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Abstract. Conventional wisdom and common practice in acquisition and reconstruction of
images from frequency data follow the basic principle of the Nyquist density sampling theory.
This principle states that to reconstruct an image, the number of Fourier samples we need to
acquire must match the desired resolution of the image, i.e. the number of pixels in the image.
This paper surveys an emerging theory which goes by the name of “compressive sampling” or
“compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps
surprisingly, it is possible to reconstruct images or signals of scientific interest accurately and
sometimes even exactly from a number of samples which is far smaller than the desired resolution
of the image/signal, e.g. the number of pixels in the image.

It is believed that compressive sampling has far reaching implications. For example, it
suggests the possibility of new data acquisition protocols that translate analog information into
digital form with fewer sensors than what was considered necessary. This new sampling theory
may come to underlie procedures for sampling and compressing data simultaneously.

In this short survey, we provide some of the key mathematical insights underlying this new
theory, and explain some of the interactions between compressive sampling and other fields such
as statistics, information theory, coding theory, and theoretical computer science.
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1. Introduction

One of the central tenets of signal processing is the Nyquist/Shannon sampling theory:
the number of samples needed to reconstruct a signal without error is dictated by its
bandwidth – the length of the shortest interval which contains the support of the
spectrum of the signal under study. In the last two years or so, an alternative theory
of “compressive sampling” has emerged which shows that super-resolved signals and
images can be reconstructed from far fewer data/measurements than what is usually
considered necessary. The purpose of this paper is to survey and provide some of
the key mathematical insights underlying this new theory. An enchanting aspect of
compressive sampling it that it has significant interactions and bearings on some fields
in the applied sciences and engineering such as statistics, information theory, coding
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theory, theoretical computer science, and others as well. We will try to explain these
connections via a few selected examples.

From a general viewpoint, sparsity and, more generally, compressibility has played
and continues to play a fundamental role in many fields of science. Sparsity leads to
efficient estimations; for example, the quality of estimation by thresholding or shrink-
age algorithms depends on the sparsity of the signal we wish to estimate. Sparsity
leads to efficient compression; for example, the precision of a transform coder depends
on the sparsity of the signal we wish to encode [24]. Sparsity leads to dimensionality
reduction and efficient modeling. The novelty here is that sparsity has bearings on
the data acquisition process itself, and leads to efficient data acquisition protocols.

In fact, compressive sampling suggests ways to economically translate analog data
into already compressed digital form [20], [7]. The key word here is “economically.”
Everybody knows that because typical signals have some structure, they can be com-
pressed efficiently without much perceptual loss. For instance, modern transform
coders such as JPEG2000 exploit the fact that many signals have a sparse represen-
tation in a fixed basis, meaning that one can store or transmit only a small number of
adaptively chosen transform coefficients rather than all the signal samples. The way
this typically works is that one acquires the full signal, computes the complete set of
transform coefficients, encode the largest coefficients and discard all the others. This
process of massive data acquisition followed by compression is extremely wasteful
(one can think about a digital camera which has millions of imaging sensors, the
pixels, but eventually encodes the picture on a few hundred kilobytes). This raises a
fundamental question: because most signals are compressible, why spend so much ef-
fort acquiring all the data when we know that most of it will be discarded? Wouldn’t
it be possible to acquire the data in already compressed form so that one does not
need to throw away anything? “Compressive sampling” also known as “compressed
sensing” [20] shows that this is indeed possible.

This paper is by no means an exhaustive survey of the literature on compressive
sampling. Rather this is merely an account of the author’s own work and thinking
in this area which also includes a fairly large number of references to other people’s
work and occasionally discusses connections with these works. We have done our
best to organize the ideas into a logical progression starting with the early papers
which launched this subject. Before we begin, we would like to invite the interested
reader to also check the article [17] by Ronald DeVore – also in these proceedings –
for a complementary survey of the field (Section 5).

2. Undersampled measurements

Consider the general problem of reconstructing a vector x ∈ R
N from linear mea-

surements y about x of the form

yk = 〈x, ϕk〉, k = 1, . . . , K, or y = �x. (2.1)
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That is, we acquire information about the unknown signal by sensing x against K
vectors ϕk ∈ R

N . We are interested in the “underdetermined” case K � N , where
we have many fewer measurements than unknown signal values. Problems of this
type arise in a countless number of applications. In radiology and biomedical imaging
for instance, one is typically able to collect far fewer measurements about an image
of interest than the number of unknown pixels. In wideband radio frequency signal
analysis, one may only be able to acquire a signal at a rate which is far lower than the
Nyquist rate because of current limitations inAnalog-to-Digital Converter technology.
Finally, gene expression studies also provide examples of this kind. Here, one would
like to infer the gene expression level of thousands of genes – that is, the dimensionN
of the vector x is in the thousands – from a low number of observations, typically in
the tens.

At first glance, solving the underdertermined system of equations appears hopeless,
as it is easy to make up examples for which it clearly cannot be done. But suppose
now that the signal x is compressible, meaning that it essentially depends on a number
of degrees of freedom which is smaller than N . For instance, suppose our signal is
sparse in the sense that it can be written either exactly or accurately as a superposition
of a small number of vectors in some fixed basis. Then this premise radically changes
the problem, making the search for solutions feasible. In fact, accurate and sometimes
exact recovery is possible by solving a simple convex optimization problem.

2.1. A nonlinear sampling theorem. It might be best to consider a concrete example
first. Suppose here that one collects an incomplete set of frequency samples of a
discrete signal x of length N . (To ease the exposition, we consider a model problem
in one dimension. The theory extends easily to higher dimensions. For instance, we
could be equally interested in the reconstruction of 2- or 3-dimensional objects from
undersampled Fourier data.) The goal is to reconstruct the full signal f given onlyK
samples in the Fourier domain

yk = 1√
N

N−1∑
t=0

xt e
−i2πωkt/N , (2.2)

where the ‘visible’frequenciesωk are a subset� (of sizeK) of the set of all frequencies
{0, . . . , N−1}. Sensing an object by measuring selected frequency coefficients is the
principle underlying Magnetic Resonance Imaging, and is common in many fields of
science, including Astrophysics. In the language of the general problem (2.1), the
sensing matrix � is obtained by sampling K rows of the N by N discrete Fourier
transform matrix.

We will say that a vector x isS-sparse if its support {i : xi �= 0} is of cardinality less
or equal toS. Then Candès, Romberg and Tao [6] showed that one could almost always
recover the signal x exactly by solving the convex program1 (‖x̃‖�1 := ∑N

i=1 |x̃i |)
(P1) min

x̃∈RN
‖x̃‖�1 subject to �x̃ = y. (2.3)

1(P1) can even be recast as a linear program [3], [15].
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Theorem 2.1 ([6]). Assume that x is S-sparse and that we are given K Fourier
coefficients with frequencies selected uniformly at random. Suppose that the number
of observations obeys

K ≥ C · S · logN. (2.4)

Then minimizing �1 reconstructs x exactly with overwhelming probability. In details,
if the constant C is of the form 22(δ + 1) in (2.4), then the probability of success
exceeds 1 −O(N−δ).

The first conclusion is that one suffers no information loss by measuring just about
any set of K frequency coefficients. The second is that the signal x can be exactly
recovered by minimizing a convex functional which does not assume any knowledge
about the number of nonzero coordinates of x, their locations, and their amplitudes
which we assume are all completely unknown a priori.

While this seems to be a great feat, one could still ask whether this is optimal,
or whether one could do with even fewer samples. The answer is that in general,
we cannot reconstruct S-sparse signals with fewer samples. There are examples
for which the minimum number of samples needed for exact reconstruction by any
method, no matter how intractable, must be about S logN . Hence, the theorem is
tight and �1-minimization succeeds nearly as soon as there is any hope to succeed by
any algorithm.

The reader is certainly familiar with the Nyquist/Shannon sampling theory and one
can reformulate our result to establish simple connections. By reversing the roles of
time and frequency in the above example, we can recast Theorem 1 as a new nonlinear
sampling theorem. Suppose that a signal x has support � in the frequency domain
with B = |�|. If � is a connected set, we can think of B as the bandwidth of x. If
in addition the set� is known, then the classical Nyquist/Shannon sampling theorem
states that x can be reconstructed perfectly fromB equally spaced samples in the time
domain2. The reconstruction is simply a linear interpolation with a “sinc” kernel.

Now suppose that the set �, still of size B, is unknown and not necessarily con-
nected. In this situation, the Nyquist/Shannon theory is unhelpful – we can only
assume that the connected frequency support is the entire domain suggesting that
all N time-domain samples are needed for exact reconstruction. However, Theo-
rem 2.1 asserts that far fewer samples are necessary. Solving (P1) will recover x
perfectly from about B logN time samples. What is more, these samples do not have
to be carefully chosen; almost any sample set of this size will work. Thus we have a
nonlinear analog (described as such since the reconstruction procedure (P1) is non-
linear) to Nyquist/Shannon: we can reconstruct a signal with arbitrary and unknown
frequency support of size B from about B logN arbitrarily chosen samples in the
time domain.

Finally, we would like to emphasize that our Fourier sampling theorem is only
a special instance of much more general statements. As a matter of fact, the results

2For the sake of convenience, we make the assumption that the bandwidth B divides the signal length N
evenly.
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extend to a variety of other setups and higher dimensions. For instance, [6] shows
how one can reconstruct a piecewise constant (one or two-dimensional) object from
incomplete frequency samples provided that the number of jumps (discontinuities)
obeys the condition above by minimizing other convex functionals such as the total
variation.

2.2. Background. Now for some background. In the mid-eighties, Santosa and
Symes [44] had suggested the minimization of �1-norms to recover sparse spike trains,
see also [25], [22] for early results. In the last four years or so, a series of papers [26],
[27], [28], [29], [33], [30] explained why �1 could recover sparse signals in some
special setups. We note though that the results in this body of work are very different
than the sampling theorem we just introduced. Finally, we would like to point out
important connections with the literature of theoretical computer science. Inspired
by [37], Gilbert and her colleagues have shown that one could recover an S-sparse
signal with probability exceeding 1−δ from S ·poly(logN, log δ) frequency samples
placed on special equispaced grids [32]. The algorithms they use are not based on
optimization but rather on ideas from the theory of computer science such as isolation,
and group testing. Other points of connection include situations in which the set of
spikes are spread out in a somewhat even manner in the time domain [22], [51].

2.3. Undersampling structured signals. The previous example showed that the
structural content of the signal allows a drastic “undersampling” of the Fourier trans-
form while still retaining enough information for exact recovery. In other words, if one
wanted to sense a sparse object by taking as few measurements as possible, then one
would be well-advised to measure randomly selected frequency coefficients. In truth,
this observation triggered a massive literature. To what extent can we recover a com-
pressible signal from just a few measurements. What are good sensing mechanisms?
Does all this extend to object that are perhaps not sparse but well-approximated by
sparse signals? In the remainder of this paper, we will provide some answers to these
fundamental questions.

3. The Mathematics of compressive sampling

3.1. Sparsity and incoherence. In all what follows, we will adopt an abstract and
general point of view when discussing the recovery of a vector x ∈ R

N . In practical
instances, the vector x may be the coefficients of a signal f ∈ R

N in an orthonormal
basis 	

f (t) =
N∑
i=1

xiψi(t), t = 1, . . . , N. (3.1)

For example, we might choose to expand the signal as a superposition of spikes (the
canonical basis of R

N ), sinusoids, B-splines, wavelets [36], and so on. As a side
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note, it is not important to restrict attention to orthogonal expansions as the theory
and practice of compressive sampling accommodates other types of expansions. For
example, xmight be the coefficients of a digital image in a tight-frame of curvelets [5].
To keep on using convenient matrix notations, one can write the decomposition (3.1) as
x = 	f where	 is theN byN matrix with the waveformsψi as rows or equivalently,
f = 	∗x.

We will say that a signal f is sparse in the 	-domain if the coefficient sequence
is supported on a small set and compressible if the sequence is concentrated near a
small set. Suppose we have available undersampled data about f of the same form
as before

y = �f.

Expressed in a different way, we collect partial information about x via y = �′xwhere
�′ = �	∗. In this setup, one would recover f by finding – among all coefficient
sequences consistent with the data – the decomposition with minimum �1-norm

min ‖x̃‖�1 such that �′x̃ = y.

Of course, this is the same problem as (2.3), which justifies our abstract and general
treatment.

With this in mind, the key concept underlying the theory of compressive sampling
is a kind of uncertainty relation, which we explain next.

3.2. Recovery of sparse signals. In [7], Candès and Tao introduced the notion of
uniform uncertainty principle (UUP) which they refined in [8]. The UUP essentially
states that theK ×N sensing matrix� obeys a “restricted isometry hypothesis.” Let
�T , T ⊂ {1, . . . , N} be the K × |T | submatrix obtained by extracting the columns
of � corresponding to the indices in T ; then [8] defines the S-restricted isometry
constant δS of � which is the smallest quantity such that

(1 − δS) ‖c‖2
�2

≤ ‖�T c‖2
�2

≤ (1 + δS) ‖c‖2
�2

(3.2)

for all subsets T with |T | ≤ S and coefficient sequences (cj )j∈T . This property es-
sentially requires that every set of columns with cardinality less than S approximately
behaves like an orthonormal system.

An important result is that if the columns of the sensing matrix� are approximately
orthogonal, then the exact recovery phenomenon occurs.

Theorem 3.1 ([8]). Assume that x is S-sparse and suppose that δ2S + δ3S < 1 or,
better, δ2S + θS,2S < 1. Then the solution x� to (2.3) is exact, i.e., x� = x.

In short, if the UUP holds at about the levelS, the minimum �1-norm reconstruction
is provably exact. The first thing one should notice when comparing this result with
the Fourier sampling theorem is that it is deterministic in the sense that it does not
involve any probabilities. It is also universal in that all sufficiently sparse vectors
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are exactly reconstructed from �x. In Section 3.4, we shall give concrete examples
of sensing matrices obeying the exact reconstruction property for large values of the
sparsity level, e.g. for S = O(K/ log(N/K)).

Before we do so, however, we would like to comment on the slightly better version
δ2S + θS,2S < 1, which is established in [10]. The number θS,S′ for S + S′ ≤ N is
called the S, S′-restricted orthogonality constants and is the smallest quantity such
that

|〈�T c,�T ′c′〉| ≤ θS,S′ · ‖c‖�2 ‖c′‖�2 (3.3)

holds for all disjoint sets T , T ′ ⊆ {1, . . . , N} of cardinality |T | ≤ S and |T ′| ≤ S′.
Thus θS,S′ is the cosine of the smallest angle between the two subspaces spanned
by the columns in T and T ′. Small values of restricted orthogonality constants
indicate that disjoint subsets of covariates span nearly orthogonal subspaces. The
condition δ2S + θS,2S < 1 is better than δ2S + δ3S < 1 since it is not hard to see that
δS+S′ − δS′ ≤ θS,S′ ≤ δS+S′ for S′ ≥ S [8, Lemma 1.1].

Finally, now that we have introduced all the quantities needed to state our recovery
theorem, we would like to elaborate on the condition δ2S + θS,2S < 1. Suppose
that δ2S = 1 which may indicate that there is a matrix �T1∪T2 with 2S columns
(|T1| = S, |T2| = S) that is rank-deficient. If this is the case, then there is a pair
(x1, x2) of nonvanishing vectors with x1 supported on T1 and x2 supported on T2
obeying

�(x1 − x2) = 0 ⇐⇒ �x1 = �x2.

In other words, we have two very distinctS-sparse vectors which are indistinguishable.
This is why any method whatsoever needs δ2S < 1. For, otherwise, the model is not
identifiable to use a terminology borrowed from the statistics literature. With this in
mind, one can see that the condition δ2S + θS,2S < 1 is only slightly stronger than
this identifiability condition.

3.3. Recovery of compressible signals. In general, signals of practical interest may
not be supported in space or in a transform domain on a set of relatively small size.
Instead, they may only be concentrated near a sparse set. For example, a commonly
discussed model in mathematical image or signal processing assumes that the coef-
ficients of elements taken from a signal class decay rapidly, typically like a power
law. Smooth signals, piecewise signals, images with bounded variations or bounded
Besov norms are all of this type [24].

A natural question is how well one can recover a signal that is just nearly sparse.
For an arbitrary vector x in R

N , denote by xS its best S-sparse approximation; that
is, xS is the approximation obtained by keeping the S largest entries of x and setting
the others to zero. It turns out that if the sensing matrix obeys the uniform uncertainty
principle at level S, then the recovery error is not much worse than ‖x − xS‖�2 .
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Theorem 3.2 ([9]). Assume that x is S-sparse and suppose that δ3S + δ4S < 2. Then
the solution x� to (2.3) obeys

‖x∗ − x‖�2 ≤ C · ‖x − xS‖�1√
S

. (3.4)

For reasonable values of δ4S , the constant in (3.4) is well behaved; e.g. C ≤ 8.77 for
δ4S = 1/5. Suppose further that δS + 2θS,S + θ2S,S < 1, we also have

‖x∗ − x‖�1 ≤ C ‖x − xS‖�1, (3.5)

for some positive constant C. Again, the constant in (3.5) is well behaved.

Roughly speaking, the theorem says that minimizing �1 recovers the S-largest
entries of anN-dimensional unknown vector x fromK measurements only. As a side
remark, the �2-stability result (3.4) appears explicitly in [9] while the ‘�1 instance
optimality’ (3.5) is implicit in [7] although it is not stated explicitely. For example, it
follows from Lemma 2.1 – whose hypothesis holds because of Lemma 2.2. in [8] –
in that paper. Indeed, let T be the set where x takes on its S-largest values. Then
Lemma 2.1 in [7] gives ‖x∗ ·1T c‖�1 ≤ 4‖x−xS‖�1 and, therefore, ‖(x∗−x)·1T c‖�1 ≤
5‖x − xS‖�1 . We conclude by observing that on T we have

‖(x∗ − x) · 1T ‖�1 ≤ √
S ‖(x∗ − x) · 1T ‖�2 ≤ C ‖x − xS‖�1,

where the last inequality follows from (3.4). For information, a more direct argument
yields better constants.

To appreciate the content of Theorem 3.2, suppose that x belongs to a weak-�p
ball of radius R. This says that if we rearrange the entries of x in decreasing order of
magnitude |x|(1) ≥ |x|(2) ≥ · · · ≥ |x|(N), the ith largest entry obeys

|x|(i) ≤ R · i−1/p, 1 ≤ i ≤ N. (3.6)

More prosaically, the coefficient sequence decays like a power-law and the parame-
ter p controls the speed of the decay: the smaller p, the faster the decay. Classical
calculations then show that the best S-term approximation of an object x ∈ w�p(R)
obeys

‖x − xS‖�2 ≤ C2 · R · S1/2−1/p (3.7)

in the �2 norm (for some positive constant C2), and

‖x − xS‖�1 ≤ C1 · R · S1−1/p

in the �1-norm. For generic elements obeying (3.6), there are no fundamentally better
estimates available. Hence, Theorem 3.2 shows that with K measurements only, we
can achieve an approximation error which is as good as that one would obtain by
knowing everything about the signal and selecting its S-largest entries.
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3.4. Random matrices. Presumably all of this would be interesting if one could
design a sensing matrix which would allow us to recover as many entries of x as
possible with as few asK measurements. In the language of Theorem 3.1, we would
like the condition δ2S + θS,2S < 1 to hold for large values of S, ideally of the order
of K . This poses a design problem. How should one design a matrix � – that is to
say, a collection ofN vectors inK dimensions – so that any subset of columns of size
about S be about orthogonal? And for what values of S is this possible?

While it might be difficult to exhibit a matrix which provably obeys the UUP
for very large values of S, we know that trivial randomized constructions will do
so with overwhelming probability. We give an example. Sample N vectors on the
unit sphere of R

K independently and uniformly at random. Then the condition of
Theorems 3.1 and 3.2 hold for S = O(K/ log(N/K))with probability 1−πN where
πN = O(e−γN) for some γ > 0. The reason why this holds may be explained by
some sort of “blessing of high-dimensionality.” Because the high-dimensional sphere
is mostly empty, it is possible to pack many vectors while maintaining approximate
orthogonality.

• Gaussian measurements. Here we assume that the entries of theK byN sensing
matrix � are independently sampled from the normal distribution with mean
zero and variance 1/K . Then if

S ≤ C ·K/ log(N/K), (3.8)

S obeys the condition of Theorems 3.1 and 3.2 with probability 1 −O(e−γN)
for some γ > 0. The proof uses known concentration results about the singular
values of Gaussian matrices [16], [45].

• Binary measurements. Suppose that the entries of theK byN sensing matrix�
are independently sampled from the symmetric Bernoulli distributionP(�ki =
±1/

√
K) = 1/2. Then it is conjectured that the conditions of Theorems 3.1

and 3.2 are satisfied with probability 1 −O(e−γN) for some γ > 0 provided
that S obeys (3.8). The proof of this fact would probably follow from new
concentration results about the smallest singular value of a subgaussian matrix
[38]. Note that the exact reconstruction property for S-sparse signals and (3.7)
with S obeying (3.8) are known to hold for binary measurements [7].

• Fourier measurements. Suppose now that� is a partial Fourier matrix obtained
by selecting K rows uniformly at random as before, and renormalizing the
columns so that they are unit-normed. Then Candès and Tao [7] showed that
Theorem 3.1 holds with overwhelming probability if S ≤ C · K/(logN)6.
Recently, Rudelson and Vershynin [43] improved this result and established
S ≤ C ·K/(logN)4. This result is nontrivial and use sophisticated techniques
from geometric functional analysis and probability in Banach spaces. It is
conjectured that S ≤ C ·K/ logN holds.
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• Incoherent measurements. Suppose now that� is obtained by selectingK rows
uniformly at random from anN byN orthonormal matrixU and renormalizing
the columns so that they are unit-normed. As before, we could think of U as
the matrix�	∗ which maps the object from the	 to the�-domain. Then the
arguments used in [7], [43] to prove that the UUP holds for incomplete Fourier
matrices extend to this more general situation. In particular, Theorem 3.1 holds
with overwhelming probability provided that

S ≤ C · 1

μ2 · K

(logN)4
, (3.9)

where μ := √
N maxi,j |Ui,j | (observe that for the Fourier matrix, μ = 1

which gives the result in the special case of the Fourier ensemble above). With
U = �	∗,

μ := √
N max

i,j
|〈ϕi, ψj 〉| (3.10)

which is referred to as the mutual coherence between the measurement basis
� and the sparsity basis 	 [27], [28]. The greater the incoherence of the
measurement/sparsity pair (�,	), the smaller the number of measurements
needed.

In short, one can establish the UUP for a few interesting random ensembles and we
expect that in the future, many more results of this type will become available.

3.5. Optimality. Before concluding this section, it is interesting to specialize our
recovery theorems to selected measurement ensembles now that we have established
the UUP for concrete values of S. Consider the Gaussian measurement ensemble in
which the entries of � are i.i.d. N(0, 1/K). Our results say that one can recover any
S-sparse vector from a random projection of dimension about O(S · log(N/S)), see
also [18]. Next, suppose that x is taken from a weak-�p ball of radius R for some
0 < p < 1, or from the �1-ball of radius R for p = 1. Then we have shown that for
all x ∈ w�p(R)

‖x� − x‖�2 ≤ C · R · (K/ log(N/K))−r , r = 1/p − 1/2, (3.11)

which has also been proven in [20]. An important question is whether this is op-
timal. In other words, can we find a possibly adaptive set of measurements and a
reconstruction algorithm that would yield a better bound than (3.11)? By adaptive,
we mean that one could use a sequential measurement procedure where at each stage,
one would have the option to decide which linear functional to use next based on the
data collected up to that stage.

It proves to be the case that one cannot improve on (3.11), and we have thus
identified the optimal performance. Fix a class of object F and let EK(F ) be the
best reconstruction error from K linear measurements

EK(F ) = inf sup
f∈F

‖f −D(y)‖�2, y = �f, (3.12)
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where the infimum is taken over all set of K linear functionals and all reconstruction
algorithms D. Then it turns out EK(F ) nearly equals the Gelfand numbers of a
class F defined as

dK(F ) = inf
V

{ sup
f∈F

‖PV f ‖ : codim(V ) < K}, (3.13)

where PV is the orthonormal projection on the subspace V . Gelfand numbers play an
important role in approximation theory, see [40] for more information. If F = −F
and F = F +F ≤ cF F , then dK(F ) ≤ EK(F ) ≤ cF dK(F ). Note that cF = 21/p

in the case where F is a weak-�p ball. The thing is that we know the approximate
values of the Gelfand numbers for many classes of interest. Suppose for example
that F is the �1-ball of radius R. A seminal result of Kashin [35] and improved by
Garnaev and Gluskin [31] shows that for this ball, the Gelfand numbers obey

C1 · R ·
√

log(N/K)+ 1

K
≤ dk(F ) ≤ C2 · R ·

√
log(N/K)+ 1

K
, (3.14)

whereC1,C2 are universal constants. Gelfand numbers are also approximately known
for weak-�p balls as well; the only difference is that ((log(N/K)+1)/K)r substitutes
((log(N/K) + 1)/K)1/2. Hence, Kashin, Garnaev and Gluskin assert that with K
measurements, the minimal reconstruction error (3.12) one can hope for is bounded
below by a constant times (K/ log(N/K))−r . Kashin’s arguments [35] also used
probabilistic functionals which establish the existence of recovery procedures for
which the reconstruction error is bounded above by the right-hand side of (3.14).
Similar types of recovery have also been known to be possible in the literature of
theoretical computer science, at least in principle, for certain types of random mea-
surements [1].

In this sense, our results – specialized to Gaussian measurements – are optimal
for weak-�p norms. The novelty is that the information about the object can be
retrieved from random coefficients by minimizing a simple linear program (2.3), and
that the decoding algorithm adapts automatically to the weak-�p signal class, without
knowledge thereof. Minimizing the �1-norm is adaptive and nearly gives the best
possible reconstruction error simultaneously over a wide range of sparse classes of
signals; no information about p and the radius R are required.

4. Robust compressive sampling

In any realistic application, we cannot expect to measure�x without any error, and we
now turn our attention to the robustness of compressive sampling vis a vis measure-
ment errors. This is a very important issue because any real-world sensor is subject
to at least a small amount of noise. And one thus immediately understands that to
be widely applicable, the methodology needs to be stable. Small perturbations in the
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observed data should induce small perturbations in the reconstruction. Fortunately,
the recovery procedures may be adapted to be surprisingly stable and robust vis a vis
arbitrary perturbations.

Suppose our observations are inaccurate and consider the model

y = �x + e, (4.1)

where e is a stochastic or deterministic error term with bounded energy ‖e‖�2 ≤ ε.
Because we have inaccurate measurements, we now use a noise-aware variant of (2.3)
which relaxes the data fidelity term. We propose a reconstruction program of the form

(P2) min ‖x̃‖�1 such that ‖�x̃ − y‖�2 ≤ ε. (4.2)

The difference with (P1) is that we only ask the reconstruction be consistent with
the data in the sense that y − �x� be within the noise level. The program (P2) has
a unique solution, is again convex, and is a special instance of a second order cone
program (SOCP) [4].

Theorem 4.1 ([9]). Suppose that x is an arbitrary vector in R
N . Under the hypothesis

of Theorem 3.2, the solution x� to (P2) obeys

‖x� − x‖�2 ≤ C1,S · ε + C2,S · ‖x0 − x0,S‖�1√
S

. (4.3)

For reasonable values of δ4S the constants in (4.3) are well behaved, see [9].

We would like to offer two comments. The first is that the reconstruction error
is finite. This quiet observation is noteworthy because we recall that the matrix � is
rectangular with many more columns than rows – thus having a fraction of vanishing
singular values. Having said that, the mere fact that the severely ill-posed matrix
inversion keeps the perturbation from “blowing up” may seem a little unexpected.
Next and upon closer inspection, one sees that the reconstruction error is the sum of
two terms: the first is simply proportional to the size of the measurement error while
the second is the approximation error one would obtain in the noiseless case. In other
words, the performance of the reconstruction degrades gracefully as the measurement
noise increases. This brings us to our second point. In fact, it is not difficult to see
that no recovery method can perform fundamentally better for arbitrary perturbations
of size ε [9]. For related results for Gaussian sensing matrices, see [19].

5. Connections with statistical estimation

In the remainder of this paper, we shall briefly explore some connections with other
fields, and we begin with statistics. Suppose now that the measurement errors in (4.1)
are stochastic. More explicitly, suppose that the model is of the form

y = �x + z, (5.1)
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where z1, . . . , zk are i.i.d. with mean zero and variance σ 2. In this section, we
will assume that the zk’s are Gaussian although nothing in our arguments heavily
relies upon this assumption. The problem is again to recover x from y which is a
central problem in statistics since this is just the classical multivariate linear regression
problem. Because the practical environment has changed dramatically over the last
two decades or so, applications have emerged in which the number of observations is
small compared to the dimension of the object we wish to estimate – here, K ≤ N .
This new paradigm sometimes referred to as “high-dimensional data” is currently
receiving much attention and, clearly, the emerging theory of compressive sampling
might prove very relevant.

The results from the previous sections are directly applicable. Suppose that x
is S-sparse to simplify our exposition. Because ‖z‖2

�2
is distributed as a chi-squared

with K degrees of freedom, the reconstruction (4.2) would obey

‖x∗ − x‖2
�2

≤ C ·Kσ 2 (5.2)

with high probability. While this may seem acceptable to the nonspecialist, modern
results in the literature suggest that one might be able to get a better accuracy. In
particular, one would like an adaptive error bound which depends upon the complexity
of the true unknown parameter vector x ∈ R

N . For example, if x only has S significant
coefficients, we would desire an error bound of size about Sσ 2; the less complex the
estimand, the smaller the squared-error loss. This poses an important question: can
we design an estimator whose accuracy depends upon the information content of the
object we wish to recover?

5.1. Ideal model selection. To get a sense of what is possible, consider regressing
the data y onto an arbitrary subset T by the method of least squares. Define x̂[T ] to
be the least squares estimate whose restriction to the set T is given by

x̂T [T ] = (�TT �T )
−1�TT y, (5.3)

and which vanishes outside T . Above, x̂T [T ] is the restriction of x̂[T ] to T and
similarly for xT . Since x̂[T ] vanishes outside T , we have

E‖x − x̂[T ]‖2 = ‖xT − x̂T [T ]‖2 +
∑
i /∈T

|xi |2,

Consider the first term. We have

xT − x̂T [T ] = (�TT �T )
−1�TT (s + z),

where s = �T cxT c . It follows that

E‖xT − x̂T [T ]‖2 = ‖(�TT �T )−1�TT s‖2 + σ 2 Tr((�TT �T )
−1).
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However, since all the eigenvalues of�TT�T belong to the interval [1−δ|T |, 1+δ|T |],
we have

E‖xT − x̂T [T ]‖2 ≥ 1

1 + δ|T |
· |T | · σ 2.

For each set T with |T | ≤ S and δS < 1, we then have

E‖x − x̂[T ]‖2 ≥
∑
i∈T cc

x2
i + 1

2
|T | · σ 2.

We now search for an ideal estimator which selects that estimator x̂[T ∗] from the
family (x̂[T ])T⊂{1,...,N} with minimal Mean-Squared Error (MSE):

x̂[T ∗] = argminT⊂{1,...,N} E‖x − x̂[T ]‖2.

This estimator is ideal because we would of course not know which estimator x̂T is
best; that is, to achieve the ideal MSE, one would need an oracle that would tell us
which model T to choose.

We will consider this ideal estimator nevertheless and take its MSE as a benchmark.
The ideal MSE is bounded below by

E‖x − x̂[T ∗]‖2 ≥ 1

2
min
T
(‖x − x̂[T ]‖2 + |T | · σ 2)

= 1

2

∑
i

min(x2
i , σ

2). (5.4)

Letting xS be the best S-sparse approximation to x, another way to express the right-
hand side (5.4) is in term of the classical trade-off between the approximation error
and the number of terms being estimated times the noise level

E‖x − x̂T ∗‖2 ≥ 1

2
inf
S≥0

(‖x − xS‖2 + Sσ 2) .
Our question is of course whether there is a computationally efficient estimator which
can mimic the ideal MSE.

5.2. The Dantzig selector. Assume for simplicity that the columns of � are nor-
malized (there are straightforward variations to handle the general case). Then the
Dantzig selector estimates x by solving the convex program

(DS) min
x̃∈RN

‖x̃‖�1 subject to sup
1≤i≤N

|(�T r)i | ≤ λ · σ (5.5)

for some λ > 0, and where r is the vector of residuals

r = y −�x̃. (5.6)
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The solution to this optimization problem is the minimum �1-vector which is consistent
with the observations. The constraints impose that the residual vector is within the
noise level and does not correlate too well with the columns of �. For information,
there exist related, yet different proposals in the literature, and most notably the lasso
introduced by [47], see also [15]. Again, the program (DS) is convex and can be
recast as a linear program (LP).

The main result in this line of research is that the Dantzig selector is not only
computationally tractable, it is also accurate.

Theorem 5.1 ([10]). Set λ := (1 + t−1)
√

2 logp in (5.5) and suppose that x is
S-sparse with δ2S + θS,2S < 1 − t . Then with very large probability, the Dantzig
selector x̂ solution to (5.5) obeys

‖x̂ − x‖2 ≤ O(logp) ·
(
σ 2 +

∑
i

min(x2
i , σ

2)
)
. (5.7)

Our result says that the Dantzig selector achieves a loss within a logarithmic factor
of the ideal mean squared error one would achieve with an oracle which would supply
perfect information about which coordinates are nonzero, and which were above the
noise level. To be complete, it is possible to obtain similar bounds on the MSE.

There are extensions of this result to signals which are not sparse but compressible,
e.g. for signals which belong to weak-�p balls. What is interesting here is that in
some instances, even though the number of measurements is much smaller than the
dimension of the parameter vector x, the Dantzig selector recovers the minimax rate
that one would get if we were able to measure all the coordinates of x directly via
ỹ = x + σz where z is i.i.d. N(0, 1).

6. Connections with error correction

Compressive sampling also interacts with the agenda of coding theory. Imagine we
wish to transmit a vector x of length M to a remote receiver reliably. A frequently
discussed approach consists in encoding the information x with an N by M coding
matrix C with N > M . Assume that gross errors occur upon transmission and that
a fraction of the entries of Cx are corrupted in a completely arbitrary fashion. We
do not know which entries are affected nor do we know how they are affected. Is
it possible to recover the information x exactly from the corrupted N-dimensional
vector y?

To decode, [8] proposes solving the minimum �1-approximation problem

(D1) min
x̃∈RM

‖y − Cx̃‖�1, (6.1)

which can also be obviously recast as an LP. The result is that ifC is carefully chosen,
then (6.1) will correctly retrieve the information x with no error provided that the
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fraction ρ of errors is not too large, ρ ≤ ρ∗. This phenomenon holds for all x’s and
all corruption patterns.

To see why this phenomenon occurs, consider a matrix B which annihilates the
N ×M coding matrix C on the left, i.e. such that BC = 0; B is called a parity-check
matrix and is any (N −M) × N matrix whose kernel is the range of C in R

N . The
transmitted information is of the form y = Cx + e, where e is a sparse vector of
possibly gross errors, and apply B on both sides of this equation. This gives

ỹ = B(Cx + e) = Be (6.2)

since BC = 0. Therefore, the decoding problem is reduced to that of recovering
the error vector e from the observations Be. Once e is known, Cx is known and,
therefore, x is also known since we may just assume that C has full rank.

Now the reader knows that we could solve the underdetermined system (6.2) by
�1-minimization. He also knows that if the UUP holds, the recovery is exact. Now
(D1) and (P1) are equivalent programs. Indeed, it follows from the decomposition
x̃ = x + h that

(D1) ⇐⇒ min
h∈RM

‖e − Ch‖�1 .

Now the constraintBd = Bemeans that d = e−Ah for some h ∈ R
M and, therefore,

min ‖d‖�1, Bd = Be ⇐⇒ min
h∈Rn

‖d‖�1, d = e − Ah

⇐⇒ min
h∈Rn

‖e − Ah‖�1,

which proves the claim.
Hence, if one uses a random coding matrix which is a popular choice, we have the

following result, see also [42]:

Theorem 6.1 ([8]). Suppose the coding matrix C has i.i.d. N(0, 1) entries. Then
with probability exceeding 1 − O(e−γM) for some γ > 0, (D1) exactly decodes all
x ∈ R

M provided that the fraction ρ of arbitrary errors obeys ρ ≤ ρ∗(M,N).

In conclusion, one can correct a constant fraction of errors with arbitrary magni-
tudes by solving a convenient LP. In [8], the authors reported on numerical results
showing that in practice (D1) works extremely well and recovers the vector x exactly
provided that the fraction of the corrupted entries be less than about 17% in the case
where N = 2M and less than about 34% in the case where N = 4M .

7. Further topics

Our intention in this short survey was merely to introduce the new compressive sam-
pling concepts. We presented an approach based on the notion of uncertainty principle
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which gives a powerful and unified treatment of some of the main results underly-
ing this theory. As we have seen, the UUP gives conditions for exact, approximate,
and stable recoveries which are almost necessary. Another advantage that one can
hardly neglect is that this makes the exposition fairly simple. Having said that, the
early papers on compressive sampling – e.g. [6], [7], [20] – have spurred a large
and fascinating literature in which other approaches and ideas have been proposed.
Rudelson and Vershynin have used tools from modern Banach space theory to de-
rive powerful results for Gaussian ensembles [42], [14], [43]. In this area, Pajor and
his colleagues have established the existence of abstract reconstruction procedures
from subgaussian measurements (including random binary sensing matrices) with
powerful reconstruction properties. In a different direction, Donoho and Tanner have
leveraged results from polytope geometry to obtain very precise estimates about the
minimal number of Gaussian measurements needed to reconstruct S-sparse signals
[21], [23], see also [43]. Tropp and Gilbert reported results about the performance of
greedy methods for compressive sampling [49]. Haupt and Nowak have quantified the
performance of combinatorial optimization procedures for estimating a signal from
undersampled random projections in noisy environments [34]. Finally, Rauhut has
worked out variations on the Fourier sampling theorem in which a sparse continuous-
time trigonometric polynomials is randomly sampled in time [41]. Because of space
limitations, we are unfortunately unable to do complete justice to this rapidly growing
literature.

We would like to emphasize that there are many aspects of compressive sampling
that we have not touched. For example, we have not discussed the practical perfor-
mance of this new theory. In fact, numerical experiments have shown that compressive
sampling behaves extremely well in practice. For example, it has been shown that
from 3S−4S nonadaptive measurements, one can reconstruct an approximation of an
image in a fixed basis which is more precise than that one would get by measuring all
the coefficients of the object in that basis and selecting the S largest [13], [50]. Fur-
ther, numerical simulations with noisy data show that compressive sampling is very
stable and performs well in noisy environments. In practice, the constants appearing
in Theorems 4.1 and 5.1 are very small, see [9] and [10] for empirical results.

We would like to close this article by returning to the main theme of this paper,
which is that compressive sampling invites to rethink sensing mechanisms. Because if
one were to collect a comparably small number of general linear measurements rather
than the usual pixels, one could in principle reconstruct an image with essentially the
same resolution as that one would obtain by measuring all the pixels. Therefore, if
one could design incoherent sensors (i.e. measuring incoherent linear functionals),
the payoff could be extremely large. Several teams have already reported progress
in this direction. For example, a team led by Baraniuk and Kelly have proposed a
new camera architecture that employs a digital micromirror array to perform optical
calculations of linear projections of an image onto pseudorandom binary patterns
[46], [52]. Compressive sampling may also address challenges in the processing
of wideband radio frequency signals since high-speed analog-to-digital convertor
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technology indicates that current capabilities fall well short of needs, and that hardware
implementations of high precision Shannon-based conversion seem out of sight for
decades to come. Finally, compressive sampling has already found applications in
wireless sensor networks [2]. Here, compressive sampling allows of energy efficient
estimation of sensor data with comparably few sensor nodes. The power of these
estimation schemes is that they require no prior information about the sensed data.
All these applications are novel and exciting. Others might just be around the corner.
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