP) is equal to 0, while
in the remaining 25% of the cases, it takes values which are distributed over the whole interval
(0,1). FDP taking the value zero in a majority of the cases is not welcome since it is related to a low
power. To be sure, in approximately 35% of all cases BHq did not make any rejections (i.e., R = 0).
Conditional on R > 0, the mean of FDP is equal to 0.22 with a standard deviation of 0.28, which
clearly shows that the observed FDP is typically far away from the nominal value of q = 0.1.
Because of this behavior, the applicability of the BHq procedure under this correlation structure
is in question since for any given realization, the FDP may be very different from its targeted
expected value. In comparison to BHq, SLOPE offers a more predictable FDR and substantially
larger and more predictable True Positive Proportion (TPP, fraction of correctly identified true
signals), compare the spread of the histograms in Figure 9.

5.2 High-dimensional compressive sensing examples

The experiments presented so far all used an n × p matrix X with n ≈ p. In this section we
consider matrices with n� p. Such matrices are used in compressive sensing [15, 16, 19] to acquire
linear measurements of signals β that are either sparse or can be sparsely represented in a suitable
basis. In particular, we observe y = Xβ + z, where z is an additive noise term. We assume that
z ∼ N (0, σ2I), and that σ is known. Despite the underdetermined nature of the problem, there is
now a large volume of theoretical work in the field of compressed sensing that shows that accurate
reconstructions of β can nevertheless be obtained using `1-based algorithms such as the lasso.

The goal of our simulations is to compare the performance of the lasso and SLOPE in this
setting, and to evaluate their sensitivity with respect to the regularizing parameters λ and q,
respectively.
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Figure 8: Simulation results for testing multiple means from correlated statistics. (a) FDR
levels for SLOPE and marginal tests as a function of k. (b) Variability of the false discovery
proportions for both methods. (c) Power plot.

5.2.1 Sparse signals

As a first experiment we generate an n× p matrix X by taking the p× p matrix corresponding to
the one-dimensional discrete cosine transformation (DCT-II)4 for signals of length p, and randomly
selecting n different rows in such a way that the first row is always included. We then scale the
matrix by a factor

√
p/n to obtain approximately unit-norm columns. Note that including the first

row of the DCT matrix, all of whose entries are identical, ensures that we have information about
the mean of the signal. Throughout this section we use a fixed instance of X with n = p/2 and
p = 262,144.

4Please see [27] for a formal definition of DCT-II.

28



FDP

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

(a) Observed FDP for SLOPE.

FDP

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

(b) Observed FDP for marginal test.

TPP

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

(c) Observed TPP for SLOPE.
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Figure 9: Testing example with q = 0.1 and k = 50.

The signals β are constructed as follows. First a random support set S ⊂ {1, . . . , p} of cardinality
k is drawn uniformly at random. We then set the off-support entries to zero, i.e., βi = 0 for all
i 6∈ S, and choose the remaining k entries βi with i ∈ S according to one of six signal classes:

1. Random Gaussian entries: βi ∼ N (0, σ2) with σ = 2
√

2 log p.

2. Random Gaussian entries: βi ∼ N (0, σ2) with σ = 3
√

2 log p.

3. Constant values: βi = 1.2
√

2 log p.
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4. Linearly decreasing from 1.2
√

2 log p to 0.6
√

2 log p.

5. Linearly decreasing from 1.5
√

2 log p to 0.5
√

2 log p.

6. Linearly decreasing from 4.5
√

2 log p to 1.5
√

2 log p.

In the last three classes, the linear ranges are randomly permuted before assigning their values to
the respective entries in β. As a final signal class, β is chosen to be a random permutation of the
following dense vector v:

7. Exponentially decaying entries: vi = 1.2
√

2 log p (i/k)−1.2.

We consider nine sparsity levels k: 1, 5, 10, 50, 100, 500, 1000, 1%, and 5%, where the percentages
are relative to p (thus giving k = 2, 621 and k = 13, 017, respectively for the last two choices). The
noise vector z is always generated from the multivariate normal N (0, 1) distribution.

The k largest entries in β are designed to lie around the critical level with respect to the noise.
Especially for highly sparse β, this means that the power and FDR obtained with any of the
methods under consideration depends strongly on the exact combination of β and z. To avoid
large fluctuations in individual results, we therefore report the result as averaged over 100 random
signal and noise instances for k ≤ 50, and over 50 instances for k = 100 and k = 500. For larger k
individual instances were found to be sufficient.

The mean square error of the estimated regression coefficients, β̂ is defined as

MSE =
1

p

p∑
i=1

E(β̂i − βi)2.

In our numerical experiments we work with estimated MSE values in which the expectation is
replaced by the mean over a number of realizations of β and the corresponding β̂. For convenience
we refer to this as the MSE, but it should be kept in mind that this is only an estimation of the
actual MSE.

In preliminary experiments we observed that under sparse scenarios the bias due to the shrinkage
of regression coefficients has a deteriorating influence on the MSE of both the lasso and SLOPE
estimates. We therefore suggest to use a debiasing step in which the results from the lasso or SLOPE
are used only to identify the nonzero regression coefficients. The final estimation of their values
is then performed with the classical method of least squares on that support. Having too many
incorrect entries in the support distorts the estimates of the true nonzero regression coefficients and
it is thus important to maintain a low FDR. At the same time we need a large power: omitting
entries from the support not only leads to zero estimates for those coefficients, but also distorts the
estimates of those coefficients belonging to the support. Figure 10 shows the effect the debiasing
step has on the (estimated) MSE. (In the consecutive graphs we report only the results for the
debiased version of the lasso and SLOPE). In all but the least sparse cases, the minimum MSE
with debiasing is always lower than the best MSE obtained without it. The figure also shows the
dependency of the MSE on λ for the lasso and q for SLOPE. The optimal choice of λ for the
lasso was found to shift considerably over the various problem settings. By contrast, the optimal q
for SLOPE remained fairly constant throughout. Moreover, in many cases, using a fixed value of
q = 0.02 gives MSE values that are close to, and sometimes even below, the lowest level obtained
using the lasso.
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Figure 11 shows the power and FDR results obtained for signals of classes 3 and 5 using the
lasso with various λ values. The different FDR curves in the plot correspond to increasing levels of
sparsity (fewer nonzeros) from left to right. For fixed λ values, the power for a fixed signal class is
nearly independent of the sparsity level. The FDR, on the other hand, increases significantly with
sparsity.

The FDR and power results obtained with SLOPE are shown in Figure 12. Here, the results
are grouped by sparsity level, and the different curves in each plot correspond to the seven different
signal classes. The FDR curves for each sparsity level are very similar. The power levels differ
quite a bit depending on how ‘difficult’ the signal is to recover. In plots (a)–(c) the results between
SLOPE with fixed and adapted weights (see Section 4.3) are almost identical. In plot (d), however,
the FDR of SLOPE with adapted weights is much lower, at the expense of some of the power.
Importantly, it can be seen that for a wide range of sparsity levels, the adaptive version keeps FDR
very close to the nominal level indicated by the gray dashed line.

We mentioned above that the optimal parameter choice for SLOPE is much more stable than
that for the lasso. Because the optimal value depends on the problem it would be much more
convenient to work with a fixed λ or q. In the following experiment we fix the parameter for each
method and then determine over all problem instances the maximum ratio between the optimal
(two-norm) misfit over all parameters (for both lasso and SLOPE) and the misfit obtained with the
given parameter choice. Table 2 summarizes the results. It can be seen that the optimal parameter
choice for a series of signals from the different classes generated with a fixed sparsity level changes
rapidly for lasso (between λ = 3.46 and λ = 5.49), whereas it remains fairly constant for SLOPE
(between q = 0.01 and q = 0.04. Importantly, the maximum relative misfit for lasso over all
problem instances varies tremendously for each of the λ values in the given range. For SLOPE, the
same maximum relative misfit changes slightly over the given parameter range for q, but far more
moderately. Finally, the results obtained with the parameter that minimizes the maximum relative
misfit over all problem instances are much better for SLOPE.

5.2.2 Phantom

As a more concrete application of the methods, we now discuss the results for the reconstruction of
phantom data from subsampled discrete-cosine measurements. Denoting by x ∈ Rp the vectorized
version of a phantom with p pixel values, we observe y = RDx, where R is a restriction operator
and D is a two-dimensional discrete-cosine transformation5. Direct reconstruction of the signal
from y is difficult because x is not sparse. However, when expressed in a suitable wavelet basis the
coefficients become highly compressible. Using the two-dimensional Haar wavelet transformation
H, we can write β = Hx, or by orthogonality of H, x = HTβ. Combining this we get to the desired
setting y = Xβ with X := RDHT , and β approximately sparse. Once the estimated β̂ is known
we can obtain the corresponding signal estimation using x̂ = HT β̂. Note that due to orthogonality
of H we have that ‖x− x̂‖2 = ‖β − β̂‖2, and it therefore suffices to report only the MSE values for
β̂.

For our experiments we generated a test phantom by discretizing the analytical phantoms
described in Guerquin-Kern, et al. [25] and available on the accompanying website. The resulting
2048×2048 image, illustrated in Figure 13, is then vectorized to obtain x with p = 20482. We obtain

5In medical imaging measurements would correspond to restricted Fourier measurements. We use the discrete-
cosine transform to avoid complex numbers, although, with minor modifications to the prox function, the solver can
readily deal with complex numbers.
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k 1 5 10 50 100 500 1000 1% 5% Max.

L
as

so

λ = 3.28 3100.9 2118.3 1698.5 705.5 477.9 183.8 123.0 62.1 24.8 3100.9
λ = 3.46 2316.3 1571.0 1256.0 510.8 342.4 126.9 83.7 40.2 18.1 2316.3
λ = 3.83 1199.0 790.8 636.2 240.9 147.4 51.8 33.2 16.3 18.7 1199.0
λ = 4.02 827.5 540.7 430.2 154.3 90.7 28.3 18.1 11.5 25.4 827.5
λ = 4.20 546.8 352.5 281.5 91.7 52.2 14.4 12.4 19.1 38.2 546.8
λ = 4.57 200.9 116.2 94.4 24.2 12.9 23.1 36.4 45.7 64.0 200.9
λ = 4.75 113.1 56.4 48.6 11.7 21.5 37.2 57.9 65.6 77.3 113.1
λ = 4.94 53.5 33.9 22.0 23.7 39.9 53.8 75.6 84.0 90.9 90.9
λ = 5.31 20.0 28.3 27.4 58.7 77.2 92.0 128.0 122.0 116.6 128.0
λ = 5.49 11.3 39.4 38.7 74.5 94.3 111.9 149.2 141.2 127.9 149.2

S
L

O
P

E

q = 0.01 14.9 27.1 17.3 13.1 14.3 14.7 16.8 20.3 38.6 38.6
q = 0.02 11.5 17.8 24.0 20.1 17.8 15.4 14.2 11.6 24.0 24.0
q = 0.03 17.9 29.8 31.2 28.0 24.6 22.1 23.7 15.2 19.7 31.2
q = 0.04 17.9 36.6 45.0 36.4 32.9 29.2 29.5 19.1 16.5 45.0
q = 0.10 47.9 66.6 89.6 77.5 69.0 63.3 54.8 38.9 19.3 89.6
q = 0.12 52.7 82.2 101.0 89.1 78.5 72.2 65.4 46.0 22.2 101.0
q = 0.15 78.9 102.0 123.7 106.7 94.4 85.4 77.2 54.8 25.8 123.7

Table 2: Entries in the table give the maximum ratio (||b̂ − b||2/||b̂opt − b||2) − 1 in percent

over all signal types with the given sparsity. Here b is an instance of β; b̂ is the corresponding
estimate obtained using lasso and SLOPE with the given parameter value; and b̂opt is the
estimate with the lowest two-norm misfit over all parameters and both methods. The entries
in red show the lowest ratio obtained with either method for the given sparsity level. The
entries in blue correspond to the parameter choice that gives the lowest maximum ratio over
all problems.
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Problem 1 2 3 4 5 6 7 8

n/p 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2
γ 30 20 10 5 500 50 20 10
SNR 5.97 4.25 2.39 1.43 411.7 19.5 9.10 5.12

Table 3: Different problem configurations for phantom reconstruction with p = 20482. The
number of observations n is prescribed by the given ratios n/p. The noise level σ is set to
|β|[k]/(1.2

√
2 log p) with k = dγp/104e.

Problem idx. 1 2 3 4 5 6 7 8

L
as

so

λ = 3.50 8.589 10.544 14.627 19.474 2.018 7.821 11.742 15.848
λ = 3.75 8.570 10.415 14.158 18.324 2.010 7.723 11.390 15.098
λ = 4.00 8.667 10.513 14.101 17.884 2.000 7.670 11.198 14.720
λ = 4.25 8.851 10.683 14.251 17.995 1.992 7.669 11.163 14.635
λ = 4.50 9.067 10.904 14.525 18.222 1.985 7.694 11.234 14.764
λ = 4.75 9.300 11.140 14.820 18.614 1.980 7.769 11.384 14.966
λ = 5.00 9.536 11.388 15.092 19.042 1.979 7.884 11.592 15.202

S
L

O
P

E

q = 0.01 8.837 10.702 14.364 18.211 1.988 7.724 11.289 14.836
q = 0.02 8.694 10.569 14.201 18.037 1.994 7.679 11.195 14.711
q = 0.03 8.627 10.495 14.118 17.948 1.999 7.678 11.178 14.658
q = 0.04 8.593 10.449 14.100 17.876 2.002 7.677 11.179 14.651
q = 0.05 8.580 10.430 14.089 17.876 2.006 7.678 11.190 14.670
q = 0.10 8.598 10.487 14.188 18.061 2.017 7.695 11.258 14.815
q = 0.12 8.635 10.542 14.274 18.160 2.021 7.707 11.304 14.916

Table 4: Relative misfit values ||b̂−b||2/||b||2 (scaled by 100 for display purposes) for different

phantom test problem instances with b = β and its corresponding estimate b̂, using lasso and
SLOPE. The highlighted entries indicate the lowest misfit values obtained on a given problem
using each of the two methods. Not shown is the minimum relative misfit of 1.971 for problem
5 obtained using the lasso using λ = 6.0.

β using the two-dimensional Haar transformation implemented in the Rice wavelet toolbox [5] and
interfaced though the Spot linear operator toolbox [37]. As summarized in Table 3, we consider
two subsampling levels: one with n = p/2, the other with n = p/5. For each of the subsampling
levels we choose a number of different noise levels based on a target sparsity level k. In particular,
we choose k = dγp/104e, and then set σ = |β|[k]/(1.2

√
2 log p). The values of γ and the resulting

signal-to-noise ratios (‖Xβ‖2/‖Xβ − y‖) for each problem setting are listed in Table 3.
As in the previous section we are interested in the sensitivity of the results with respect to the

parameter choice, as well as in the determination of a parameter value that does well over a wide
range of problems. We therefore started by running the lasso and SLOPE algorithms with various
choices of λ and q, respectively. The resulting relative two-norm misfit values are summarized in
Table 4. The minimum MSE value obtained using the lasso are typically slightly smaller than those
obtained using SLOPE, except for problems 3 and 4. On the other hand, the relative misfit values
obtained over the given parameter ranges vary more than those for SLOPE.

Table 5 shows the percentage difference of each estimate to the lowest two-norm misfit obtained
with either of the two methods for each problem. The results obtained with the parameters that

33



Problem idx. 1 2 3 4 5 6 7 8 Max.

L
as

so

λ = 3.50 0.232 1.237 3.817 8.940 2.378 1.989 5.190 8.287 8.940
λ = 3.75 0.000 0.000 0.489 2.504 1.952 0.702 2.041 3.163 3.163
λ = 4.00 1.140 0.938 0.085 0.045 1.475 0.011 0.315 0.581 1.475
λ = 4.25 3.284 2.574 1.148 0.667 1.038 0.000 0.000 0.000 3.284
λ = 4.50 5.806 4.690 3.091 1.936 0.715 0.330 0.638 0.879 5.806
λ = 4.75 8.527 6.956 5.189 4.131 0.443 1.300 1.985 2.259 8.527
λ = 5.00 11.281 9.340 7.118 6.525 0.372 2.804 3.850 3.869 11.281

S
L

O
P

E

q = 0.01 3.123 2.758 1.949 1.873 0.866 0.722 1.132 1.370 3.123
q = 0.02 1.449 1.474 0.795 0.903 1.134 0.130 0.293 0.519 1.474
q = 0.03 0.668 0.770 0.202 0.406 1.410 0.126 0.138 0.153 1.410
q = 0.04 0.270 0.327 0.074 0.001 1.585 0.110 0.145 0.106 1.585
q = 0.05 0.117 0.140 0.000 0.000 1.743 0.124 0.242 0.239 1.743
q = 0.10 0.326 0.687 0.697 1.033 2.346 0.338 0.859 1.231 2.346
q = 0.12 0.767 1.221 1.309 1.587 2.507 0.493 1.270 1.920 2.507

Table 5: Entries in the table give the maximum ratio (||b̂− b||2/||b̂opt− b||2)−1 in percent for

each problem and parameter setting. Here b is an instance of β; b̂ is the corresponding estimate
obtained using lasso or SLOPE with the given parameter value; and b̂opt is the estimate with
the lowest two-norm misfit over all parameters and both methods for a given problem. The
entries in blue correspond to the parameter choice that gives the lowest maximum ratio over
all problem instances.

minimize the maximum difference over all problem instances are highlighted. In this case, using the
given parameters for each methods gives a similar maximum difference of approximately 1.4%. This
value is again very sensitive to the choice of λ for the lasso but remains much lower for the given
parameter choices for SLOPE. More interestingly perhaps is to compare the results in Tables 2
and 5. Choosing the best fixed value for the lasso obtained for the DCT problems (λ = 4.94) and
applying this to the phantom problem gives a maximum difference close to 10%. This effect is even
more pronounced when using the best parameter choice (λ = 4.00) from the phantom experiment
and applying it to the DCT problems. In that case it leads to deviations of up to 800% relative
to the best. For SLOPE the differences are minor: applying the DCT-optimal parameter q = 0.02
gives a maximum deviation of 1.474% instead of the best 1.410% on the phantom problems. Vice
versa, applying the optimal parameter for the phantom, q = 0.03 to the DCT problems gives a
maximum deviation of 31.2% compared to 24.0% for the best.

5.2.3 Weights

When using SLOPE with the adaptive procedure (4.6) described in Section 4.3, we need to evaluate
(5.1). For most matrices X, there is no closed-form solution to the above expectation, and numerical
evaluation would be prohibitively expensive. However, we can get good approximations ŵk of wk
values by means of Monte-Carlo simulations. Even so, it remains computationally expensive to
evaluate wk for all values k ∈ [1,min(n, p − 1)]. Our approach is to take 21 equidistant k values
within this interval, including the end points, and evaluate ŵk at those points. The remaining
weights are obtained using linear interpolation between the known values. For the first interval
this linear approximation was found to be too crude, and we therefore sample ŵk at an addition
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19 equispaced points within the first interval, thus giving a total of 40 sampled points. The next
question is how many random trials to take for each ŵk. Preliminary experiments showed that the
variance in the sampled values reduces with increasing k, while the computation cost of evaluating
one term in the expectation in (5.1) grows substantially. To avoid choosing a fixed number of
samples and risk inaccurate estimations of ŵk for small k, or waste time when evaluating ŵk for
large k, we used a dynamic sampling scheme. Starting with a small number of samples, we obtain
an intermediate estimate ŵk. We then compute a reference approximation using the same number
of samples, record the difference between the two values and update ŵk to the average of the two.
If the original difference was sufficiently small we terminate the algorithm, otherwise we double the
number of samples and compute a new reference approximation, which is then again first compared
to the current ŵk, and then merge into it, and so on. This process continues until the algorithm
either terminates naturally, or when a pre-defined maximum sample size is reached.

In Figure 14 we plot the resulting weights obtained for three different types of matrices against
1/(n − k − 1). The results in plot (a) are obtained for a 200 × 600 matrix with entries sampled
i.i.d. from the normal distribution, and with ŵk for all k ∈ [1, 200] based on 10,000 samples. The
blue line exactly follows the theoretical line for wk = 1/(n− k− 1), as derived in Section 4.3. Plots
(b) show the results obtained for five instances of the the restricted DCT operator described in
Section 5.2.1. We omit the value of ŵk for k = n, which would otherwise distort the figure due to
the choice of axes. In plot (c) we plot the weights for the matrices used in Section 5.2.2, along with
additional instances with n/p = 0.3 and n/p = 0.4. The results in plots (b) and (c) are slightly
below the reference line. The vertical dashed red lines in the plots indicate the maximum value of
k needed to evaluate λBHc with q = 0.1. In the DCT case we only need up to k = 5439, and for
DCT and Haar we need k = 14, 322 for n/p = 0.2 and k = 95, 472 for n/p = 0.5. In both cases this
k falls well within the first interval of the coarsely sampled grid. For a fixed q it may therefore be
possible to much further reduce the computational cost by evaluating successive ŵk for increasing
k until the critical value is reached.

6 Discussion

In this paper, we have shown that the sorted `1 norm may be useful in statistical applications both
for multiple hypothesis testing and for parameter estimation. In particular, we have demonstrated
that the sorted `1 norm can be optimized efficiently and established the correctness of SLOPE for
FDR control under orthogonal designs. We also demonstrated via simulation studies that in some
settings, SLOPE can keep the FDR at a reasonable level while offering increased power. Finally,
SLOPE can be used to obtain accurate estimates in sparse or nearly sparse regression problems in
the high-dimensional regime.

Our work suggests further research and we list a few open problems we find stimulating. First,
our methods assume that we have knowledge of the noise standard deviation and it would be inter-
esting to have access to methods that would not require this knowledge. A tantalizing perspective
would be to design joint optimization schemes to simultaneously estimate the regression coefficients
via the sorted `1 norm and the noise level as in [34] for the lasso. Second, just as in the BHq pro-
cedure, where the test statistics are compared with fixed critical values, we have only considered in
this paper fixed values of the regularizing sequence {λi}. It would be interesting to know whether
it is possible to select such parameters in a data-driven fashion as to achieve desirable statistical
properties. For the simpler lasso problem for instance, an important question is whether it is pos-
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sible to select λ on the lasso path as to control the FDR, see [26] for contemporary research related
to this issue. Finally, we have demonstrated the limited ability of the lasso and SLOPE to control
the FDR in general. It would be of great interest to know what kinds of positive theoretical results
can be obtained in perhaps restricted settings.
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A Proofs of Intermediate Results

A.1 Proof of Proposition 1.1

Lemma A.1. For all w and h in Rn, we have∑
i

wihi ≤
∑
i

|w|(i)|h|(i).

Proof Since ∑
i

wihi ≤
∑
i

|wi||hi|,

it is sufficient to prove the claim for w, h ≥ 0, which we now assume. Without loss of generality,
suppose that w1 ≥ w2 ≥ . . . ≥ wn ≥ 0. Then∑

i

wihi = wn(h1 + . . .+ hn) + (wn−1 − wn)(h1 + . . .+ hn−1) + . . .+ (w1 − w2)h1

≤ wn(h(1) + . . .+ h(n)) + (wn−1 − wn)(h(1) + . . .+ h(n−1)) + . . .+ (w1 − w2)h(1)

= wnh(n) + wn−1h(n−1) + . . .+ w1h(1)

=
∑
i

w(i)h(i),

which proves the claim.

We are in position to prove Proposition 1.1. Suppose w ∈ Cλ, then Lemma A.1 gives∑
i

wibi ≤
∑
i

|w|(i)|b|(i) = |b|(p)(|w|(1) + . . .+ |w|(p))

+ (|b|(p−1) − |b|(p))(|w|(1) + . . .+ |w|(p−1)) + . . .+ (|b|(1) − |b|(2))|w|(1).

Next, membership to Cλ allows to bound the right-hand side as

|b|(p)(λ1 + . . .+ λp) + (|b|(p−1) − |b|(p))(λ1 + . . .+ λp−1) + . . .+ (|b|(1) − |b|(2))λ1 =
∑
i

λi|b|(i).

This shows that supw∈Cλ 〈z, w〉 ≤ Jλ(b). For the equality, assume without loss of generality that
|b1| ≥ |b2| ≥ . . . ≥ |bp| and take wi = λisgn(bi). Then it is clear that 〈w, b〉 =

∑
i λi|bi| = Jλ(b).
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A.2 Proof of Proposition 1.2

Set y = ỹ for notational convenience, and following Section 2.1, assume without loss that y1 ≥ y2 ≥
. . . ≥ yp ≥ 0. Consider a feasible input x1 ≥ . . . ≥ xp such that xiSU+1 > 0 and define x′ as

x′i =

{
xi i ≤ iSU
0 i > iSU.

Then the difference in the objective functional is equal to

f(x)− f(x′) =
∑
i>iSU

{
1
2((yi − xi)2 − y2i ) + λixi

}
=
∑
i>iSU

{
1
2x

2
i + (λi − yi)xi

}
.

Since by definition yi ≤ λi for i > iSU, we see that f(x)− f(x′) > 0. This shows that i? ≤ iSU.
We now argue that ı? ≥ iSD. Take x feasible as before obeying x1 ≥ . . . xi0 > 0 and xi0+1 =

. . . = xp = 0 where i0 < iSD. Define x′ as

x′i =


xi i ≤ i0
h i0 < i ≤ iSD
0 i > iSD,

where 0 < h ≤ xi0 is an appropriately small scalar. Observe that x′ is feasible (i.e. is nonnegative
and nonincreasing). The difference in the objective functional is equal to

f(x)− f(x′) =
∑

i0<i≤iSD

{
1
2(y2i − (yi − h)2)− λih

}
=

∑
i0<i≤iSD

{
(yi − λi)h− 1

2h
2
}
.

Since by definition yi > λi for i ≤ iSD, we see that taking h small enough gives f(x) − f(x′) > 0,
concluding the proof.

B Asymptotic Predictions of FDR Levels

Figures 1 and 2 in Section 1.6 display asymptotic predictions of FDR levels and it is now time
to explain where they come from. These predictions can be heuristically derived by extending
results from [32] and [6]. In a nutshell, [32] applies the replica method from statistical physics
for computing the asymptotic performance of the lasso with Gaussian designs. In contrast, [6]
rigorously proves asymptotic properties of the lasso solution in the same setting by studying an
iterative scheme called approximate message passing (AMP) [21] inspired by belief-propagation on
dense graphical models. Below, we follow [6].

B.1 Asymptotic properties of the lasso

Our predictions use the main result from [6, Theorem 1.5] that we shall state below with a bit
less of generality. We begin with two definitions. First, a function ϕ : R2 → R is said to be
pseudo-Lipschitz if there is a numerical constant L such that for all x, y ∈ R2,

|ϕ(x)− ϕ(y)| ≤ L(1 + ‖x‖`2 + ‖y‖`2)‖x− y‖`2 .
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Second, for any δ > 0, we let αmin = αmin(δ) be the unique solution to

2(1 + α2)Φ(−α)− 2αφ(α)− δ = 0

if δ ≤ 1, and 0 otherwise.

Theorem B.1. [6, Theorem 1.5] Consider the linear model with i.i.d. N (0, 1) errors in which X
is an n× p matrix with i.i.d. N (0, 1/n) entries. Suppose that the βi’s are i.i.d. random variables,
independent of X, and with positive variance (below, Θ is a random variable distributed as βi).
Then for any pseudo-Lipschitz function ϕ, the lasso solution β̂ to (1.5) with fixed λ obeys

1

p

p∑
i=1

ϕ(β̂i, βi) −→ Eϕ(ηατ (Θ + τZ),Θ), (B.1)

where the convergence holds in probability as p, n → ∞ in such a way that n/p → δ. Above,
Z ∼ N (0, 1) independent of Θ, and τ > 0, α > αmin(δ) are the unique solutions to

τ2 = 1 +
1

δ
E
(
ηατ (Θ + τZ)−Θ

)2
,

λ =
(

1− 1

δ
P(|Θ + τZ| > ατ)

)
ατ.

(B.2)

The predicted curves plotted in Figures 1 and 2 are obtained by using this result together with
some heuristic arguments. Setting

ϕV (x, y) = 1(x 6= 0)1(y = 0) and ϕR(x, y) = 1(x 6= 0),

the number of false discoveries V and of discoveries R take the form

V =

p∑
i=1

ϕV (β̂i, βi), R =

p∑
i=1

ϕR(β̂i, βi).

Ignoring the fact that ϕV and ϕR are not pseudo-Lipschitz, applying Theorem B.1 gives

V/p → P(Θ = 0)P(|Z| > α)
R/p → P(|Θ + τZ| > ατ)

=⇒ FDP→ P(Θ = 0)P(|Z| > α)

P(|Θ + τZ| > ατ)
. (B.3)

Moreover, this also suggests that power also converges in probability to

Power→ P(Θ 6= 0, |Θ + τZ| > ατ)

P(Θ 6= 0)
= P(|Θ + τZ| > ατ |Θ 6= 0). (B.4)

In a supplementary note [13], we prove that even though ϕV and ϕR are discontinuous so that
Theorem B.1 does not apply, the conclusions above are mathematically valid.

B.2 Predictions in Figure 1

In Figure 1, n = p = 1000 and β1, . . . , βk are i.i.d. copies of 3λZ, Z ∼ N (0, 1). We recall
that λ = 3.717 = λBH(1) with q ≈ 0.207. To apply Theorem B.1, we let Θ be the mixture
N (0, (3λ)2) +k/pδ0. Solving (B.2) for α, τ gives a prediction of FDR and power according to (B.3)
and (B.4). These are the prediction curves plotted in the figure.
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B.3 Predicting the FDR in the high-SNR regime

We now wish to explain the predicted curves in Figure 2. In the high-SNR regime, λ is as large as
we want, but whatever its value, the true regression coefficients are orders of magnitude greater.
To connect this with Theorem B.1, imagine that the βi’s are independent copies of

Θ =

{
M, with prob. ε,

0, with prob. 1− ε

for some M > 0 and ε ∈ (0, 1). If we denote by FDR(M,λ; ε) the limiting FDR given by our
application of Theorem B.1 as above, the predicted curves plotted in Figure 2 are

lim
λ→∞

lim
M→∞

FDR(M,λ; ε),

with ε = k/p. One can compute this limit directly but this is a little tedious. We present instead
an intuitive method which gets to the results quickly.

Full asymptotic power. As the name suggests, this is a situation in which all the true
regressors are eventually detected as M → ∞. This happens in the case where δ ≥ 1 and when
δ < 1 but ε is below the transition curve ε?(δ), which is the weak transition threshold discussed
in the compressive sensing literature, see [22]. (This curve has several different interpretations, see
e.g. [21] or [20].) In this case τ/M → 0 as M → ∞, and it follows from (B.2) that in the limit
M →∞, we have

τ2 = 1 +
(1− ε)τ2

δ
Eηα(Z)2 +

ετ2(1 + α2)

δ
,

λ =
(

1− 1

δ
P(|Θ + τZ| > ατ)

)
ατ.

(B.5)

We now take a limit as λ→∞. We can show that τ →∞ while α converges to a positive constant
α?. By (B.5), α? is a solution to

2(1− ε)((1 + α2)Φ(−α)− αφ(α)) + ε(1 + α2) = δ. (B.6)

This equation admits one positive solution if δ ≥ 1, or if δ < 1 and ε < ε?(δ) ∈ (0, 1). When δ < 1
and ε > ε?(δ), (B.6) has two positive roots and only the largest of these two, which we denote by
α?, is larger than αmin. These arguments give

V/p → (1− ε)P(|Z| > α?)
R/p → ε+ (1− ε)P(|Z| > α?)

=⇒ FDP→ (1− ε)P(|Z| > α?)

ε+ (1− ε)P(|Z| > α?)
.

Limited asymptotic power. We now consider δ < 1 and ε > ε?(δ), a setting in which we
do not have full asymptotic power. In this case, the quantity 1 − δ−1P(|Θ + τZ| > ατ) in (B.2)
vanishes as M → ∞. To study the behavior in this case, we postulate that M/τ → γ? for some
constant γ? > 0 whenever M,λ → ∞ with λ/M → 0. Then it follows from the first equation in
(B.2) that

2(1− ε)((1 + α2)Φ(−α)− αφ(α)) + εE
(
ηα(γ + Z)− γ

)2
= δ. (B.7)

We also have a second equation that comes from the fact that the lasso solution has as many
nonzero coefficients as there are rows in X. In other words R/p→ δ < 1, which reads

2(1− ε)Φ(−α) + ε[Φ(−α− γ) + Φ(−α+ γ)] = δ. (B.8)
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Up to multiplication by a factor of p, the first (resp. second) term in the left-hand side is the
asymptotic number of false (resp. correct) discoveries. Letting α? and γ? be the solution to the
system (B.7)–(B.8), this gives

V/p → 2(1− ε)Φ(−α?)
R/p → δ

=⇒ FDP→ 2(1− ε)Φ(−α?)
δ

.

Also, we have seen that
Power → Φ(−α? − γ?) + Φ(−α? + γ?).

This concludes the derivation of our expressions for the FDP (and power) in the high signal-to-noise
regime. The accuracy of these predictions is quite visible in Figure 2.
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Figure 10: Estimated mean square error value for β̂ before and after debiasing for (a,b)
signal class 5, k = 1000, (c,d) signal class 2, k = 1000, and (e,f) signal class 2, k = 10. The
plots on the left show the results obtained using the lasso algorithm, along with horizontal
lines indicating the performance of SLOPE with from bottom to top: the optimal value of q;
q = 0.02; and the worst value of q in the interval 0.01 to 0.1. The plots on the right show the
(debiased) results of SLOPE with and without adaptive weights.
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Figure 11: FDR and power results obtained using lasso for different sparsity levels and (a)
signals of class 3, and (b) signal of class 5. The FDR curves from the right to the left correspond
to decreasing sparsity (more nonzero entries in β): k = 1, 5, 10, 50, 100, 500, 1000, 2621, and
13, 017.
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Figure 12: Power and FDR results obtained using SLOPE. Each plots shows the results for
all seven signal classes for a fixed sparsity level. At q = 0.1 the lines from top to bottom
correspond to classes 4,5,1,2,3, and 6 for plots (a)–(c), and to 1,4,5,2,3, and 6 for plot (d). The
dashed gray line indicates the nominal FDR level.
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Figure 13: Illustration of (a) a discretized version of the continuous phantom data, shown
with inverted grayscale, and (b) the magnitudes of the Haar wavelet coefficients in decreasing
order.
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(a) Gaussian (b) DCT (c) DCT and Haar

Figure 14: Weights w(k) plotted against 1/(n−k−1) for (a) a 200×600 matrix with entries
sampled i.i.d. from the normal distribution; (b) five instances of the restricted DCT matrix
described in Section 5.2.2; and (c) matrices as described in Section 5.2.2 for n/p ranging from
0.2 to 0.5. The vertical red lines indicate the weights needed to evaluate λBHc for q = 0.1.
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